1
|
McGlinchey E, Duran-Aniotz C, Akinyemi R, Arshad F, Zimmer ER, Cho H, Adewale BA, Ibanez A. Biomarkers of neurodegeneration across the Global South. THE LANCET. HEALTHY LONGEVITY 2024; 5:100616. [PMID: 39369726 PMCID: PMC11540104 DOI: 10.1016/s2666-7568(24)00132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Research on neurodegenerative diseases has predominantly focused on high-income countries in the Global North. This Series paper describes the state of biomarker evidence for neurodegeneration in the Global South, including Latin America, Africa, and countries in south, east, and southeast Asia. Latin America shows growth in fluid biomarker and neuroimaging research, with notable advancements in genetics. Research in Africa focuses on genetics and cognition but there is a paucity of data on fluid and neuroimaging biomarkers. South and east Asia, particularly India and China, has achieved substantial progress in plasma, neuroimaging, and genetic studies. However, all three regions face several challenges in the form of a lack of harmonisation, insufficient funding, and few comparative studies both within the Global South, and between the Global North and Global South. Other barriers include scarce infrastructure, lack of knowledge centralisation, genetic and cultural diversity, sociocultural stigmas, and restricted access to tools such as PET scans. However, the diverse ethnic, genetic, economic, and cultural backgrounds in the Global South present unique opportunities for bidirectional learning, underscoring the need for global collaboration to enhance the understanding of dementia and brain health.
Collapse
Affiliation(s)
- Eimear McGlinchey
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile
| | - Rufus Akinyemi
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faheem Arshad
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics (PPGFT) and Biochemistry (PPGBioq), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Hanna Cho
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Boluwatife Adeleye Adewale
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agustin Ibanez
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
| |
Collapse
|
2
|
McFarlane O, Kozakiewicz M, Wojciechowska M, Kędziora-Kornatowska K. Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly. Curr Issues Mol Biol 2023; 45:2452-2460. [PMID: 36975530 PMCID: PMC10047883 DOI: 10.3390/cimb45030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Together with development of new pharmaceutical interventions, as well as the introduction of the concept of initial dementia phase, the demand for early diagnosis has been growing. Research on potential blood biomarkers, amazingly attractive, mainly due to the facility of deriving the material, has provided ambiguous results throughout. The existence of an association between ubiquitin and Alzheimer’s disease pathology suggests that it could be a potential neurodegeneration biomarker. The present study aims to identify and assess the relationship between ubiquitin with regard to the adequacy as a biomarker of an initial dementia and cognitive decline in the elderly. Method: The study sample was composed of 230 participants: 109 women and 121 men aged 65 and older. The relationships of plasma ubiquitin levels with cognitive performance, gender, and age were analyzed. The assessments were performed in three groups of cognitive functioning level: cognitively normal, mild cognitive impairment, and mild dementia, of which the subjects were divided with the Mini-Mental State Examination (MMSE). Results: No significant disparities in plasma ubiquitin levels for various levels of cognitive functioning were identified. Significantly higher plasma ubiquitin levels in women were found in comparison to men. No significant differences were found in ubiquitin concentrations based on age. Results suggest that ubiquitin does not meet the requirements for qualification as a blood biomarker of an early cognitive decline. In order to thoroughly evaluate the potential of research on ubiquitin in connection to an early neurodegenerative process, further studies are needed.
