1
|
Hussain MA, Grant PE, Ou Y. Inferring neurocognition using artificial intelligence on brain MRIs. FRONTIERS IN NEUROIMAGING 2024; 3:1455436. [PMID: 39664769 PMCID: PMC11631947 DOI: 10.3389/fnimg.2024.1455436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Brain magnetic resonance imaging (MRI) offers a unique lens to study neuroanatomic support of human neurocognition. A core mystery is the MRI explanation of individual differences in neurocognition and its manifestation in intelligence. The past four decades have seen great advancement in studying this century-long mystery, but the sample size and population-level studies limit the explanation at the individual level. The recent rise of big data and artificial intelligence offers novel opportunities. Yet, data sources, harmonization, study design, and interpretation must be carefully considered. This review aims to summarize past work, discuss rising opportunities and challenges, and facilitate further investigations on artificial intelligence inferring human neurocognition.
Collapse
Affiliation(s)
- Mohammad Arafat Hussain
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia Ellen Grant
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Yangming Ou
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Zhang C, Wang X. Association of Exercise with Better Olfactory Performance and Higher Functional Connectivity Between the Olfactory Cortex and the Prefrontal Cortex: A Resting-State Functional Near-Infrared Spectroscopy Study. Brain Connect 2024; 14:500-510. [PMID: 39302060 DOI: 10.1089/brain.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Background: Olfactory deterioration is suggested to be a predictor of some neurodegenerative diseases. Recent studies indicate that physical exercise has a positive relationship with olfactory performance, and a subregion in the prefrontal cortex (PFC) may play an important role in olfactory processing. The PFC is not only related to olfactory function but it also engages in complex functions such as cognition and emotional processing. Methodology: Our study compared the functional connectivity between the olfactory cortex and the PFC in healthy individuals who exercised regularly and healthy persons who did not. Those who exercised more than three times/week for at least 30 min each time were considered the exercise group, and those who did not meet this exercise criteria were considered the nonexercise group. We also assessed their odor threshold. Participants were aged 55 years or older, and the two groups were balanced for age, sex, body mass index, and educational level. Results: We found that compared with individuals who did not exercise, exercisers had a significantly lower threshold for detecting odors. In addition, the olfactory cortex had stronger connectivity with the PFC in exercisers than in nonexercisers. More specifically, when the PFC was grouped into three subregions, namely, the ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and frontopolar cortex (FPA), Pearson correlation analysis revealed stronger connectivity between the VLPFC and the orbitofrontal cortex (OFC), between the OFC and the FPA, and between the left and right OFC hemispheres in the exercisers. In addition, Granger causality indicated higher directional connectivity from the DLPFC to the OFC in exercisers than in nonexercisers. Conclusion: Our findings indicated that the exercise group not only had better olfactory performance but also had stronger functional connectivity between the olfactory cortex and the PFC than nonexercise group.
Collapse
Affiliation(s)
- Chenping Zhang
- Department of Physical Education, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaochun Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Erker TD, Arif Y, John JA, Embury CM, Kress KA, Springer SD, Okelberry HJ, McDonald KM, Picci G, Wiesman AI, Wilson TW. Neuromodulatory effects of parietal high-definition transcranial direct-current stimulation on network-level activity serving fluid intelligence. J Physiol 2024; 602:2917-2930. [PMID: 38758592 PMCID: PMC11178466 DOI: 10.1113/jp286004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Fluid intelligence (Gf) involves rational thinking skills and requires the integration of information from different cortical regions to resolve novel complex problems. The effects of non-invasive brain stimulation on Gf have been studied in attempts to improve Gf, but such studies are rare and the few existing have reached conflicting conclusions. The parieto-frontal integration theory of intelligence (P-FIT) postulates that the parietal and frontal lobes play a critical role in Gf. To investigate the suggested role of parietal cortices, we applied high-definition transcranial direct current stimulation (HD-tDCS) to the left and right parietal cortices of 39 healthy adults (age 19-33 years) for 20 min in three separate sessions (left active, right active and sham). After completing the stimulation session, the participants completed a logical reasoning task based on Raven's Progressive Matrices during magnetoencephalography. Significant neural responses at the sensor level across all stimulation conditions were imaged using a beamformer. Whole-brain, spectrally constrained functional connectivity was then computed to examine the network-level activity. Behaviourally, we found that participants were significantly more accurate following left compared to right parietal stimulation. Regarding neural findings, we found significant HD-tDCS montage-related effects in brain networks thought to be critical for P-FIT, including parieto-occipital, fronto-occipital, fronto-parietal and occipito-cerebellar connectivity during task performance. In conclusion, our findings showed that left parietal stimulation improved abstract reasoning abilities relative to right parietal stimulation and support both P-FIT and the neural efficiency hypothesis. KEY POINTS: Abstract reasoning is a critical component of fluid intelligence and is known to be served by multispectral oscillatory activity in the fronto-parietal cortices. Recent studies have aimed to improve abstract reasoning abilities and fluid intelligence overall through behavioural training, but the results have been mixed. High-definition transcranial direct-current stimulation (HD-tDCS) applied to the parietal cortices modulated task performance and neural oscillations during abstract reasoning. Left parietal stimulation resulted in increased accuracy and decreased functional connectivity between occipital regions and frontal, parietal, and cerebellar regions. Future studies should investigate whether HD-tDCS alters abstract reasoning abilities in those who exhibit declines in performance, such as healthy ageing populations.
Collapse
Affiliation(s)
- Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Kennedy A Kress
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Hong SB. Brain regional homogeneity and its association with age and intelligence in typically developing youth. Asian J Psychiatr 2023; 82:103497. [PMID: 36764248 DOI: 10.1016/j.ajp.2023.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Accelerated synaptic pruning and weakening of short-range functional connectivity are characteristic of adolescent brain development. Based on these structural microscopic and system-level functional changes, it was hypothesized that regional homogeneity (ReHo) may decrease with age in the developing brain, and a differential association between ReHo and cognitive performance was expected to depend on age. ReHo maps of typically developing participants were provided by the Attention-Deficit/Hyperactivity Disorder (ADHD)-200 Preprocessed repository. Intelligence quotient was evaluated using the Wechsler Intelligence Scale for Chinese Children-Revised and Wechsler Abbreviated Scale of Intelligence at Peking University and New York University, respectively. Correlations between ReHo and age were examined, along with the interaction effects of ReHo and age on intelligence quotient (IQ), in 121 typically developing youth aged 8-14 years. Of the 400 ROIs tested, ReHo in 105 brain regions was significantly correlated with age (p < 0.05, false discovery rate-corrected), among which 102 showed that ReHo decreased with age. In addition, ReHo in 18 brain regions was negatively correlated with age at Bonferroni-corrected thresholds (p < 0.05), and most associations were observed in the prefrontal cortex. The interaction analyses suggested that higher ReHo was associated with higher IQ in children, whereas this association was attenuated or reversed in adolescents (p < 0.05, uncorrected). ReHo decreased with age in the developing brain and was differentially associated with intelligence in children and adolescents.
