1
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
2
|
Pang L, Dunterman M, Guo S, Khan F, Liu Y, Taefi E, Bahrami A, Geula C, Hsu WH, Horbinski C, James CD, Chen P. Kunitz-type protease inhibitor TFPI2 remodels stemness and immunosuppressive tumor microenvironment in glioblastoma. Nat Immunol 2023; 24:1654-1670. [PMID: 37667051 PMCID: PMC10775912 DOI: 10.1038/s41590-023-01605-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/27/2023] [Indexed: 09/06/2023]
Abstract
Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Songlin Guo
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yang Liu
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erfan Taefi
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atousa Bahrami
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles David James
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90:104499. [PMID: 36870200 PMCID: PMC10009451 DOI: 10.1016/j.ebiom.2023.104499] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.
Collapse
|
4
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
5
|
Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, Zhao J, Li T, Bai Z, Wu J, Huang Y, Lv L, Zhao H, Cai H, Huang S, Diao X, Chen Y, Gong W, Xia Q, Man J, Chen L, Dai G, Zhou T. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer 2022; 127:612-623. [PMID: 35501390 PMCID: PMC9381593 DOI: 10.1038/s41416-022-01831-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of recurrence and metastasis of hepatocellular carcinoma (HCC) is complex and challenging. Methyl-CpG binding domain protein 3 (MBD3) is a key epigenetic regulator involved in the progression and metastasis of several cancers, but its role in HCC remains unknown. Methods MBD3 expression in HCC was detected by immunohistochemistry and its association with clinicopathological features and patient’s survival was analysed. The effects of MBD3 on hepatoma cells growth and metastasis were investigated, and the mechanism was explored. Results MBD3 is significantly highly expressed in HCC, associated with the advanced tumour stage and poor prognosis in HCC patients. MBD3 promotes the growth, angiogenesis and metastasis of HCC cells by inhibiting the tumour suppressor tissue factor pathway inhibitor 2 (TFPI2). Mechanistically, MBD3 can inhibit the TFPI2 transcription via the Nucleosome Remodeling and Deacetylase (NuRD) complex-mediated deacetylation, thus reactivating the activity of matrix metalloproteinases (MMPs) and PI3K/AKT signaling pathway, leading to the progression and metastasis of HCC Conclusions Our results unravel the novel regulatory function of MBD3 in the progression and metastasis of HCC and identify MBD3 as an independent unfavourable prognostic factor for HCC patients, suggesting its potential as a promising therapeutic target as well.
Collapse
Affiliation(s)
- Weiwei Yan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China.,Department of Radiation Oncology, 5th Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China.,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China
| | - Lin Gong
- Department of Hepatobiliary Surgery, PLA navy No. 971 Hospital, 266071, Qingdao, Shandong Province, China
| | - Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Wanjin Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Zenglin Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Jiangman Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Zhaofang Bai
- Department of Liver Disease, 5th Medical Center of Chinese PLA General Hospital, 100039, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Yan Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Luye Lv
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Haixin Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Hong Cai
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Shaoyi Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Xinwei Diao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Weili Gong
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Qing Xia
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Liang Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China. .,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China.
| | - Guanghai Dai
- Department of Oncology, 5th Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China. .,Nanhu Laboratory, 314002, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
6
|
Le Reste P, Pilalis E, Aubry M, McMahon M, Cano L, Etcheverry A, Chatziioannou A, Chevet E, Fautrel A. Integration of Raman spectra with transcriptome data in glioblastoma multiforme defines tumour subtypes and predicts patient outcome. J Cell Mol Med 2021; 25:10846-10856. [PMID: 34773369 PMCID: PMC8642677 DOI: 10.1111/jcmm.16902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Raman spectroscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra (RS) and transcriptomic profiles of glioblastoma can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional RS and transcriptomes can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra and vice versa. From these analyses, we extract a minimal gene expression signature associated with specific RS profiles and predictive of disease outcome.