Collapse
Affiliation(s)
- Oliwia McFarlane
- Department of Social and Medical Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
- Correspondence:
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Milena Wojciechowska
- Department of Social and Medical Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| | - Kornelia Kędziora-Kornatowska
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland
| |
Collapse
|
3
|
Cui W, Duan Z, Li Z, Feng J. Assessment of Alzheimer’s disease-related biomarkers in patients with obstructive sleep apnea: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:902408. [PMID: 36313031 PMCID: PMC9606796 DOI: 10.3389/fnagi.2022.902408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence links Alzheimer’s disease (AD) to various sleep disorders, including obstructive sleep apnea (OSA). The core AD cerebrospinal fluid (CSF) biomarkers, including amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau), can reflect key elements of AD pathophysiology before the emergence of symptoms. Besides, the amyloid-β (Aβ) and tau burden can also be tested by positron emission tomography (PET) scans. Electronic databases (PubMed, Embase, Web of Science, and The Cochrane Library) were searched until August 2022 to assess the AD-related biomarkers measured by PET scans and CSF in OSA patients. The overall analysis showed significant differences in Aβ42 levels (SMD = −0.93, 95% CI:−1.57 to −0.29, P < 0.001) and total tau (t-tau) levels (SMD = 0.24, 95% CI: 0.01–0.48, P = 0.308) of CSF, and Aβ burden (SMD = 0.37, 95% CI = 0.13–0.61, P = 0.69) tested by PET scans between the OSA and controls. Furthermore, CSF Aβ42 levels showed significant differences in patients with moderate/severe OSA compared with healthy control, and levels of CSF Aβ42 showed differences in OSA patients with normal cognition as well. Besides, age and BMI have influences on heterogeneity. Our meta-analysis indicated abnormal AD-related biomarkers (CSF and PET scans) in patients with OSA, supporting the current hypothesis that OSA, especially moderate/severe OSA, may start the AD neuropathological process.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenghao Duan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022; 27:3194. [PMID: 35630670 PMCID: PMC9146652 DOI: 10.3390/molecules27103194] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, a protective response of the central nervous system (CNS), is associated with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1β (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others. Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis, and treatment of neurodegenerative diseases. These markers also trigger the formation of various other factors responsible for causing several neuronal diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), ischemia, and several others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers (NMs), which could cause different neurodegenerative disorders. Important NMs may represent pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition, various molecular alterations related to neurodegenerative diseases are discussed. Identifying these NMs may assist in the early diagnosis and detection of therapeutic targets for treating various neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun 248006, India;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248007, India;
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed To Be University), Dehradun 248002, India;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
5
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
6
|
Amato A, Terzo S, Mulè F. Natural Compounds as Beneficial Antioxidant Agents in Neurodegenerative Disorders: A Focus on Alzheimer's Disease. Antioxidants (Basel) 2019; 8:antiox8120608. [PMID: 31801234 PMCID: PMC6943487 DOI: 10.3390/antiox8120608] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
The positive role of nutrition in chronic neurodegenerative diseases (NDs) suggests that dietary interventions represent helpful tools for preventing NDs. In particular, diets enriched with natural compounds have become an increasingly attractive, non-invasive, and inexpensive option to support a healthy brain and to potentially treat NDs. Bioactive compounds found in vegetables or microalgae possess special properties able to counteract oxidative stress, which is involved as a triggering factor in neurodegeneration. Here, we briefly review the relevant experimental data on curcuminoids, silymarin, chlorogenic acid, and compounds derived from the microalga Aphanizomenon flos aquae (AFA) which have been demonstrated to possess encouraging beneficial effects on neurodegeneration, in particular on Alzheimer's disease models.
Collapse
Affiliation(s)
- Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
- Correspondence:
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
- Department of Neuroscience and Cell Biology, University of Palermo, 90127 Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90127 Palermo, Italy; (S.T.); (F.M.)
| |
Collapse
|
7
|
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 2019; 10:1008. [PMID: 31572186 PMCID: PMC6751310 DOI: 10.3389/fphar.2019.01008] [Citation(s) in RCA: 488] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases share the fact that they derive from altered proteins that undergo an unfolding process followed by formation of β-structures and a pathological tendency to self-aggregate in neuronal cells. This is a characteristic of tau protein in Alzheimer’s disease and several tauopathies associated with tau unfolding, α-synuclein in Parkinson’s disease, and huntingtin in Huntington disease. Usually, the self-aggregation products are toxic to these cells, and toxicity spreads all over different brain areas. We have postulated that these protein unfolding events are the molecular alterations that trigger several neurodegenerative disorders. Most interestingly, these events occur as a result of neuroinflammatory cascades involving alterations in the cross-talks between glial cells and neurons as a consequence of the activation of microglia and astrocytes. The model we have hypothesized for Alzheimer’s disease involves damage signals that promote glial activation, followed by nuclear factor NF-kβ activation, synthesis, and release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 that affect neuronal receptors with an overactivation of protein kinases. These patterns of pathological events can be applied to several neurodegenerative disorders. In this context, the involvement of innate immunity seems to be a major paradigm in the pathogenesis of these diseases. This is an important element for the search for potential therapeutic approaches for all these brain disorders.