Collapse
Affiliation(s)
- Soon-Beom Hong
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Hong TY, Yang CJ, Shih CH, Fan SF, Yeh TC, Yu HY, Chen LF, Hsieh JC. Enhanced intrinsic functional connectivity in the visual system of visual artist: Implications for creativity. Front Neurosci 2023; 17:1114771. [PMID: 36908805 PMCID: PMC9992720 DOI: 10.3389/fnins.2023.1114771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction This study sought to elucidate the cognitive traits of visual artists (VAs) from the perspective of visual creativity and the visual system (i.e., the most fundamental neural correlate). Methods We examined the local and long-distance intrinsic functional connectivity (FC) of the visual system to unravel changes in brain traits among VAs. Twenty-seven university students majoring in visual arts and 27 non-artist controls were enrolled. Results VAs presented enhanced local FC in the right superior parietal lobule, right precuneus, left inferior temporal gyrus (ITG), left superior parietal lobule, left angular gyrus, and left middle occipital gyrus. VAs also presented enhanced FC with the ITG that targeted the visual area (occipital gyrus and cuneus), which appears to be associated with visual creativity. Discussion The visual creativity of VAs was correlated with strength of intrinsic functional connectivity in the visual system. Learning-induced neuroplasticity as a trait change observed in VAs can be attributed to the macroscopic consolidation of consociated neural circuits that are engaged over long-term training in the visual arts and aesthetic experience. The consolidated network can be regarded as virtuoso-specific neural fingerprint.
Collapse
Affiliation(s)
- Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Fen Fan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Cerebral blood flow and cardiovascular risk effects on resting brain regional homogeneity. Neuroimage 2022; 262:119555. [PMID: 35963506 PMCID: PMC10044499 DOI: 10.1016/j.neuroimage.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.
Collapse
|
7
|
Lu QY, Towne JM, Lock M, Jiang C, Cheng ZX, Habes M, Zuo XN, Zang YF. Toward coordinate-based cognition dictionaries: A brainmap and neurosynth demo. Neuroscience 2022; 493:109-118. [DOI: 10.1016/j.neuroscience.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
|
8
|
Arif Y, Spooner RK, Heinrichs-Graham E, Wilson TW. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J Physiol 2021; 599:5451-5463. [PMID: 34783045 PMCID: PMC9250752 DOI: 10.1113/jp282387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Fluid intelligence (Gƒ) includes logical reasoning abilities and is an essential component of normative cognition. Despite the broad consensus that parieto-prefrontal connectivity is critical for Gƒ (e.g. the parieto-frontal integration theory of intelligence, P-FIT), the dynamics of such functional connectivity during logical reasoning remains poorly understood. Further, given the known importance of these brain regions for Gƒ, numerous studies have targeted one or both of these areas with non-invasive stimulation with the goal of improving Gƒ, but to date there remains little consensus on the overall stimulation-related effects. To examine this, we applied high-definition direct current anodal stimulation to the left and right dorsolateral prefrontal cortex (DLPFC) of 24 healthy adults for 20 min in three separate sessions (sham, left, and right active). Following stimulation, participants completed a logical reasoning task during magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer, and peak task-induced activity was subjected to dynamic functional connectivity analyses to evaluate the impact of distinct stimulation montages on network activity. We found that participants responded faster following right DLPFC stimulation vs. sham. Moreover, our neural findings followed a similar trajectory of effects such that left parieto-frontal connectivity decreased following right and left DLPFC stimulation compared to sham, with connectivity following right stimulation being significantly correlated with the faster reaction times. Importantly, our findings are consistent with P-FIT, as well as the neural efficiency hypothesis (NEH) of intelligence. In sum, this study provides evidence for beneficial effects of right DLPFC stimulation on logical reasoning. KEY POINTS: Logical reasoning is an indispensable component of fluid intelligence and involves multispectral oscillatory activity in parietal and frontal regions. Parieto-frontal integration is well characterized in logical reasoning; however, its direct neural quantification and neuromodulation by brain stimulation remain poorly understood. High-definition transcranial direct current stimulation of dorsolateral prefrontal cortex (DLPFC) had modulatory effects on task performance and neural interactions serving logical reasoning, with right stimulation showing beneficial effects. Right DLPFC stimulation led to a decrease in the response time (i.e. better task performance) and left parieto-frontal connectivity with a marginal positive association between behavioural and neural metrics. Other modes of targeted stimulation of DLPFC (e.g. frequency-specific) can be employed in future studies.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
9
|
Santarnecchi E, Momi D, Mencarelli L, Plessow F, Saxena S, Rossi S, Rossi A, Mathan S, Pascual-Leone A. Overlapping and dissociable brain activations for fluid intelligence and executive functions. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:327-346. [PMID: 33900569 PMCID: PMC9094637 DOI: 10.3758/s13415-021-00870-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
Cognitive enhancement interventions aimed at boosting human fluid intelligence (gf) have targeted executive functions (EFs), such as updating, inhibition, and switching, in the context of transfer-inducing cognitive training. However, even though the link between EFs and gf has been demonstrated at the psychometric level, their neurofunctional overlap has not been quantitatively investigated. Identifying whether and how EFs and gf might share neural activation patterns could provide important insights into the overall hierarchical organization of human higher-order cognition, as well as suggest specific targets for interventions aimed at maximizing cognitive transfer. We present the results of a quantitative meta-analysis of the available fMRI and PET literature on EFs and gf in humans, showing the similarity between gf and (i) the overall global EF network, as well as (ii) specific maps for updating, switching, and inhibition. Results highlight a higher degree of similarity between gf and updating (80% overlap) compared with gf and inhibition (34%), and gf and switching (17%). Moreover, three brain regions activated for both gf and each of the three EFs also were identified, located in the left middle frontal gyrus, left inferior parietal lobule, and anterior cingulate cortex. Finally, resting-state functional connectivity analysis on two independent fMRI datasets showed the preferential behavioural correlation and anatomical overlap between updating and gf. These findings confirm a close link between gf and EFs, with implications for brain stimulation and cognitive training interventions.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA.
| | - Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Lucia Mencarelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Franziska Plessow
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sadhvi Saxena
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
- Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
- Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
- Medicine, Surgery and Neuroscience Department, University of Siena School of Medicine, Siena, Italy
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Santarnecchi E, Egiziano E, D'Arista S, Gardi C, Romanella SM, Mencarelli L, Rossi S, Reda M, Rossi A. Mindfulness-based stress reduction training modulates striatal and cerebellar connectivity. J Neurosci Res 2021; 99:1236-1252. [PMID: 33634892 DOI: 10.1002/jnr.24798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Mindfulness is a meditation practice frequently associated with changes in subjective evaluation of cognitive and sensorial experience, as well as with modifications of brain activity and morphometry. Aside from the anatomical localization of functional changes induced by mindfulness practice, little is known about changes in functional and effective functional magnetic resonance imaging (fMRI) connectivity. Here we performed a connectivity fMRI analysis in a group of healthy individuals participating in an 8-week mindfulness-based stress reduction (MBSR) training program. Data from both a "mind-wandering" and a "meditation" state were acquired before and after the MBSR course. Results highlighted decreased local connectivity after training in the right anterior putamen and insula during spontaneous mind-wandering and the right cerebellum during the meditative state. A further effective connectivity analysis revealed (a) decreased modulation by the anterior cingulate cortex over the anterior portion of the putamen, and (b) a change in left and right posterior putamen excitatory input and inhibitory output with the cerebellum, respectively. Results suggest a rearrangement of dorsal striatum functional and effective connectivity in response to mindfulness practice, with changes in cortico-subcortical-cerebellar modulatory dynamics. Findings might be relevant for the understanding of widely documented mindfulness behavioral effects, especially those related to pain perception.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eutizio Egiziano
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Sicilia D'Arista
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara M Romanella
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Lucia Mencarelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - Simone Rossi
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy.,Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - Mario Reda
- Department of Neurological, Neurosurgical and Behavioral Sciences, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Laboratory (SiBIN-Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| |
Collapse
|
11
|
Feklicheva I, Zakharov I, Chipeeva N, Maslennikova E, Korobova S, Adamovich T, Ismatullina V, Malykh S. Assessing the Relationship between Verbal and Nonverbal Cognitive Abilities Using Resting-State EEG Functional Connectivity. Brain Sci 2021; 11:94. [PMID: 33450902 PMCID: PMC7828310 DOI: 10.3390/brainsci11010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
The present study investigates the relationship between individual differences in verbal and non-verbal cognitive abilities and resting-state EEG network characteristics. We used a network neuroscience approach to analyze both large-scale topological characteristics of the whole brain as well as local brain network characteristics. The characteristic path length, modularity, and cluster coefficient for different EEG frequency bands (alpha, high and low; beta1 and beta2, and theta) were calculated to estimate large-scale topological integration and segregation properties of the brain networks. Betweenness centrality, nodal clustering coefficient, and local connectivity strength were calculated as local network characteristics. We showed that global network integration measures in the alpha band were positively correlated with non-verbal intelligence, especially with the more difficult part of the test (Raven's total scores and E series), and the ability to operate with verbal information (the "Conclusions" verbal subtest). At the same time, individual differences in non-verbal intelligence (Raven's total score and C series), and vocabulary subtest of the verbal intelligence tests, were negatively correlated with the network segregation measures. Our results show that resting-state EEG functional connectivity can reveal the functional architecture associated with an individual difference in cognitive performance.
Collapse
Affiliation(s)
- Inna Feklicheva
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center “Biomedical Technologies”, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia; (N.C.); (S.K.)
| | - Ilya Zakharov
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (I.Z.); (T.A.); (V.I.); (S.M.)
| | - Nadezda Chipeeva
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center “Biomedical Technologies”, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia; (N.C.); (S.K.)
| | - Ekaterina Maslennikova
- Center of Interdisciplinary Research in Education, Russian Academy of Education, 199121 Moscow, Russia;
| | - Svetlana Korobova
- Laboratory of Molecular Genetic Research of Human Health and Development, Scientific and Educational Center “Biomedical Technologies”, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia; (N.C.); (S.K.)
| | - Timofey Adamovich
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (I.Z.); (T.A.); (V.I.); (S.M.)
| | - Victoria Ismatullina
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (I.Z.); (T.A.); (V.I.); (S.M.)
| | - Sergey Malykh
- Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (I.Z.); (T.A.); (V.I.); (S.M.)
| |
Collapse
|
12
|
A study of regional homogeneity of resting-state Functional Magnetic Resonance Imaging in mild cognitive impairment. Behav Brain Res 2021; 402:113103. [PMID: 33417993 DOI: 10.1016/j.bbr.2020.113103] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Mild cognitive impairment (MCI) is considered to be the early stage of Alzheimer's disease (AD), but the diagnostic predictive markers for MCI patients are still unclear. Here we have identified the brain function activity changes in MCI patients by using the resting-state functional magnetic resonance imaging (rs-fMRI). A total of 28 MCI patients and 38 age- and gender-matched healthy controls from the Wuxi Mental Health Center were recruited, and their abnormal spontaneous brain activities in the MCI were examined. The results showed that, compared with the healthy controls, MCI patients exhibited reduced regional homogeneity (ReHo) in the right superior temporal gyrus, right middle temporal gyrus, left angular gyrus and superior marginal gyrus. In addition, the correlation analysis revealed that ReHo in these regions were not correlated with the AD Assessment Scale-Cognitive score in MCI. We concluded abnormalities in the right superior temporal gyrus, right middle temporal gyrus, left angular gyrus and superior marginal gyrus with MCI, suggesting that the right language network may be impaired in MCI, which may provide a better understanding of dementia progression and potentially comprehensive treatment in MCI.
Collapse
|
13
|
Satary Dizaji A, Vieira BH, Khodaei MR, Ashrafi M, Parham E, Hosseinzadeh GA, Salmon CEG, Soltanianzadeh H. Linking Brain Biology to Intellectual Endowment: A Review on the Associations of Human Intelligence With Neuroimaging Data. Basic Clin Neurosci 2021; 12:1-28. [PMID: 33995924 PMCID: PMC8114859 DOI: 10.32598/bcn.12.1.574.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/10/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
Human intelligence has always been a fascinating subject for scientists. Since the inception of Spearman's general intelligence in the early 1900s, there has been significant progress towards characterizing different aspects of intelligence and its relationship with structural and functional features of the brain. In recent years, the invention of sophisticated brain imaging devices using Diffusion-Weighted Imaging (DWI) and functional Magnetic Resonance Imaging (fMRI) has allowed researchers to test hypotheses about neural correlates of intelligence in humans.This review summarizes recent findings on the associations of human intelligence with neuroimaging data. To this end, first, we review the literature that has related brain morphometry to intelligence. Next, we elaborate on the applications of DWI and restingstate fMRI on the investigation of intelligence. Then, we provide a survey of literature that has used multimodal DWI-fMRI to shed light on intelligence. Finally, we discuss the state-of-the-art of individualized prediction of intelligence from neuroimaging data and point out future strategies. Future studies hold promising outcomes for machine learning-based predictive frameworks using neuroimaging features to estimate human intelligence.
Collapse
Affiliation(s)
- Aslan Satary Dizaji
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Bruno Hebling Vieira
- Inbrain Lab, Department of Physics, FFCLRP, University of São Paulo, Ribeirao Preto, Brazil
| | - Mohmmad Reza Khodaei
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahnaz Ashrafi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elahe Parham
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Gholam Ali Hosseinzadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Hamid Soltanianzadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Radiology Image Analysis Laboratory, Henry Ford Health System, Detroit, USA
| |
Collapse
|
14
|
Kozhemiako N, Nunes AS, Vakorin V, Iarocci G, Ribary U, Doesburg SM. Alterations in Local Connectivity and Their Developmental Trajectories in Autism Spectrum Disorder: Does Being Female Matter? Cereb Cortex 2020; 30:5166-5179. [PMID: 32368779 DOI: 10.1093/cercor/bhaa109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is diagnosed more often in males with a ratio of 1:4 females/males. This bias is even stronger in neuroimaging studies. There is a growing evidence suggesting that local connectivity and its developmental trajectory is altered in ASD. Here, we aim to investigate how local connectivity and its age-related trajectories vary with ASD in both males and females. We used resting-state fMRI data from the ABIDE I and II repository: males (n = 102) and females (n = 92) with ASD, and typically developing males (n = 104) and females (n = 92) aged between 6 and 26. Local connectivity was quantified as regional homogeneity. We found increases in local connectivity in participants with ASD in the somatomotor and limbic networks and decreased local connectivity within the default mode network. These alterations were more pronounced in females with ASD. In addition, the association between local connectivity and ASD symptoms was more robust in females. Females with ASD had the most distinct developmental trajectories of local connectivity compared with other groups. Overall, our findings of more pronounced local connectivity alterations in females with ASD could indicate a greater etiological load for an ASD diagnosis in this group congruent with the female protective effect hypothesis.
