1
|
Naghshbandieh A, Naghshbandieh A, Barfi E, Abkhooie L. Assessment of the level of apoptosis in differentiated pseudo-neuronal cells derived from neural stem cells under the influence of various inducers. AMERICAN JOURNAL OF STEM CELLS 2024; 13:250-270. [PMID: 39850017 PMCID: PMC11751472 DOI: 10.62347/bptg6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/25/2025]
Abstract
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others. Developing inventive therapies for neurodegenerative illnesses depends on a knowledge of how these inducers impact mortality in differentiated pseudo-neuronal cells. Using flow cytometry, Western blotting, and fluorescence microscopy among other techniques, the degree of death in many pseudo-neuronal cells is evaluated. Flow cytometry generates dead cell counts from measurements of cell size, granularity, and DNA content. Whereas fluorescence microscopy visualizes dead cells using fluorescent dyes or antibodies, Western blotting detects caspases and Bcl-2 family proteins. This review attempts to offer a thorough investigation of present studies on death in differentiated pseudo-neuronal cells produced from neural stem cells under the effect of different inducers. Through investigating how these inducers influence death, the review aims to provide information that might direct the next studies and support treatment plans for neurodegenerative diseases. With an eye toward inducers like retinoic acid, selegiline, cytokines, valproic acid, and small compounds, we examined research to evaluate death rates. The findings offer important new perspectives on the molecular processes guiding death in these cells. There is still a complete lack of understanding of how different factors affect the molecular processes that lead to death, so understanding these processes can contribute to new therapeutic approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Adele Naghshbandieh
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Atefe Naghshbandieh
- Department of Pharmaceutical Biotechnology and Department of Pharmaceutical and Bimolecular Science, University of MilanMilan, Italy
| | - Elahe Barfi
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
| | - Leila Abkhooie
- Razi Herbal Medicines Research Center, Lorestan University of Medical SciencesKhorramabad, Iran
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical SciencesKhorramabad, Iran
| |
Collapse
|
2
|
Gao X, Tian Y, Liu ZL, Li D, Liu JJ, Yu GX, Duan DY, Peng T, Cheng TY, Liu L. Tick salivary protein Cystatin: structure, anti-inflammation and molecular mechanism. Ticks Tick Borne Dis 2024; 15:102289. [PMID: 38070274 DOI: 10.1016/j.ttbdis.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
Ticks are blood-sucking ectoparasites that secrete immunomodulatory substances in saliva to hosts during engorging. Cystatins, a tick salivary protein and natural inhibitor of Cathepsins, are attracting growing interest globally because of the immunosuppressive activities and the feasibility as an antigen for developing anti-tick vaccines. This review outlines the classification and the structure of tick Cystatins, and focuses on the anti-inflammatory effects and molecular mechanisms. Tick Cystatins can be divided into four families based on structures and cystatin 1 and cystatin 2 are the most abundant. They are injected into hosts during blood feeding and effectively mitigate the host inflammatory response. Mechanically, tick Cystatins exert anti-inflammatory properties through the inhibition of TLR-NF-κb, JAK-STAT and p38 MAPK signaling pathways. Further investigations are crucial to confirm the reduction of inflammation in other cell types like neutrophils and mast cells, and fully elucidate the underlying mechanism (like the structural mechanism) to make Cystatin a potential candidate for the development of novel anti-inflammation agents.
Collapse
Affiliation(s)
- Xin Gao
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ling Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Jun Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guang-Xu Yu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Pérez-Montes C, Jiménez-Cubides JP, Velasco A, Arévalo R, Santos-Ledo A, García-Macia M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants (Basel) 2023; 12:2026. [PMID: 38136146 PMCID: PMC10740785 DOI: 10.3390/antiox12122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Zebrafish (Danio rerio) present continuous growth and regenerate many parts of their body after an injury. Fish oligodendrocytes, microglia and astrocytes support the formation of new connections producing effective regeneration of the central nervous system after a lesion. To understand the role of oligodendrocytes and the signals that mediate regeneration, we use the well-established optic nerve (ON) crush model. We also used sox10 fluorescent transgenic lines to label fully differentiated oligodendrocytes. To quench the effect of reactive oxygen species (ROS), we used the endogenous antioxidant melatonin. Using these tools, we measured ROS production by flow cytometry and explored the regeneration of the optic tectum (OT), the response of oligodendrocytes and their mitochondria by confocal microscopy and Western blot. ROS are produced by oligodendrocytes 3 h after injury and JNK activity is triggered. Concomitantly, there is a decrease in the number of fully differentiated oligodendrocytes in the OT and in their mitochondrial population. By 24 h, oligodendrocytes partially recover. Exposure to melatonin blocks the changes observed in these oligodendrocytes at 3 h and increases their number and their mitochondrial populations after 24 h. Melatonin also blocks JNK upregulation and induces aberrant neuronal differentiation in the OT. In conclusion, a proper balance of ROS is necessary during visual system regeneration and exposure to melatonin has a detrimental impact.
