1
|
Modarres Mousavi SM, Alipour F, Noorbakhsh F, Jafarian M, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Speckmann EJ, Stummer W, Khaleghi Ghadiri M, Gorji A. Clinical Correlation of Altered Molecular Signatures in Epileptic Human Hippocampus and Amygdala. Mol Neurobiol 2024; 61:725-752. [PMID: 37658249 PMCID: PMC10861640 DOI: 10.1007/s12035-023-03583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
Widespread alterations in the expression of various genes could contribute to the pathogenesis of epilepsy. The expression levels of various genes, including major inhibitory and excitatory receptors, ion channels, cell type-specific markers, and excitatory amino acid transporters, were assessed and compared between the human epileptic hippocampus and amygdala, and findings from autopsy controls. Moreover, the potential correlation between molecular alterations in epileptic brain tissues and the clinical characteristics of patients undergoing epilepsy surgery was evaluated. Our findings revealed significant and complex changes in the expression of several key regulatory genes in both the hippocampus and amygdala of patients with intractable epilepsy. The expression changes in various genes differed considerably between the epileptic hippocampus and amygdala. Different correlation patterns were observed between changes in gene expression and clinical characteristics, depending on whether the patients were considered as a whole or were subdivided. Altered molecular signatures in different groups of epileptic patients, defined within a given category, could be viewed as diagnostic biomarkers. Distinct patterns of molecular changes that distinguish these groups from each other appear to be associated with epilepsy-specific functional consequences.
Collapse
Affiliation(s)
| | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Maryam Jafarian
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Masoud Ghadipasha
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Jaber Gharehdaghi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Erwin-Josef Speckmann
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ali I, Silva J, Casillas-Espinosa PM, Braine E, Yamakawa GR, Hudson MR, Brady RD, Major B, Thergarajan P, Haskali MB, Wright DK, Jupp B, Vivash L, Shultz SR, Mychasiuk R, Kwan P, Jones NC, Fukushima K, Sachdev P, Cheng JY, O'Brien TJ. E2730, an uncompetitive γ-aminobutyric acid transporter-1 inhibitor, suppresses epileptic seizures in a rat model of chronic mesial temporal lobe epilepsy. Epilepsia 2023; 64:2806-2817. [PMID: 37539645 DOI: 10.1111/epi.17735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | - Juliana Silva
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | - Emma Braine
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Brendan Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | | | - Mohammad B Haskali
- Radiopharmaceutical Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Bianca Jupp
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of chronic mild stress on GABAergic system in the paraventricular nucleus of hypothalamus associated with cardiac autonomic activity. Behav Brain Res 2022; 432:113985. [PMID: 35787398 DOI: 10.1016/j.bbr.2022.113985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Stress is associated with cardiovascular diseases. One possible mechanism is the reduction in gamma-aminobutyric acid (GABA)ergic transmission at the paraventricular nucleus (PVN), which contributes to the disinhibition of sympathoexcitatory circuits and activates sympathetic outflow. At present, the mechanism of chronic mild stress (CMS) on GABAergic transmission at the PVN and cardiac autonomic activity is not yet fully clarified. Therefore, this study was designed to investigate the effects of CMS on the GABAergic system at the PVN and on the cardiac autonomic activity. Adult male Sprague-Dawley rats were randomly assigned to control (left undisturbed in their home cage) or CMS (subjected to various mild stressors for 4 weeks). Cardiac autonomic activities were determined by heart rate variability (HRV) analysis, and GABAergic alterations at the PVN were determined from GABA levels and mRNA expression of GABA-related activities. Results showed that the CMS group had decreased HRV as determined by the standard deviation of all R-R intervals (SDNN). The low frequency (LF) and high frequency (HF) powers of the CMS group were higher than those of the control. Hence, the LF/HF ratio was consequently unaffected. These findings indicated that despite the increase in sympathetic and parasympathetic activities, the autonomic balance was preserved at 4 weeks post CMS. For the GABAergic-related parameters, the CMS group had decreased mRNA expression of glutamic acid decarboxylase-65 (GAD-65), the GABA-synthesizing enzyme, and increased mRNA expression of gamma-aminobutyric acid transporter-1 (GAT-1). Moreover, the GAD-65 mRNA expression was negatively correlated with LF. In conclusion, 4-week CMS exposure in male rats could attenuate GABAergic transmission at the PVN and alter cardiac autonomic activities.