Collapse
Affiliation(s)
- Leonardo Guzman-Martinez
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Patricio Navarrete
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| | - María Gabriela Pastor
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Nicolas Ramos-Escobar
- Laboratory of Neuroscience, Faculty of Sciences, University of Chile & International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
8
|
Guzman-Martinez L, Maccioni RB, Farías GA, Fuentes P, Navarrete LP. Biomarkers for Alzheimer’s Disease. Curr Alzheimer Res 2019; 16:518-528. [DOI: 10.2174/1567205016666190517121140] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Alzheimer´s disease (AD) and related forms of dementia are increasingly affecting the aging population throughout the world, at an alarming rate. The World Alzheimer´s Report indicates a prevalence of 46.8 million people affected by AD worldwide. As population ages, this number is projected to triple by 2050 unless effective interventions are developed and implemented. Urgent efforts are required for an early detection of this disease. The ultimate goal is the identification of viable targets for the development of molecular markers and validation of their use for early diagnosis of AD that may improve treatment and the disease outcome in patients. The diagnosis of AD has been difficult to resolve since approaches for early and accurate detection and follow-up of AD patients at the clinical level have been reported only recently. Some proposed AD biomarkers include the detection of pathophysiological processes in the brain in vivo with new imaging techniques and novel PET ligands, and the determination of pathogenic proteins in cerebrospinal fluid showing anomalous levels of hyperphosphorylated tau and low Aβ peptide. These biomarkers have been increasingly accepted by AD diagnostic criteria and are important tools for the design of clinical trials, but difficulties in accessibility to costly and invasive procedures have not been completely addressed in clinical settings. New biomarkers are currently being developed to allow determinations of multiple pathological processes including neuroinflammation, synaptic dysfunction, metabolic impairment, protein aggregation and neurodegeneration. Highly specific and sensitive blood biomarkers, using less-invasive procedures to detect AD, are derived from the discoveries of peripheric tau oligomers and amyloid variants in human plasma and platelets. We have also developed a blood tau biomarker that correlates with a cognitive decline and also with neuroimaging determinations of brain atrophy.
Collapse
|
9
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
10
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by the loss of memory, multiple cognitive impairments and changes in the personality and behavior. Several decades of intense research have revealed that multiple cellular changes are involved in disease process, including synaptic damage, mitochondrial abnormalities and inflammatory responses, in addition to formation and accumulation of amyloid-β (Aβ) and phosphorylated tau. Although tremendous progress has been made in understanding the impact of neurotransmitters in the progression and pathogenesis of AD, we still do not have a drug molecule associated with neurotransmitter(s) that can delay disease process in elderly individuals and/or restore cognitive functions in AD patients. The purpose of our article is to assess the latest developments in neurotransmitters research using cell and mouse models of AD. We also updated the current status of clinical trials using neurotransmitters' agonists/antagonists in AD.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Öhrfelt A, Johansson P, Wallin A, Andreasson U, Zetterberg H, Blennow K, Svensson J. Increased Cerebrospinal Fluid Levels of Ubiquitin Carboxyl-Terminal Hydrolase L1 in Patients with Alzheimer's Disease. Dement Geriatr Cogn Dis Extra 2016; 6:283-94. [PMID: 27504117 PMCID: PMC4965532 DOI: 10.1159/000447239] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dysfunctions of the ubiquitin proteasome system (UPS), including the highly abundant neuronal enzyme ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and autophagy-related changes (lysosomal degradation) are implicated in several neurodegenerative disorders including Alzheimer's disease (AD). METHOD This study evaluated cerebrospinal fluid (CSF) levels of UCH-L1, protein deglycase (DJ-1), neuron-specific enolase (NSE), and tau phosphorylated at threonine 231 (P-tau231) in two independent patient and control cohorts. Cohort 1 included CSF samples from subjects having an AD biomarker profile (n = 10) or a control biomarker profile (n = 31), while cohort 2 was a monocenter clinical study including patients with AD (n = 32), mild cognitive impairment (n = 13), other dementias (n = 15), as well as cognitively healthy controls (n = 20). RESULTS UCH-L1 and P-tau231 were elevated in AD patients compared to controls in both cohorts. CSF levels of DJ-1 and NSE were unchanged in the AD group, whereas they were decreased in the group of other dementia compared to controls in the clinical study. CONCLUSION Our main findings support that the UPS pathway may be impaired in AD, and UCH-L1 may serve as an additional CSF biomarker for AD.