Collapse
Affiliation(s)
- Cristina Pérez-Montes
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jhoana Paola Jiménez-Cubides
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
| | - Almudena Velasco
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rosario Arévalo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Adrián Santos-Ledo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Salamanca, 37007 Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), 28029 Madrid, Spain
| |
Collapse
|
4
|
Kodagoda YK, Liyanage DS, Omeka WKM, Kim G, Kim J, Lee J. Identification, expression profiling, and functional characterization of cystatin C from big-belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108804. [PMID: 37207886 DOI: 10.1016/j.fsi.2023.108804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.
Collapse
Affiliation(s)
- Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea; Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
5
|
Wei S, Cai J, Wang S, Yu Y, Wei J, Huang Y, Huang X, Qin Q. Functional characterization of Cystatin C in orange-spotted grouper, Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:37-46. [PMID: 30822452 DOI: 10.1016/j.dci.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Cystatin C is an endogenous inhibitor of cysteine proteases and widely exist in organisms. Several studies in mammals have showed that Cystatin C plays critical role in the immune defense against microorganisms. It is also well known that some fish Cystatin C have important immune regulation functions in inflammatory responses. However, the function of fish Cystatin C in virus infection as well as its underlying molecular mechanisms remain to be elucidated. In the present study, a Cystatin C gene termed Ec-CysC was identified from orange-spotted grouper, Epinephelus coioides. The full-length of Ec-CysC cDNA was 817 bp with a 387 bp open reading frame (ORF) that encoded a 129-amino acid (aa) protein, including 18-aa signal peptide and 111-aa mature polypeptide. The deduced amino acid of Ec-CysC shared three conserved domains containing Glycine at the N-terminus region, QVVAG motif in the middle and PW motif near the C-terminus region. Transcription analysis of the Ec-CysC gene showed its expression in all twelve examined tissues including liver, spleen, kidney, brain, intestine, heart, skin, muscle, fin, stomach, gill and head kidney. Its expression following stimulation with Singapore grouper iridovirus (SGIV) was further tested in spleen, the relative expression of Ec-CysC was significantly up-regulated at 12 h post-infection. The subcellular localization experiment revealed that Ec-CysC was mainly distributed in the cytoplasm in Grouper Spleen (GS) cells. In vitro, Overexpression of Ec-CysC in GS cells significantly reduced the expression of viral genes, namely, ORF162, ORF049 and ORF072. Meanwhile, we found that overexpression of Ec-CysC resulted in upward trend of expression of inflammatory cytokines TNF-a, IL-1β and IL8 during SGIV infection. Further, SGIV-inducible apoptosis and Caspase-3 activity were also weakened by overexpression Ec-CysC in fathead minnow (FHM) cells. These results indicated that Ec-CysC might have a deeper involvement in fish immune defense, and played important roles in inflammation and apoptosis induced by SGIV.
Collapse
Affiliation(s)
- Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yepin Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Zeng Q, Huang Z, Wei L, Fang J, Lin K. Correlations of serum cystatin C level and gene polymorphism with vascular cognitive impairment after acute cerebral infarction. Neurol Sci 2019; 40:1049-1054. [PMID: 30805744 DOI: 10.1007/s10072-019-03777-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to explore the possible correlations of serum cystatin C level and cystatin C gene (CST3) polymorphism with vascular cognitive impairment in patients who had acute cerebral infarction. METHODS A total of 152 patients with acute cerebral infarction were recruited in this case-control study. Patients were divided into vascular cognitive impairment (VCI) group (n = 71) and cognitive impairment no dementia (CIND) group (n = 81). The serum concentrations of cystatin C were measured with immunoturbidimetric assay while the gene polymorphisms of CST3 were determined by technique polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS In the VCI group, serum cystatin C level was significantly higher than that in the control group. The frequency of the B allele was found to be higher in the VCI group as compared with that of the CIND group (18.5% vs 7.7%, p = 0.006). In logistic regression analysis, significant associations of VCI with high serum cystatin C level (OR 3.837 (1.176-12.520), p = 0.026) and CST3 B allele (OR 2.038 (1.048-3.963), p = 0.036) were also found. CONCLUSIONS A high cystatin C level and CST3 B allele confer risks for VCI after acute cerebral infarction. It is probable that measurement of the serum cystatin C level and detection of CST3 gene polymorphism would aid in the early diagnosis of VCI, but further studies are warranted.