Collapse
Affiliation(s)
- Nataliia Kozhemiako
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Adonay S Nunes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Vasily Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Fraser Health, British Columbia Health Authority, Surrey, BC V3T 5X3, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Urs Ribary
- Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Department of Pediatrics and Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Sam M Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
15
|
Mitchell BL, Cuéllar-Partida G, Grasby KL, Campos AI, Strike LT, Hwang LD, Okbay A, Thompson PM, Medland SE, Martin NG, Wright MJ, Rentería ME. Educational attainment polygenic scores are associated with cortical total surface area and regions important for language and memory. Neuroimage 2020; 212:116691. [PMID: 32126298 DOI: 10.1016/j.neuroimage.2020.116691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 02/01/2023] Open
Abstract
It is well established that higher cognitive ability is associated with larger brain size. However, individual variation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, sufficient statistical power to detect small associations. This study investigates the association between three global (total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on two independent target samples of young twin adults with neuroimaging data, from Australia (N = 1097) and the USA (N = 723), and found that higher EA-PGS were significantly associated with larger global brain size measures, ICV and TSA (R2 = 0.006 and 0.016 respectively, p < 0.001) but not average thickness. At the regional level, we identified seven cortical regions-in the frontal and temporal lobes-that showed variation in surface area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Altogether, these findings advance our understanding of the neurobiology that underpins educational attainment and cognitive ability, providing focus points for future research.
Collapse
Affiliation(s)
- Brittany L Mitchell
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina L Grasby
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Adrian I Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicholas G Martin
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Xu Z, Lai J, Zhang H, Ng CH, Zhang P, Xu D, Hu S. Regional homogeneity and functional connectivity analysis of resting-state magnetic resonance in patients with bipolar II disorder. Medicine (Baltimore) 2019; 98:e17962. [PMID: 31764799 PMCID: PMC6882611 DOI: 10.1097/md.0000000000017962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To explore the characteristics of local brain activity in patients with bipolar depression and its correlation with clinical features.In accord with the diagnostic and statistical manual of mental disorders-IV of bipolar disorder, 21 patients were enrolled while 21 healthy controls were matched with similar gender, age, level of educations. A 3.0T GE magnetic resonance scanner was used to collect the imaging data, and a 2-sample t test was performed. Regional homogeneity (ReHo) method was used to estimate regional activation patterns through indices of localized concordance. ReHo values were compared between groups. Seed-based correlation analysis was used to analyze functional connections.In the patients' group, ReHo (regional homogeneity) values of resting state functional magnetic resonance imaging data on the right cerebellum 4 and 5 area, cerebellar vermis 6 area, left insula were positively correlated with Hamilton depression scale (HAMD) scores. ReHo values on the left of the triangle of inferior frontal gyrus, right inferior frontal gyrus of orbital region showed negative correlation with HAMD scores. The value of ReHo in the patients' group was positively correlated with the patients' Hamilton anxiety scale score in the right fusiform gyrus, and negative correlation was found in the left insula. The ReHo value of the patients' group was negatively correlated with the patients' Montgomery Asberg depression rating scale score in regions of the midbrain. The value of ReHo in patients' group was significantly reduced in the right central front.The depression and anxiety severity of bipolar depression patients may be associated with the consistency activity of left insula, right cerebellum, and cerebellar vermis related area, fusiform gyrus. In addition, the ReHo of the midbrain neurons activity may be associated with depression level of patients with bipolar II disorder.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
- The Third municipal hospital of Huzhou in Zhejiang Province, Huzhou
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou
| | - Haorong Zhang
- The Shanghai Key Laboratory of Magnetic Resonance & Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Chee H. Ng
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Peng Zhang
- Mental Health Center, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division and MRI Unit, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou
| |
Collapse
|
17
|
Solé-Casals J, Serra-Grabulosa JM, Romero-Garcia R, Vilaseca G, Adan A, Vilaró N, Bargalló N, Bullmore ET. Structural brain network of gifted children has a more integrated and versatile topology. Brain Struct Funct 2019; 224:2373-2383. [DOI: 10.1007/s00429-019-01914-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023]
|
18
|
Brain functional connectivity correlates of coping styles. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:495-508. [PMID: 29572771 DOI: 10.3758/s13415-018-0583-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks-namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.
Collapse
|
19
|
Zhang Y, Guo G, Tian Y. Increased Temporal Dynamics of Intrinsic Brain Activity in Sensory and Perceptual Network of Schizophrenia. Front Psychiatry 2019; 10:484. [PMID: 31354546 PMCID: PMC6639429 DOI: 10.3389/fpsyt.2019.00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Schizophrenic subject is thought as a self-disorder patient related with abnormal brain functional network. It has been hypothesized that self-disorder is associated with the deficient functional integration of multisensory body signals in schizophrenic subjects. To further verify this assumption, 53 chronic schizophrenic subjects and 67 healthy subjects were included in this study and underwent resting-state functional magnetic resonance imaging. The data-driven methods, whole-brain temporal variability of fractional amplitude of low-frequency fluctuations and regional homogeneity (ReHo), were used to investigate dynamic local functional connectivity and dynamic local functional activity changes in schizophrenic subjects. Patients with schizophrenia exhibited increased temporal variability ReHo and fractional amplitude of low-frequency fluctuations across time windows within sensory and perception network (such as occipital gyrus, precentral and postcentral gyri, superior temporal gyrus, and thalamus). Critically, the increased dynamic ReHo of thalamus is significantly correlated with positive and total symptom of schizophrenic subjects. Our findings revealed that deficit in sensory and perception functional networks might contribute to neural physiopathology of self-disorder in schizophrenic subjects.
Collapse
Affiliation(s)
- Youxue Zhang
- School of Psychology, Chengdu Normal University, Chengdu, China
| | - Gang Guo
- School of Psychology, Chengdu Normal University, Chengdu, China
| | - Yuan Tian
- School of Foreign Languages, Chengdu Normal University, Chengdu, China
| |
Collapse
|
20
|
Lin J, Cui X, Dai X, Mo L. Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study. Front Hum Neurosci 2018; 12:210. [PMID: 29875645 PMCID: PMC5974035 DOI: 10.3389/fnhum.2018.00210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Creative insight plays an important role in our daily life. Previous studies have investigated the neural correlates of creative insight by functional magnetic resonance imaging (fMRI), however, the intrinsic resting-state brain activity associated with creative insight is still unclear. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in creative insight, which was compued by the response time (RT) of creative Chinese character chunk decomposition. The findings indicated that ReHo in the anterior cingulate cortex (ACC)/caudate nucleus (CN) and angular gyrus (AG)/superior temporal gyrus (STG)/inferior parietal lobe (IPL) negatively predicted creative insight. Furthermore, these findings suggested that spontaneous brain activity in multiple regions related to breaking and establishing mental sets, goal-directed solutions exploring, shifting attention, forming new associations and emotion experience contributes to creative insight. In conclusion, the present study provides new evidence to further understand the cognitive processing and neural correlates of creative insight.