Collapse
Affiliation(s)
- Annika Öhrfelt
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital Mölndal, Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Per Johansson
- Department of Neuropsychiatry, Skaraborg Hospital, Falköping, Gothenburg, Sweden; Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital Mölndal, Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital Mölndal, Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital Mölndal, Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden; UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska University Hospital Mölndal, Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Johan Svensson
- Department of Endocrinology, Skaraborg Hospital, Skövde, Gothenburg, Sweden; Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Huded CB, Bharath S, Chandra SR, Sivakumar PT, Varghese M, Subramanian S. Supportive CSF biomarker evidence to enhance the National Institute on Aging-Alzheimer's Association criteria for diagnosis of Alzheimer's type dementia--a study from Southern India. Asian J Psychiatr 2015; 13:44-7. [PMID: 25468261 DOI: 10.1016/j.ajp.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
The present study was undertaken to validate the measurement of biomarkers as a supplement to the latest diagnostic criteria for Alzheimer disease (AD) dementia by National Institute on Aging-Alzheimer's Association (NIA-AA) work group using a sample attending a tertiary care center in Southern India. A total of 20 subjects diagnosed clinically as Alzheimer's dementia according to the NIA-AA criteria for AD were included in the study. The CSF biomarkers Aβ42, t-tau, and p-tau181 were assessed. The biomarker results were compared among mild and moderate to severe AD as defined in the NIA-AA work group guidelines. The results revealed that the amount of Aβ42 was very low in all the 20 samples (<50pg/ml) collected from mild AD cases with CDR score of 1 (n=8), and moderate to severe AD cases with CDR >1 (n=12). t-tau and p-tau levels were in the range of 39.45±5.09pg/ml and 13.06±7.32pg/ml for CDR 1 group. t-tau and p-tau levels were in the range of 49.9±11.28pg/ml and 33.94±15.13pg/ml for moderate to severe cases. Analysis of the data revealed statistically significant differences in the p-tau/t-tau ratio and p-tau/Aβ ratio between CDR 1and CDR >1 AD cases (p<0.001) suggesting that p-tau/t-tau and p-tau/Aβ ratio are good indicators of severity of dementia with discriminative value in differentiating mild AD from moderate to severe AD.
Collapse
Affiliation(s)
- Chandrashekar B Huded
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Srikala Bharath
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - S R Chandra
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - P T Sivakumar
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Mathew Varghese
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, India.
| |
Collapse
|
13
|
Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:757-68. [PMID: 25526887 DOI: 10.1016/j.bbapap.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a spectrum of rare neurodegenerative diseases with an estimated prevalence of 15-22 cases per 100,000 persons including the behavioral variant of frontotemporal dementia (bvFTD), progressive non-fluent aphasia (PNFA), semantic dementia (SD), FTD with motor neuron disease (FTD-MND), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). The pathogenesis of the diseases is still unclear and clinical diagnosis of FTLD is hampered by overlapping symptoms within the FTLD subtypes and with other neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Intracellular protein aggregates in the brain are a major hallmark of FTLD and implicate alterations in protein metabolism or function in the disease's pathogenesis. Cerebrospinal fluid (CSF) which surrounds the brain can be used to study changes in neurodegenerative diseases and to identify disease-related mechanisms or neurochemical biomarkers for diagnosis. In the present review, we will give an overview of the current literature on proteomic studies in CSF of FTLD patients. Reports of targeted and unbiased proteomic approaches are included and the results are discussed in regard of their informative value about disease pathology and the suitability to be used as diagnostic biomarkers. Finally, we will give some future perspectives on CSF proteomics and a list of candidate biomarkers which might be interesting for validation in further studies. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Emily Feneberg
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
14
|