Collapse
Affiliation(s)
- Qiong Zeng
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhihua Huang
- Shantou University Medical College, Shantou, China
| | - Liling Wei
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingnian Fang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kun Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Saik OV, Demenkov PS, Ivanisenko TV, Bragina EY, Freidin MB, Goncharova IA, Dosenko VE, Zolotareva OI, Hofestaedt R, Lavrik IN, Rogaev EI, Ivanisenko VA. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med Genomics 2018; 11:15. [PMID: 29504915 PMCID: PMC6389037 DOI: 10.1186/s12920-018-0331-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. RESULTS Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central nervous system. CONCLUSIONS The application of methods of reconstruction and analysis of gene networks is a productive tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of 10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan experiments for identification of novel candidate genes along with searching for novel pharmacological targets.
Collapse
Affiliation(s)
- Olga V. Saik
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel S. Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey V. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Yu Bragina
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | - Maxim B. Freidin
- Research Institute of Medical Genetics, Tomsk NRMC, Tomsk, Russia
| | | | | | - Olga I. Zolotareva
- Bielefeld University, International Research Training Group “Computational Methods for the Analysis of the Diversity and Dynamics of Genomes”, Bielefeld, Germany
| | - Ralf Hofestaedt
- Bielefeld University, Technical Faculty, AG Bioinformatics and Medical Informatics, Bielefeld, Germany
| | - Inna N. Lavrik
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Evgeny I. Rogaev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- University of Massachusetts Medical School, Worcester, MA USA
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Zi M, Xu Y. Involvement of cystatin C in immunity and apoptosis. Immunol Lett 2018; 196:80-90. [PMID: 29355583 PMCID: PMC7112947 DOI: 10.1016/j.imlet.2018.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
As an abundantly expressed cysteine protease inhibitor widely distributed in the organisms, cystatin C is involved in various physiological processes. Due to its relatively small molecular weight and easy detection, cystatin C is commonly used as a measure for glomerular filtration rate. In pathological conditions, however, growing evidences suggest that cystatin C is associated with various immune responses against either exogenous or endogenous antigens, which ultimately result in inflammatory autoimmune diseases or tumor development if not properly controlled. Thus the fluctuation of cystatin C levels might have more clinical implications than a reflection of kidney functions. Here, we summarize the latest development of studies on the pathophysiological functions of cystatin C, with focus on its immune regulatory roles at both cellular and molecular levels including antigen presentation, secretion of cytokines, synthesis of nitric oxide, as well as apoptosis. Finally, we discuss the clinical implications and therapeutic potentials of what this predominantly expressed protease inhibitor can bring to us.
Collapse
Affiliation(s)
- Mengting Zi
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
9
|
Kim SJ, Ryu MJ, Han J, Jang Y, Kim J, Lee MJ, Ryu I, Ju X, Oh E, Chung W, Kweon GR, Heo JY. Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation. Biochem Biophys Res Commun 2017; 493:358-364. [DOI: 10.1016/j.bbrc.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 01/05/2023]
|
10
|
Anders F, Teister J, Funke S, Pfeiffer N, Grus F, Solon T, Prokosch V. Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model. Graefes Arch Clin Exp Ophthalmol 2017; 255:1395-1407. [PMID: 28536832 DOI: 10.1007/s00417-017-3678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/12/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration. METHODS Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations. RESULTS The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context. CONCLUSIONS In conclusion, these results provide further lines of evidence that substantial molecular changes occur at the onset of the disease, identifying potential key players, which might be useful as biomarkers for diagnostics and development of medical treatment in the future.