Collapse
Affiliation(s)
- Jiabao Lin
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xuan Cui
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoying Dai
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lei Mo
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Feng P, Becker B, Feng T, Zheng Y. Alter spontaneous activity in amygdala and vmPFC during fear consolidation following 24 h sleep deprivation. Neuroimage 2018; 172:461-469. [DOI: 10.1016/j.neuroimage.2018.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022] Open
|
22
|
Rueter AR, Abram SV, MacDonald AW, Rustichini A, DeYoung CG. The goal priority network as a neural substrate of Conscientiousness. Hum Brain Mapp 2018; 39:3574-3585. [PMID: 29691946 DOI: 10.1002/hbm.24195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023] Open
Abstract
Conscientiousness is a personality trait associated with many important life outcomes, but little is known about the mechanisms that underlie it. We investigated its neural correlates using functional connectivity analysis in fMRI, which identifies brain regions that act in synchrony. We tested the hypothesis that a broad network resembling a combination of the salience and ventral attention networks, which we provisionally label the goal priority network (GPN), is a neural correlate of Conscientiousness. Self- and peer-ratings of Conscientiousness were collected in a community sample of adults who underwent a resting-state fMRI scan (N = 218). An independent components analysis yielded five components that overlapped substantially with the GPN. We examined synchrony within and between these GPN subcomponents. Synchrony within one of the components-mainly comprising regions of anterior insula, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex-was significantly associated with Conscientiousness. Connectivity between this component and the four other GPN components was also significantly associated with Conscientiousness. Our results support the hypothesis that variation in a network that enables prioritization of multiple goals may be central to Conscientiousness.
Collapse
Affiliation(s)
- Amanda R Rueter
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Samantha V Abram
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Angus W MacDonald
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Aldo Rustichini
- Department of Economics, University of Minnesota, Minneapolis, Minnesota
| | - Colin G DeYoung
- Department of Economics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
23
|
Zamroziewicz MK, Talukdar MT, Zwilling CE, Barbey AK. Nutritional status, brain network organization, and general intelligence. Neuroimage 2017; 161:241-250. [DOI: 10.1016/j.neuroimage.2017.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022] Open
|
24
|
Impact of Amyloid Burden on Regional Functional Synchronization in the Cognitively Normal Older Adults. Sci Rep 2017; 7:14690. [PMID: 29089631 PMCID: PMC5665874 DOI: 10.1038/s41598-017-15001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022] Open
Abstract
Previous studies have shown aberrant functional connectivity in preclinical Alzheimer’s disease (AD). However, the effects of beta-amyloid (Aβ) retention on regional functional synchronization in cognitively normal older adults still remain unclear. The aim of this study was to explore the distinctive association pattern between Aβ retention and regional functional synchronization in cognitively normal older adults. Sixty-one older adults with normal cognition underwent functional magnetic resonance imaging and regional functional synchronizations were quantified using regional homogeneity (ReHo). Subjects were dichotomized using 18F-Florbetaben positron emission tomography imaging into subjects with (Aβ+; n = 30) and without (Aβ-; n = 31) Aβ burden. The Aβ+ group exhibited significantly higher ReHo in the fusiform gyrus and lower ReHo in the precuneus compared with the Aβ- group. We found significant negative correlations between global Aβ retention and ReHo in the precuneus and medial prefrontal cortex and positive correlations between global Aβ retention and ReHo in the bilateral lingual gyrus, left fusiform gyrus, and right middle temporal gyrus in the Aβ+ group. Our findings suggest that regional functional synchronization might have distinctive association patterns with Aβ retention in the cognitively normal older adults. These findings can enrich the functional characterization of early stages of disease progression in AD.
Collapse
|
25
|
Li J, Guo H, Ge L, Cheng L, Wang J, Li H, Zhang K, Xiang J, Chen J, Zhang H, Xu Y. Mechanism of Cerebralcare Granule® for Improving Cognitive Function in Resting-State Brain Functional Networks of Sub-healthy Subjects. Front Neurosci 2017; 11:410. [PMID: 28769748 PMCID: PMC5509764 DOI: 10.3389/fnins.2017.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
Collapse
Affiliation(s)
- Jing Li
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Hao Guo
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Ling Ge
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China.,Department of Medical Psychology, Shanxi Medical College for Continuing EducationTaiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| | - Junjie Wang
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Hong Li
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| | - Jie Xiang
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Junjie Chen
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical UniversityTaiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| |
Collapse
|
26
|
Huang Y, Zhou Y. Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/207/1/012008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation. SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E94. [PMID: 27919314 DOI: 10.1017/sjp.2016.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.
Collapse
|
28
|
Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization. Sci Rep 2016; 6:37384. [PMID: 27892484 PMCID: PMC5124945 DOI: 10.1038/srep37384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
Abstract
Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations may constitute a key candidate mechanism for depressive psychopathology. While there is some evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the genetic or environmental roots of this putative association have not been elicited. Secondly, while different mathematical representations of resting-state fMRI patterns can embed diverse information of relevance for health and disease, many of them have not been studied in detail regarding the cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) informative for depression liability. A network-based statistic approach was employed to analyze cerebellar functional networks built using three methods: the conventional approach of filtered BOLD fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and instantaneous phase). The findings indicate that some environmental factors may lead to depression vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.
Collapse
|
29
|
Guo Z, Huang X, Wang M, Jones JA, Dai Z, Li W, Liu P, Liu H. Regional homogeneity of intrinsic brain activity correlates with auditory-motor processing of vocal pitch errors. Neuroimage 2016; 142:565-575. [DOI: 10.1016/j.neuroimage.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
|
30
|
Zhao J, Liu J, Jiang X, Zhou G, Chen G, Ding XP, Fu G, Lee K. Linking Resting-State Networks in the Prefrontal Cortex to Executive Function: A Functional Near Infrared Spectroscopy Study. Front Neurosci 2016; 10:452. [PMID: 27774047 PMCID: PMC5054000 DOI: 10.3389/fnins.2016.00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/20/2016] [Indexed: 12/05/2022] Open
Abstract
Executive function (EF) plays vital roles in our everyday adaptation to the ever-changing environment. However, limited existing studies have linked EF to the resting-state brain activity. The functional connectivity in the resting state between the sub-regions of the brain can reveal the intrinsic neural mechanisms involved in cognitive processing of EF without disturbance from external stimuli. The present study investigated the relations between the behavioral executive function (EF) scores and the resting-state functional network topological properties in the Prefrontal Cortex (PFC). We constructed complex brain functional networks in the PFC from 90 healthy young adults using functional near infrared spectroscopy (fNIRS). We calculated the correlations between the typical network topological properties (regional topological properties and global topological properties) and the scores of both the Total EF and components of EF measured by computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB). We found that the Total EF scores were positively correlated with regional properties in the right dorsal superior frontal gyrus (SFG), whereas the opposite pattern was found in the right triangular inferior frontal gyrus (IFG). Different EF components were related to different regional properties in various PFC areas, such as planning in the right middle frontal gyrus (MFG), working memory mainly in the right MFG and triangular IFG, short-term memory in the left dorsal SFG, and task switch in the right MFG. In contrast, there were no significant findings for global topological properties. Our findings suggested that the PFC plays an important role in individuals' behavioral performance in the executive function tasks. Further, the resting-state functional network can reveal the intrinsic neural mechanisms involved in behavioral EF abilities.