Collapse
Affiliation(s)
- Janpen Bangsumruaj
- Interdisciplinary Program in Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anusak Kijtawornrat
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | |
Collapse
|
4
|
Bai YF, Zeng C, Jia M, Xiao B. Molecular mechanisms of topiramate and its clinical value in epilepsy. Seizure 2022; 98:51-56. [DOI: 10.1016/j.seizure.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022] Open
|
5
|
Chen H, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Characterization of the GABAergic system in Asian clam Corbicula fluminea: Phylogenetic analysis, tissue distribution, and response to the aquatic contaminant carbamazepine. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108896. [PMID: 32949817 DOI: 10.1016/j.cbpc.2020.108896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter involved in the neuro-endocrine-immune (NEI) system. In this study, we sequenced the partial length of cDNA fragments of three genes involved in GABA neurotransmitter system of the Asian clam (Corbicula fluminea) (GABAA receptor-associated protein (GABARAP), GABARAPL2 and GABA transporter (GAT-1)). These genes exhibited high amino acid sequence identity compared with other invertebrate orthologs. Expression patterns of the three genes were determined in mantle, gill, gonad, digestive gland and muscle, and the steady state levels of mRNA for each were determined to be highest in gonad and lowest in muscle. To determine their regulation by pharmaceuticals that are present as contaminants in waterways, clams were exposed to carbamazepine (CBZ) for 30 days. CBZ is an agonist for GABA receptors and is an anticonvulsant pharmaceutical that is often detected in aquatic ecosystems. GABARAP and GABARAPL2 mRNA levels were significantly downregulated by 5 and 50 μg/L CBZ in mantle and gill (p < 0.05), while in the gonad and digestive gland, steady state levels (p < 0.05) were decreased with exposure to all three doses. GAT-1 mRNA was upregulated by CBZ (p < 0.05) in the mantle and gill at all three doses tested and in the gonad and digestive system with 5 and 50 μg/L. These data suggest that CBZ disrupt the expression of the GABAergic neurotransmitter system in C. fluminea. Moreover, GABARAP, GABARAPL2 and GAT-1 may be useful biomarkers for the screening of substances that are hazardous to the NEI system of mollusks.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Zhang Y, Dong HT, Duan L, Niu L, Yuan GQ, Dai JQ, Hou BR, Pan YW. HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model. Neuropsychiatr Dis Treat 2019; 15:405-416. [PMID: 30787615 PMCID: PMC6366349 DOI: 10.2147/ndt.s181669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Despite the availability of effective antiepileptic drugs, epileptic patients still suffer from intractable seizures and adverse events. Better control of both seizures and fewer side effects is needed in order to enhance the patient's quality of life. We performed the present study with an attempt to explore the effect that HDAC4 gene silencing would have on epilepsy simulated by model rats. Furthermore, the study made additional analysis on the relativity of the HDAC4 gene in regard to its relationship with the gamma-aminobutyric acid (GABA) signaling pathway. MATERIALS AND METHODS Tremor rats were prepared in order to establish the epilepsy model. The rats would go on to be treated with si-HDAC4 in order to identify roles of the HDAC4 in levels of GABAARα1, GABAARα4, GAD65, GAT-1, and GAT-3. Finally, both electroencephalogram behavior and cognitive function of the rats following the treatment of si-HDAC4 were observed. RESULTS Levels of the GABAARα1 and GABAARα4 showed an evident increase, while GAD65, GAT-1, and GAT-3 displayed a decline in the epilepsy rats treated with the aforementioned si-HDAC4 when compared with the epilepsy rats. After injection of si-HDAC4, the epilepsy rats presented with a reduction in seizure degree, latency and duration of seizure, amount of scattered epileptic waves, and occurrence of epilepsy, with an improvement in their cognitive function. CONCLUSION The study highlighted the role that HDAC4 gene silencing played in easing the cases of epilepsy found in the model rats. This was shown to have occurred through the upregulation of both GABAARα1 and GABAARα4 levels, as well as in the downregulation of GAD65, GAT-1, and GAT-3 levels. The evidence provided shows that the HDAC4 gene is likely to present as a new objective in further experimentation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Hua-Teng Dong
- Department of Pediatric Neurology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, People's Republic of China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Liang Niu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Guo-Qiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Jun-Qiang Dai
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Bo-Ru Hou
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Ya-Wen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| |
Collapse
|
7
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
8
|
Liu L, Mao D, Liu L, Huang Y, Bo T. Effects of progesterone on glutamate transporter 2 and gamma-aminobutyric acid transporter 1 expression in the developing rat brain after recurrent seizures. Neural Regen Res 2015; 7:2036-42. [PMID: 25624835 PMCID: PMC4296423 DOI: 10.3969/j.issn.1673-5374.2012.26.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022] Open