Collapse
Affiliation(s)
- Fabian Anders
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sebstian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thanos Solon
- Department of Experimental Ophthalmology, University Medical Center, Domagkstraße 15, 48149, Münster, Germany
| | - Verena Prokosch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany. .,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
11
|
Jang Y, Lee MJ, Han J, Kim SJ, Ryu I, Ju X, Ryu MJ, Chung W, Oh E, Kweon GR, Heo JY. A High-fat Diet Induces a Loss of Midbrain Dopaminergic Neuronal Function That Underlies Motor Abnormalities. Exp Neurobiol 2017; 26:104-112. [PMID: 28442947 PMCID: PMC5403908 DOI: 10.5607/en.2017.26.2.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Movement defects in obesity are associated with peripheral muscle defects, arthritis, and dysfunction of motor control by the brain. Although movement functionality is negatively correlated with obesity, the brain regions and downstream signaling pathways associated with movement defects in obesity are unclear. A dopaminergic neuronal pathway from the substantia nigra (SN) to the striatum is responsible for regulating grip strength and motor initiation through tyrosine hydroxylase (TH) activity-dependent dopamine release. We found that mice fed a high-fat diet exhibited decreased movement in open-field tests and an increase in missteps in a vertical grid test compared with normally fed mice. This motor abnormality was associated with a significant reduction of TH in the SN and striatum. We further found that phosphorylation of c-Jun N-terminal kinase (JNK), which modulates TH expression in the SN and striatum, was decreased under excess-energy conditions. Our findings suggest that high calorie intake impairs motor function through JNK-dependent dysregulation of TH in the SN and striatum.
Collapse
Affiliation(s)
- Yunseon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jeongsu Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Ilhwan Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woosuk Chung
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
12
|
Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 2015; 93:442-51. [PMID: 25643616 PMCID: PMC7165929 DOI: 10.1038/icb.2014.121] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
A protease inhibitor, cystatin C (Cst C), is a secreted cysteine protease inhibitor abundantly expressed in body fluids. Clinically, it is mostly used to measure glomerular filtration rate as a marker for kidney function due to its relatively small molecular weight and easy detection. However, recent findings suggest that Cst C is regulated at both transcriptional and post‐translational levels, and Cst C production from haematopoietic cell lineages contributes significantly to the systematic pools of Cst C. Furthermore, Cst C is directly linked to many pathologic processes through various mechanisms. Thus fluctuation of Cst C levels might have serious clinical implications rather than a mere reflection of kidney functions. Here, we summarize the pathophysiological roles of Cst C dependent and independent on its inhibition of proteases, outline its change of expression by various stimuli, and elucidate the regulatory mechanisms to control this disease‐related protease inhibitor. Finally, we discuss the clinical implications of these findings for translational gains.
Collapse
|
13
|
Li X, Zhang G, An G, Liu S, Lai Y. Expression, purification and anticancer analysis of GST-tagged human perforin and granzyme B proteins in human laryngeal cancer Hep-2 cells. Protein Expr Purif 2013; 95:38-43. [PMID: 24291445 DOI: 10.1016/j.pep.2013.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022]
Abstract
Granzyme B and perforin, two major effector molecules in the granule-mediated cytolytic pathway, are thought to be involved in suppression of tumor progression. In this study, the pGEX-4T-1 expression vector was used to express full-length human perforin or granzyme B as a GST-tagged fusion protein in Escherichia coli (E. coli). GST-tagged proteins were induced with IPTG and purified by GSTrap 4B columns. Purified fusion proteins migrated at the predicted molecular mass on SDS-PAGE and were recognized by specific antibodies. Moreover, the fusion proteins can induce apoptosis and directly inhibit the growth of human laryngeal cancer Hep-2 cells in vitro. These results suggest that active perforin and granzyme B fusion proteins can be produced in E. coli and exhibit anticancer potential in laryngeal cancer cells.
Collapse
Affiliation(s)
- Xiuying Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, 601 Huangpudadao Xi Road, Guangzhou 510632, China
| | - Guang Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, 601 Huangpudadao Xi Road, Guangzhou 510632, China
| | - Guijie An
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, 601 Huangpudadao Xi Road, Guangzhou 510632, China
| | - Sha Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, 601 Huangpudadao Xi Road, Guangzhou 510632, China
| | - Yandong Lai
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, 195 Dongfeng Xi Road, Guangzhou 510182, China.
| |
Collapse
|
14
|
Sim S, Ramirez JL, Dimopoulos G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 2012; 8:e1002631. [PMID: 22479185 PMCID: PMC3315490 DOI: 10.1371/journal.ppat.1002631] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes--a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein--significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans.
Collapse
Affiliation(s)
- Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - José L. Ramirez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|