Collapse
Affiliation(s)
- Jia Zhao
- School of Computer and Information Technology, Beijing Jiaotong University Beijing, China
| | - Jiangang Liu
- School of Computer and Information Technology, Beijing Jiaotong UniversityBeijing, China; Department of Applied Psychology and Human Development, Dr. Eric Jackman Institute of Child Study, University of TorontoToronto, ON, Canada
| | - Xin Jiang
- Department of Computer Science, University College London London, UK
| | - Guifei Zhou
- School of Computer and Information Technology, Beijing Jiaotong University Beijing, China
| | - Guowei Chen
- Department of Psychology, Hangzhou Normal UniversityHangzhou, China; Department of Psychology, Zhejiang Normal UniversityJinhua, China
| | - Xiao P Ding
- Department of Applied Psychology and Human Development, Dr. Eric Jackman Institute of Child Study, University of TorontoToronto, ON, Canada; Department of Psychology, National University of SingaporeSingapore, Singapore
| | - Genyue Fu
- Department of Psychology, Hangzhou Normal UniversityHangzhou, China; Department of Psychology, Zhejiang Normal UniversityJinhua, China
| | - Kang Lee
- Department of Applied Psychology and Human Development, Dr. Eric Jackman Institute of Child Study, University of TorontoToronto, ON, Canada; Department of Psychology, Zhejiang Normal UniversityJinhua, China
| |
Collapse
|
31
|
Abstract
Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies.
Collapse
Affiliation(s)
- Lili Jiang
- Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xi-Nian Zuo
- Key Laboratory of Behavioral Science, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Faculty of Psychology, Southwest University, Beibei, Chongqing, China
- Department of Psychology, School of Education Science, Guangxi Teachers Education University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Reduced Default Mode Connectivity in Adolescents With Conduct Disorder. J Am Acad Child Adolesc Psychiatry 2016; 55:800-808.e1. [PMID: 27566121 DOI: 10.1016/j.jaac.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/26/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Conduct disorder (CD) is characterized by impulsive, aggressive, and antisocial behaviors that might be related to deficits in empathy and moral reasoning. The brain's default mode network (DMN) has been implicated in self-referential cognitive processes of this kind. METHOD This study examined connectivity between key nodes of the DMN in 29 adolescent boys with CD and 29 age- and sex-matched typically developing adolescent boys. The authors ensured that group differences in DMN connectivity were not explained by comorbidity with other disorders by systematically controlling for the effects of substance use disorders (SUDs), attention-deficit/hyperactivity disorder (ADHD) symptoms, psychopathic traits, and other common mental health problems. RESULTS Only after adjusting for co-occurring ADHD symptoms, the group with CD showed hypoconnectivity between core DMN regions compared with typically developing controls. ADHD symptoms were associated with DMN hyperconnectivity. There was no effect of psychopathic traits on DMN connectivity in the group with CD, and the key results were unchanged when controlling for SUDs and other common mental health problems. CONCLUSION Future research should directly investigate the possibility that the aberrant DMN connectivity observed in the present study contributes to CD-related deficits in empathy and moral reasoning and examine self-referential cognitive processes in CD more generally.
Collapse
|
33
|
Hearne LJ, Mattingley JB, Cocchi L. Functional brain networks related to individual differences in human intelligence at rest. Sci Rep 2016; 6:32328. [PMID: 27561736 PMCID: PMC4999800 DOI: 10.1038/srep32328] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.
Collapse
Affiliation(s)
- Luke J Hearne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,School of Psychology, The University of Queensland, Brisbane, Australia
| | - Luca Cocchi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
34
|
Xiang Y, Kong F, Wen X, Wu Q, Mo L. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy. Neuroimage 2016; 142:225-230. [PMID: 27498369 DOI: 10.1016/j.neuroimage.2016.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 02/03/2023] Open
Abstract
Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy.
Collapse
Affiliation(s)
- Yanhui Xiang
- Center for Study of Applied Psychology, South China Normal University, Guangzhou, Guangdong, China; School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Center for Studies of Psychological Application, South China University, Guangzhou, Guangdong, China
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, Shaanxi, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xue Wen
- Center for Study of Applied Psychology, South China Normal University, Guangzhou, Guangdong, China; School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Center for Studies of Psychological Application, South China University, Guangzhou, Guangdong, China
| | - Qihan Wu
- Center for Study of Applied Psychology, South China Normal University, Guangzhou, Guangdong, China; School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Center for Studies of Psychological Application, South China University, Guangzhou, Guangdong, China
| | - Lei Mo
- Center for Study of Applied Psychology, South China Normal University, Guangzhou, Guangdong, China; School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Center for Studies of Psychological Application, South China University, Guangzhou, Guangdong, China.
| |
Collapse
|
35
|
Deng L, Sun J, Cheng L, Tong S. Characterizing dynamic local functional connectivity in the human brain. Sci Rep 2016; 6:26976. [PMID: 27231194 PMCID: PMC4882585 DOI: 10.1038/srep26976] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/10/2016] [Indexed: 01/24/2023] Open
Abstract
Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding ‘noise’. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain’s functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future.
Collapse
Affiliation(s)
- Lifu Deng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lin Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
36
|
Brauer J, Xiao Y, Poulain T, Friederici AD, Schirmer A. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain. Cereb Cortex 2016; 26:3544-52. [PMID: 27230216 PMCID: PMC4961023 DOI: 10.1093/cercor/bhw137] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing.
Collapse
Affiliation(s)
- Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaqiong Xiao
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tanja Poulain
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annett Schirmer
- Department of Psychology and LSI Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore Duke/NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
37
|
Pineda-Pardo JA, Martínez K, Román FJ, Colom R. Structural efficiency within a parieto-frontal network and cognitive differences. INTELLIGENCE 2016. [DOI: 10.1016/j.intell.2015.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Kong F, Wang X, Hu S, Liu J. Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage 2015; 123:165-72. [PMID: 26279212 DOI: 10.1016/j.neuroimage.2015.08.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022] Open
|
39
|
Jung M, Mody M, Saito DN, Tomoda A, Okazawa H, Wada Y, Kosaka H. Sex Differences in the Default Mode Network with Regard to Autism Spectrum Traits: A Resting State fMRI Study. PLoS One 2015; 10:e0143126. [PMID: 26600385 PMCID: PMC4658035 DOI: 10.1371/journal.pone.0143126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum traits exist on a continuum and are more common in males than in females, but the basis for this sex difference is unclear. To this end, the present study draws on the extreme male brain theory, investigating the relationship between sex difference and the default mode network (DMN), both known to be associated with autism spectrum traits. Resting-state functional magnetic resonance imaging (MRI) was carried out in 42 females (mean age ± standard deviation, 22.4 ± 4.2 years) and 43 males (mean age ± standard deviation, 23.8 ± 3.9 years) with typical development. Using a combination of different analyses (viz., independent component analysis (ICA), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and seed-based analyses), we examined sex differences in the DMN and the relationship to autism spectrum traits as measured by autism-spectrum quotient (AQ) scores. We found significant differences between female and male subjects in DMN brain regions, with seed-based analysis revealing a significant negative correlation between default-mode resting state functional connectivity of the anterior medial prefrontal cortex seed (aMPFC) and AQ scores in males. However, there were no relationships between DMN sex differences and autism spectrum traits in females. Our findings may provide important insight into the skewed balance of functional connectivity in males compared to females that could serve as a potential biomarker of the degree of autism spectrum traits in line with the extreme male brain theory.