Abstract
Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Dingan Mao
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Huang
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Tao Bo
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
9
|
Ruan J, Hu K, Zhang H, Wang Y, Zhou A, Zhao Y, Yang X. Distribution and quantitative detection of GABAA receptor in Carassius auratus gibelio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1301-1311. [PMID: 24687758 DOI: 10.1007/s10695-014-9925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in brain, is synthesized from glutamate and metabolized to succinic semialdehyde by glutamic acid decarboxylase (GAD) and GABA transaminase (GABA-T), respectively. The fast inhibitory effect of GABA is mediated by GABA type A (GABAA) receptors that are associated with several neurological disorders, and GABAA receptors are targets of several therapeutic agents. To date, information on the distribution and quantity of GABAA receptors in Carassius auratus gibelio is still limited. We investigated for the first time, the tissue-specific distribution of GABAARβ2a and GABAARβ2b, the two subunits of the predominant GABAA receptor subtype (α1β2γ2), and then, the expression of GABAARβ2a, GABAARβ2b, GAD, and quantified GABA-T genes in different tissues by quantitative real-time PCR method and compared different expressions between two developmental stages of C. auratus gibelio. Results showed that GABAARβ2a and GABAARβ2b genes expressed in both brain and peripheral organs using reverse transcription-polymerase chain reaction. In addition, the majority of GABAARβ2a, GABAARβ2b, GAD, and GABA-T were mainly synthesized in brain; however, a considerable amount of GABA-T was secreted from the peripheral tissues, especially in the liver. Moreover, the expression of GABAARβ2a and GABAARβ2b genes in different tissues varied with body weight change. This study provides a reference for further studies on GABA and GABAA receptors subunits and an insight on the possible pharmacological properties of the GABAA receptor in C. auratus gibelio.
Collapse
Affiliation(s)
- Jiming Ruan
- National Center for Aquatic Pathogen Collection, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
11
|
Orellana-Paucar AM, Afrikanova T, Thomas J, Aibuldinov YK, Dehaen W, de Witte PAM, Esguerra CV. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PLoS One 2013; 8:e81634. [PMID: 24349101 PMCID: PMC3862488 DOI: 10.1371/journal.pone.0081634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.
Collapse
Affiliation(s)
- Adriana Monserrath Orellana-Paucar
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
- Facultad de Ciencias Químicas, Escuela de Bioquímica y Farmacia, Universidad de Cuenca, Cuenca, Ecuador
| | - Tatiana Afrikanova
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Joice Thomas
- Laboratory for Molecular Design and Synthesis, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Yelaman K. Aibuldinov
- Laboratory for Molecular Design and Synthesis, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Wim Dehaen
- Laboratory for Molecular Design and Synthesis, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Dai J, Chen L, Qiu YM, Li SQ, Xiong WH, Yin YH, Jia F, Jiang JY. Activations of GABAergic signaling, HSP70 and MAPK cascades are involved in baicalin's neuroprotection against gerbil global ischemia/reperfusion injury. Brain Res Bull 2013; 90:1-9. [PMID: 23041106 DOI: 10.1016/j.brainresbull.2012.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023]
Abstract
Baicalin, a flavonoid compound isolated from the plant Scutellaria baicalensis Georgi, is known as a protective agent against delayed neuronal cell death after ischemia/reperfusion. To investigate the neuroprotective mechanism of baicalin, the present study was conducted to explore whether the alterations of GABAergic signaling, heat shock protein 70 (HSP70) and mitogen-activated protein kinases (MAPKs) were involved in its neuroprotection on gerbils global ischemia. The bilateral carotid arteries were occluded by 5 min and baicalin at the dose of 200 mg/kg was intraperitoneally injected into the gerbils immediately after cerebral ischemia. Seven days after reperfusion, neurological deficit was scored and changes in hippocampal neuronal cell death were assessed by Nissl staining as well as NeuN immunohistochemistry. The mRNA and protein expressions of GABAergic signal molecules (GABA(A)R α1, GABA(A)R γ2, KCC2 and NKCC1) were determined in ischemic hippocampus by real-time RT-PCR and Western blot, respectively. In addition, HSP70 and MAPKs cascades (ERK, JNK and p38) were also detected using western blot assay. Our results illustrated that baicalin treatment significantly facilitated neurological function, suppressed the ischemia-induced neuronal damage. Besides, administration of baicalin also caused a striking increase of GABA(A)R α1, GABA(A)R γ2 and KCC2 together with the decrease of NKCC1 at mRNA and protein levels in gerbils hippocampus following an ischemic insult. Furthermore, the protein expressions of HSP70 and phosphorylated ERK (p-ERK) were evidently augmented while the phosphorylated JNK (p-JNK) and phosphorylated p38 (p-p38) were strikingly diminished in ischemic gerbils with baicalin treatment. These findings suggest that baicalin activates GABAergic signaling, HSP70 and MAPKs cascades in global ischemia, which may be a mechanism underlying the baicalin's neuroprotection.