Oeckl P, Steinacker P, von Arnim CAF, Straub S, Nagl M, Feneberg E, Weishaupt JH, Ludolph AC, Otto M. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer's disease and frontotemporal lobar degeneration. J Proteome Res 2014; 13:4518-25. [PMID: 25091646 DOI: 10.1021/pr5006058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impairment of the ubiquitin-proteasome system (UPS) is thought to be an early event in neurodegeneration, and monitoring UPS alterations might serve as a disease biomarker. Our aim was to establish an alternate method to antibody-based assays for the selective measurement of free monoubiquitin in cerebrospinal fluid (CSF). Free monoubiquitin was measured with liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MS/MS) in CSF of patients with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), behavioral variant of frontotemporal dementia (bvFTD), Creutzfeldt-Jakob disease (CJD), Parkinson's disease (PD), primary progressive aphasia (PPA), and progressive supranuclear palsy (PSP). The LC-MS/MS method showed excellent intra- and interassay precision (4.4-7.4% and 4.9-10.3%) and accuracy (100-107% and 100-106%). CSF ubiquitin concentration was increased compared with that of controls (33.0 ± 9.7 ng/mL) in AD (47.5 ± 13.1 ng/mL, p < 0.05) and CJD patients (171.5 ± 103.5 ng/mL, p < 0.001) but not in other neurodegenerative diseases. Receiver operating characteristic curve (ROC) analysis of AD vs control patients revealed an area under the curve (AUC) of 0.832, and the specificity and sensitivity were 75 and 75%, respectively. ROC analysis of AD and FTLD patients yielded an AUC of 0.776, and the specificity and sensitivity were 53 and 100%, respectively. In conclusion, our LC-MS/MS method may facilitate ubiquitin determination to a broader community and might help to discriminate AD, CJD, and FTLD patients.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital , Oberer Eselsberg 45, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr 2014; 5:394-403. [PMID: 25022989 PMCID: PMC4085188 DOI: 10.3945/an.113.005264] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative disorders and diseases (NDDs) that are either chronically acquired or triggered by a singular detrimental event are a rapidly growing cause of disability and/or death. In recent times, there have been major advancements in our understanding of various neurodegenerative disease states that have revealed common pathologic features or mechanisms. The many mechanistic parallels discovered between various neurodegenerative diseases suggest that a single therapeutic approach may be used to treat multiple disease conditions. Of late, natural compounds and supplemental substances have become an increasingly attractive option to treat NDDs because there is growing evidence that these nutritional constituents have potential adjunctive therapeutic effects (be it protective or restorative) on various neurodegenerative diseases. Here we review relevant experimental and clinical data on supplemental substances (i.e., curcuminoids, rosmarinic acid, resveratrol, acetyl-L-carnitine, and ω-3 (n-3) polyunsaturated fatty acids) that have demonstrated encouraging therapeutic effects on chronic diseases, such as Alzheimer's disease and neurodegeneration resulting from acute adverse events, such as traumatic brain injury.
Collapse
Affiliation(s)
- Gregory E Bigford
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL; and
| | - Gianluca Del Rossi
- Department of Orthopedics and Sports Medicine, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
16
|
Coppieters N, Dieriks BV, Lill C, Faull RLM, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging 2013; 35:1334-44. [PMID: 24387984 DOI: 10.1016/j.neurobiolaging.2013.11.031] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
Abstract
DNA methylation (5-methylcytosine [5mC]) is one of several epigenetic markers altered in Alzheimer's disease (AD) brain. More recently, attention has been given to DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]), the oxidized form of 5mC. Whereas 5mC is generally associated with the inhibition of gene expression, 5hmC has been associated with increased gene expression and is involved in cellular processes such as differentiation, development, and aging. Recent findings point toward a role for 5hmC in the development of diseases including AD, potentially opening new pathways for treating AD through correcting methylation and hydroxymethylation alterations. In the present study, levels of 5mC and 5hmC were investigated in the human middle frontal gyrus (MFG) and middle temporal gyrus (MTG) by immunohistochemistry. Immunoreactivity for 5mC and 5hmC were significantly increased in AD MFG (N = 13) and MTG (N = 29) compared with age-matched controls (MFG, N = 13 and MTG, N = 29). Global levels of 5mC and 5hmC positively correlated with each other and with markers of AD including amyloid beta, tau, and ubiquitin loads. Our results showed a global hypermethylation in the AD brain and revealed that levels of 5hmC were also significantly increased in AD MFG and MTG with no apparent influence of gender, age, postmortem delay, or tissue storage time. Using double-fluorescent immunolabeling, we found that in control and AD brains, levels of 5mC and 5hmC were low in astrocytes and microglia but were elevated in neurons. In addition, our colocalization study showed that within the same nuclei, 5mC and 5hmC mostly do not coexist. The present study clearly demonstrates the involvement of 5mC and 5hmC in AD emphasizing the need for future studies determining the exact time frame of these epigenetic changes during the progression of AD pathology.