Collapse
Affiliation(s)
- Minyoung Jung
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Daisuke N. Saito
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Developmental Emotional Intelligence, Division of Developmental Higher Brain Functions, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Eiheiji, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Developmental Emotional Intelligence, Division of Developmental Higher Brain Functions, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Eiheiji, Fukui, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Developmental Emotional Intelligence, Division of Developmental Higher Brain Functions, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Eiheiji, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| | - Yuji Wada
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Developmental Emotional Intelligence, Division of Developmental Higher Brain Functions, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Eiheiji, Fukui, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
- Developmental Emotional Intelligence, Division of Developmental Higher Brain Functions, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Eiheiji, Fukui, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- * E-mail:
| |
Collapse
|
40
|
Malpas CB, Genc S, Saling MM, Velakoulis D, Desmond PM, O'Brien TJ. MRI correlates of general intelligence in neurotypical adults. J Clin Neurosci 2015; 24:128-34. [PMID: 26455546 DOI: 10.1016/j.jocn.2015.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 11/28/2022]
Abstract
There is growing interest in the neurobiological substrate of general intelligence. Psychometric estimates of general intelligence are reduced in a range of neurological disorders, leading to practical application as sensitive, but non-specific, markers of cerebral disorder. This study examined estimates of general intelligence in neurotypical adults using diffusion tensor imaging and resting-state functional connectivity analysis. General intelligence was related to white matter organisation across multiple brain regions, confirming previous work in older healthy adults. We also found that variation in general intelligence was related to a large functional sub-network involving all cortical lobes of the brain. These findings confirm that individual variance in general intelligence is related to diffusely represented brain networks.
Collapse
Affiliation(s)
- Charles B Malpas
- Melbourne Brain Centre, Royal Melbourne Hospital, VIC, Australia; Melbourne School of Psychological Sciences, University of Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Developmental Imaging, Murdoch Children's Research Institute, VIC, Australia.
| | - Sila Genc
- Melbourne Brain Centre, Royal Melbourne Hospital, VIC, Australia; Developmental Imaging, Murdoch Children's Research Institute, VIC, Australia; Department of Radiology, University of Melbourne, VIC, Australia
| | - Michael M Saling
- Melbourne School of Psychological Sciences, University of Melbourne, VIC, Australia; Department of Neuropsychology, Austin Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Hospital, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Brain Centre, Royal Melbourne Hospital, VIC, Australia; Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital, VIC, Australia; Department of Psychiatry, University of Melbourne, VIC, Australia
| | - Patricia M Desmond
- Melbourne Brain Centre, Royal Melbourne Hospital, VIC, Australia; Department of Radiology, University of Melbourne, VIC, Australia; Department of Medical Imaging, Royal Melbourne Hospital, VIC, Australia
| | - Terence J O'Brien
- Melbourne Brain Centre, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
41
|
Kong F, Wang X, Song Y, Liu J. Brain regions involved in dispositional mindfulness during resting state and their relation with well-being. Soc Neurosci 2015; 11:331-43. [PMID: 26360907 DOI: 10.1080/17470919.2015.1092469] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mindfulness can be viewed as an important dispositional characteristic that reflects the tendency to be mindful in daily life, which is beneficial for improving individuals' both hedonic and eudaimonic well-being. However, no study to date has examined the brain regions involved in individual differences in dispositional mindfulness during the resting state and its relation with hedonic and eudaimonic well-being. To investigate this issue, the present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional homogeneity (ReHo) that measures the local synchronization of spontaneous brain activity in a large sample. We found that dispositional mindfulness was positively associated with the ReHo in the left orbitofrontal cortex (OFC), left parahippocampal gyrus (PHG), and right insula implicated in emotion processing, body awareness, and self-referential processing, and negatively associated with the ReHo in right inferior frontal gyrus (IFG) implicated in response inhibition and attentional control. Furthermore, we found different neural associations with hedonic (i.e., positive and negative affect) and eudaimonic well-being (i.e., the meaningful and purposeful life). Specifically, the ReHo in the IFG predicted eudaimonic well-being whereas the OFC predicted positive affect, both of which were mediated by dispositional mindfulness. Taken together, our study provides the first evidence for linking individual differences in dispositional mindfulness to spontaneous brain activity and demonstrates that dispositional mindfulness engages multiple brain mechanisms that differentially influence hedonic and eudaimonic well-being.
Collapse
Affiliation(s)
- Feng Kong
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China.,b Center for Collaboration and Innovation in Brain and Learning Sciences , Beijing Normal University , Beijing , China
| | - Xu Wang
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China.,b Center for Collaboration and Innovation in Brain and Learning Sciences , Beijing Normal University , Beijing , China
| | - Yiying Song
- a State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research , Beijing Normal University , Beijing , China.,b Center for Collaboration and Innovation in Brain and Learning Sciences , Beijing Normal University , Beijing , China
| | - Jia Liu
- c School of Psychology , Beijing Normal University , Beijing , China
| |
Collapse
|
42
|
A Window into the Brain: Advances in Psychiatric fMRI. BIOMED RESEARCH INTERNATIONAL 2015; 2015:542467. [PMID: 26413531 PMCID: PMC4564608 DOI: 10.1155/2015/542467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023]
Abstract
Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific to certain types of psychiatric disorders.
Collapse
|
43
|
Córdova-Palomera A, Tornador C, Falcón C, Bargalló N, Nenadic I, Deco G, Fañanás L. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment. Hum Brain Mapp 2015; 36:3761-76. [PMID: 26096943 DOI: 10.1002/hbm.22876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals.
Collapse
Affiliation(s)
- Aldo Córdova-Palomera
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Cristian Tornador
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcón
- Medical Image Core facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Nuria Bargalló
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Medical Image Core facility, the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Diagnóstico por Imagen, Hospital Clínico, Barcelona, Spain
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lourdes Fañanás
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
44
|
Liu C, Chen Z, Wang T, Tang D, Hitchman G, Sun J, Zhao X, Wang L, Chen A. Predicting stroop effect from spontaneous neuronal activity: a study of regional homogeneity. PLoS One 2015; 10:e0124405. [PMID: 25938442 PMCID: PMC4418763 DOI: 10.1371/journal.pone.0124405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
The Stroop effect is one of the most robust and well-studied phenomena in cognitive psychology and cognitive neuroscience. However, little is known about the relationship between intrinsic brain activity and the individual differences of this effect. In the present study, we explored this issue by examining whether resting-state functional magnetic resonance imaging (rs-fMRI) signals could predict individual differences in the Stroop effect of healthy individuals. A partial correlation analysis was calculated to examine the relationship between regional homogeneity (ReHo) and Stroop effect size, while controlling for age, sex, and framewise displacement (FD). The results showed positive correlations in the left inferior frontal gyrus (LIFG), the left insula, the ventral anterior cingulate cortex (vACC), and the medial frontal gyrus (MFG), and negative correlation in the left precentral gyrus (LPG). These results indicate the possible influences of the LIFG, the left insula, and the LPG on the efficiency of cognitive control, and demonstrate that the key nodes of default mode network (DMN) may be important in goal-directed behavior and/or mental effort during cognitive control tasks.