Collapse
Affiliation(s)
- Jiong Dai
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Clément Y, Prut L, Saurini F, Mineur YS, Le Guisquet AM, Védrine S, Andres C, Vodjdani G, Belzung C. Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behav Brain Res 2012; 233:474-82. [PMID: 22677273 DOI: 10.1016/j.bbr.2012.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023]
Abstract
The gabra5 gene is associated with pharmacological properties (myorelaxant, amnesic, anxiolytic) of benzodiazepines. It is tightly located (0.5 cM) close to the pink-eyed dilution (p) locus which encodes for fur color on mouse chromosome 7. We tested the putative role of the gabra5 gene in pharmacological properties of the full non specific agonist chlordiazepoxide (CDP), using behavioral and molecular approaches in mutated p/p mice and wild type F2 from crosses between two multiple markers inbred strain ABP/Le and C57BL/6By strain. From our results, using rotarod, light-dark box, elevated maze and radial arm maze tests, we demonstrate that p/p mice are more sensitive than WT to the sensory motor, anxiolytic and amnesic effect of CDP. This is associated with the presence of a haplotypic block on the murine chromosome 7 and with an up regulation of gabra5 mRNAs in hippocampi of p/p F2 mice.
Collapse
Affiliation(s)
- Y Clément
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, 75651 Paris Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mao X, Ma P, Cao D, Sun C, Ji Z, Min D, Sun H, Xie N, Cai J, Cao Y. Altered expression of GABAA receptors (α4, γ2 subunit), potassium chloride cotransporter 2 and astrogliosis in tremor rat hippocampus. Brain Res Bull 2011; 86:373-9. [PMID: 21924329 DOI: 10.1016/j.brainresbull.2011.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 11/19/2022]
Abstract
Impaired GABAergic inhibitory neurotransmission plays an essential role in the pathogenesis of epilepsy. GABA(A) receptor (GABA(A)R), potassium chloride cotransporter 2 (KCC2) and astrocytes are of particular importance to GABAergic transmission and thus involved in the development of increased seizure susceptibility. The tremor rat (TRM: tm/tm), a genetic mutant discovered in a Kyoto-Wistar colony, can manifest both absence-like seizures and tonic convulsions without any external stimuli. So far, there are no reports that can elucidate the effects of GABA(A)R (α4, γ2 subunit), KCC2 and astrocytes on TRMs. The present study was undertaken to detect the expressions of GABA(A)R α4, GABA(A)R γ2 and KCC2 in TRMs hippocampus at mRNA and protein levels. In this work, mRNA and protein expressions of GABA(A)R α4 were significantly elevated while GABA(A)R γ2 and KCC2 were both evidently decreased in TRMs hippocampus by real-time RT-PCR and western blot, respectively. Furthermore, a dramatic elevation of KCC2 protein level was found after cerebroventricular injection with K252a to TRMs than that in the DMSO-treated TRMs. Besides, our present study also demonstrated that GFAP (a major component of astrocyte) immunoreactivity was much more intense in TRMs hippocampal CA1, CA3 and DG regions than that in control group with immnohistochemistry and confocal microscopic analyses. The protein expression of GFAP was also markedly elevated in TRMs hippocampus, suggesting that astrogliosis appeared in the TRM model. These data demonstrate that altered expressions of GABA(A)R (α4, γ2) and KCC2 and astrogliosis observed in TRMs hippocampus may provide us good therapeutic targets for the treatment of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoyuan Mao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|