Collapse
Affiliation(s)
- Natacha Coppieters
- Departments of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand; Gravida National Centre for Growth and Development, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Department of Anatomy with Radiology, The University of Auckland, Auckland, New Zealand
| | - Claire Lill
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Department of Anatomy with Radiology, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Department of Anatomy with Radiology, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand; Department of Anatomy with Radiology, The University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Departments of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand; Gravida National Centre for Growth and Development, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Kandimalla RJL, Prabhakar S, Wani WY, Kaushal A, Gupta N, Sharma DR, Grover VK, Bhardwaj N, Jain K, Gill KD. CSF p-Tau levels in the prediction of Alzheimer's disease. Biol Open 2013; 2:1119-24. [PMID: 24244848 PMCID: PMC3828758 DOI: 10.1242/bio.20135447] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 11/20/2022] Open
Abstract
The two hallmarks of Alzheimer's disease (AD) are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are formed due to the hyperphosphorylation of tau protein. There is an urgent need to develop a reliable biomarker for the diagnosis of AD. Cerebrospinal fluid (CSF) is surrounding the brain and reflects the major neuropathological features in the AD brain. Diagnosis, disease progression and drug actions rely on the AD biomarkers. Mainly CSF tau and phosphorylated tau (p-Tau) have been observed to serve the purpose for early AD. Keeping in view the early appearance of p-Tau in CSF, we analyzed p-Tau levels in 23 AD, 23 Non AD type dementia (NAD), 23 Neurological control (NC) and 23 Healthy control (HC) North Indian patients. The levels of p-Tau were found to be increased in AD patients (67.87±18.05 pg/ml, SEM 3.76) compared with NAD (47.55±7.85 pg/ml, SEM 1.64), NC (34.42±4.51 pg/ml, SEM 0.94) and HC (27.09±7.18 pg/ml, SEM 1.50). The resulting sensitivity for AD with NAD was 80.27% whereas with respect to the NAD, NC and HC was 85.40%. Therefore elevated levels of p-Tau in AD can be exploited as a predictive biomarker in North Indian AD patients.
Collapse
Affiliation(s)
- Ramesh J L Kandimalla
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research , Chandigarh , India 160 012
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mesbah K, Oukacine F, Lehnert S, Otto M, Taverna M. On-line capillary electrophoresis derivatization method for high sensitivity analysis of ubiquitin in filtered cerebrospinal fluid. Electrophoresis 2013; 34:2733-9. [DOI: 10.1002/elps.201300155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Stefan Lehnert
- Department of Neurology; University of Ulm; Ulm; Germany
| | - Markus Otto
- Department of Neurology; University of Ulm; Ulm; Germany
| | | |
Collapse
|
19
|
Abstract
Curcumin is a component of turmeric, a spice used in many types of cooking. Epidemiological evidence suggesting that populations that eat food with a substantial amount of curcumin were at lower risk of Alzheimer’s disease (AD) led to the idea that this compound might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory effects, and is being used as a potential preventative agent or treatment for many types of cancer. There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved in these animal models. Clinical trials of curcumin in AD have not been very promising. It is possible that this is due to poor oral bioavailability of curcumin in humans, and thus several approaches are being developed to improve delivery systems or to create analogs that will mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in humans with AD may also result from treating for too short a time or starting treatment too late in the course of the disease, where substantial neuronal death has already occurred and cannot be reversed. Curcumin may be beneficial in protecting against development or progression of AD if taken over the long term and started before symptoms of AD become apparent.
Collapse
Affiliation(s)
- Pamela E Potter
- Department of Pharmacology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|