Collapse
Affiliation(s)
- Congcong Liu
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhencai Chen
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Wang
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Laboratory of Cognition and Mental Health, Chongqing University of Arts and Sciences, Chongqing, China
| | - Dandan Tang
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Glenn Hitchman
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiangzhou Sun
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaoyue Zhao
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Lijun Wang
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- Key laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
45
|
Wu Y, Zang Y, Yuan B, Tian X. Neural correlates of decision making after unfair treatment. Front Hum Neurosci 2015; 9:123. [PMID: 25798102 PMCID: PMC4350402 DOI: 10.3389/fnhum.2015.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 01/19/2023] Open
Abstract
Empirical evidence indicates that people are inequity averse. However, it is unclear whether and how suffering unfairness impacts subsequent behavior. We investigated the consequences of unfair treatment in subsequent interactions with new interaction partners and the associated neural mechanisms. Participants were experimentally manipulated to experience fair or unfair treatment in the ultimatum game (UG), and subsequently, they were given the opportunity to retaliate in the dictator game (DG) in their interactions with players who had not played a role in the previous fair or unfair treatment. The results showed that participants dictated less money to unrelated partners after frequently receiving unfair offers in the previous UG (vs. frequently receiving fair offers in the previous UG), but only when they were first exposed to unfair UG/DG. Stronger activation in the right dorsal anterior insula was found during receiving unfair offers and during the subsequent offer-considering phase. The regional homogeneity (ReHo), a measure of the local synchronization of neighboring voxels in resting-state brain activity, in the left ventral anterior insula and left superior temporal pole was positively correlated with the behavior change. These findings suggest that unfair treatment may encourage a spread of unfairness, and that the anterior insula may be not only engaged in signaling social norm violations, but also recruited in guiding subsequent adaptive behaviors.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychology, College of Education, Hangzhou Normal University Hangzhou, China ; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University Hangzhou, China
| | - Yufeng Zang
- Department of Psychology, College of Education, Hangzhou Normal University Hangzhou, China ; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University Hangzhou, China
| | - Binke Yuan
- Department of Psychology, College of Education, Hangzhou Normal University Hangzhou, China ; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University Hangzhou, China
| | - Xuehong Tian
- Department of Psychology, College of Education, Hangzhou Normal University Hangzhou, China ; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University Hangzhou, China
| |
Collapse
|
46
|
Combined cognitive-psychological-physical intervention induces reorganization of intrinsic functional brain architecture in older adults. Neural Plast 2015; 2015:713104. [PMID: 25810927 PMCID: PMC4355335 DOI: 10.1155/2015/713104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/27/2022] Open
Abstract
Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.
Collapse
|
47
|
Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy K, Dapretto M. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev Cogn Neurosci 2014; 10:148-59. [PMID: 25282602 PMCID: PMC4854607 DOI: 10.1016/j.dcn.2014.08.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 12/27/2022] Open
Abstract
The mature brain is organized into distinct neural networks defined by regions demonstrating correlated activity during task performance as well as rest. While research has begun to examine differences in these networks between children and adults, little is known about developmental changes during early adolescence. Using functional magnetic resonance imaging (fMRI), we examined the Default Mode Network (DMN) and the Central Executive Network (CEN) at ages 10 and 13 in a longitudinal sample of 45 participants. In the DMN, participants showed increasing integration (i.e., stronger within-network correlations) between the posterior cingulate cortex (PCC) and the medial prefrontal cortex. During this time frame participants also showed increased segregation (i.e., weaker between-network correlations) between the PCC and the CEN. Similarly, from age 10 to 13, participants showed increased connectivity between the dorsolateral prefrontal cortex and other CEN nodes, as well as increasing DMN segregation. IQ was significantly positively related to CEN integration at age 10, and between-network segregation at both ages. These findings highlight early adolescence as a period of significant maturation for the brain's functional architecture and demonstrate the utility of longitudinal designs to investigate neural network development.
Collapse
Affiliation(s)
- Lauren E Sherman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey D Rudie
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Carrie L Masten
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristin McNealy
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Gupta L, Besseling RMH, Overvliet GM, Hofman PAM, de Louw A, Vaessen MJ, Aldenkamp AP, Ulman S, Jansen JFA, Backes WH. Spatial heterogeneity analysis of brain activation in fMRI. NEUROIMAGE-CLINICAL 2014; 5:266-76. [PMID: 25161893 PMCID: PMC4141984 DOI: 10.1016/j.nicl.2014.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD) activation maps appear more (diffusively) distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness), complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix), and gappiness between activated regions (lacunarity). To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic) epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70%) and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients. A number of spatial heterogeneity measures of activation maps were explored in children with Rolandic epilepsy and language impairment Proposed measures capture the complexity, shape and distribution of brain activation patterns For a language task all proposed measures revealed that patients exhibit more heterogeneous activation patterns than controls, whereas for a motor task no differences appeared Spatial heterogeneity of activation patterns is a complex feature that cannot be captured by one single measure, but shape and lacunarity represented the best descriptive measures
Collapse
Affiliation(s)
- Lalit Gupta
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - René M H Besseling
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Geke M Overvliet
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands ; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul A M Hofman
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands ; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anton de Louw
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Maarten J Vaessen
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands ; Epilepsy Center Kempenhaeghe, Heeze, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Albert P Aldenkamp
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands ; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Shrutin Ulman
- Philips Research, Philips Electronics India Ltd., Manyata Tech. Park, Bangalore, India
| | - Jacobus F A Jansen
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Walter H Backes
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands ; Research School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
49
|
Li C, Tian L. Association between resting-state coactivation in the parieto-frontal network and intelligence during late childhood and adolescence. AJNR Am J Neuroradiol 2014; 35:1150-6. [PMID: 24557703 DOI: 10.3174/ajnr.a3850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A number of studies have associated the adult intelligence quotient with the structure and function of the bilateral parieto-frontal networks, whereas the relationship between intelligence quotient and parieto-frontal network function has been found to be relatively weak in early childhood. Because both human intelligence and brain function undergo protracted development into adulthood, the purpose of the present study was to provide a better understanding of the development of the parieto-frontal network-intelligence quotient relationship. MATERIALS AND METHODS We performed independent component analysis of resting-state fMRI data of 84 children and 50 adolescents separately and then correlated full-scale intelligence quotient with the spatial maps of the bilateral parieto-frontal networks of each group. RESULTS In children, significant positive spatial-map versus intelligence quotient correlations were detected in the right angular gyrus and inferior frontal gyrus in the right parieto-frontal network, and no significant correlation was observed in the left parieto-frontal network. In adolescents, significant positive correlation was detected in the left inferior frontal gyrus in the left parieto-frontal network, and the correlations in the frontal pole in the 2 parieto-frontal networks were only marginally significant. CONCLUSIONS The present findings not only support the critical role of the parieto-frontal networks for intelligence but indicate that the relationship between intelligence quotient and the parieto-frontal network in the right hemisphere has been well established in late childhood, and that the relationship in the left hemisphere was also established in adolescence.
Collapse
Affiliation(s)
- C Li
- From the Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - L Tian
- From the Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.
| |
Collapse
|
50
|
Linking inter-individual differences in the conflict adaptation effect to spontaneous brain activity. Neuroimage 2014; 90:146-52. [DOI: 10.1016/j.neuroimage.2013.12.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/16/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022] Open
|