Collapse
Affiliation(s)
- Pierre‐Jean Le Reste
- Department of NeurosurgeryUniversity HospitalRennesFrance
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
| | | | - Marc Aubry
- REACT – Rennes Brain Cancer TeamRennesFrance
- IGDR CNRSUniversity of RennesRennesFrance
| | - Mari McMahon
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
- Centre de Lutte Contre le Cancer Eugene MarquisRennesFrance
| | - Luis Cano
- H2P2 PlatformUMS CNRS 3480 – INSERM 018University of RennesRennesFrance
| | - Amandine Etcheverry
- REACT – Rennes Brain Cancer TeamRennesFrance
- IGDR CNRSUniversity of RennesRennesFrance
| | | | - Eric Chevet
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
- Centre de Lutte Contre le Cancer Eugene MarquisRennesFrance
| | - Alain Fautrel
- H2P2 PlatformUMS CNRS 3480 – INSERM 018University of RennesRennesFrance
| |
Collapse
|
7
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Luo W, Li X, Song Z, Zhu X, Zhao S. Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in glioblastoma by epigenetically silencing TFPI2 through EZH2 and LSD1. Aging (Albany NY) 2020; 11:3811-3823. [PMID: 31186379 PMCID: PMC6594811 DOI: 10.18632/aging.102018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (LncRNAs) have attracted increasing attention for their important regulation functions in a wide range of malignancies. AGAP2-AS1 was demonstrated as an oncogene in several cancers, including glioblastoma (GBM). However, the biological mechanisms of AGAP2-AS1 in GBM progression are still unclear. Herein, we found that AGAP2-AS1 expression was up-regulated in GBM tissues and cells. High AGAP2-AS1 expression may predict a poor prognosis in GBM patients. Functionally, silencing of AGAP2-AS1 suppressed proliferation and invasion, while enhanced apoptosis in GBM cells. Overexpression of AGAP2-AS1 promoted cell proliferation and invasion. Mechanically, AGAP2-AS1 could interact with EZH2 and LSD1, recruiting them to TFPI2 promoter region to inhibit its transcription. Moreover, TFPI2 overexpression decreased proliferation and invasion, and facilitated apoptosis in GBM cells. Furthermore, the tumor-suppressive effects mediated by AGAP2-AS1 knockdown were greatly reversed following down-regulation of TFPI2. Also, suppression of AGAP2-AS1 impaired tumor growth of GBM in vivo. In summary, AGAP2-AS1 exerts oncogenic functions in GBM by epigenetically silencing TFPI2 expression through binding to EZH2 and LSD1, illuminating a novel mechanism of AGAP2-AS1 in GBM development and furnishing a prospective therapeutic method to combat GBM.
Collapse
Affiliation(s)
- Wenzheng Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Zhenyu Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| | - Shanshan Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, P.R. China
| |
Collapse
|
9
|
Huang CW, Chang YH, Lee HH, Wu JY, Huang JX, Chung YH, Hsu ST, Chow LP, Wei KC, Huang FT. Irisin, an exercise myokine, potently suppresses tumor proliferation, invasion, and growth in glioma. FASEB J 2020; 34:9678-9693. [PMID: 32469121 DOI: 10.1096/fj.202000573rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Glioblastoma multiforme is the most common and aggressive glial tumor with poor prognosis. Importantly, effective treatment options for glioblastoma are unmet needs. Obesity and low physical activity have been linked with a high risk of cancer, and exercise is related to delayed cancer development and progression. Epidemiological studies have revealed a correlation between exercise and the survival rate of patients with glioblastoma. Nevertheless, the mechanisms by which exercise exerts its anticancer effects in glioblastoma remain unclear. Here, we found that irisin, an exercise-induced myokine, induced G2 /M cell cycle arrest and increased p21 levels in glioblastoma cells, leading to the inhibition of cell proliferation. In addition, irisin inhibited glioblastoma cell invasion by upregulating TFPI-2 and even reversed the aggressive tumor phenotype promoted by co-cultivation with cancer-associated adipocytes. Furthermore, irisin retarded xenograft glioblastoma tumor growth, and radiolabeled irisin demonstrated specific tumor-targeting capability in vivo. Therefore, this study identified one potential molecular mechanism by which exercise prevents cancer progression via irisin. Intriguingly, irisin has the potential to be developed as a molecular imaging and therapeutic anticancer agent.
Collapse
Affiliation(s)
- Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Hsuan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Hung Lee
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jing-Yi Wu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jia-Xing Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ting Hsu
- Center for Advanced Molecular Imaging and Translation (CAMIT), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
11
|
Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma. Cell Death Dis 2018; 9:1139. [PMID: 30442884 PMCID: PMC6237774 DOI: 10.1038/s41419-018-1183-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Temozolomide (TMZ) and radiation therapy combination for glioblastoma (GB) patients has been considered as the most effective therapy after surgical procedure. However, the overall clinical prognosis remains unsatisfactory due to intrinsic or developing resistance to TMZ. Recently, increasing evidence suggested that long noncoding RNAs (lncRNAs) play a critical role in various biological processes of tumors, and have been implicated in resistance to various drugs. However, the role of lncRNAs in TMZ resistance is poorly understood. Here, we found that the expression of lncRNA AC003092.1 was markedly decreased in TMZ resistance (TR) of GB cells (U87TR and U251TR) compared with their parental cells (U87 and U251). In patients with glioma, low levels of lncRNA AC003092.1 were correlated with increased TMZ resistance, higher risk of relapse, and poor prognosis. Overexpression of lncRNA AC003092.1 enhances TMZ sensitivity, facilitates cell apoptosis, and inhibits cell proliferation in TMZ-resistant GB cells. In addition, we identified that lncRNA AC003092.1 regulates TMZ chemosensitivity through TFPI-2-mediated cell apoptosis in vitro and in vivo. Mechanistically, further investigation revealed that lncRNA AC003092.1 regulates TFPI-2 expression through miR-195 in GB. Taken together, these data suggest that lncRNA AC003092.1 could inhibit the function of miR-195 by acting as an endogenous CeRNA, leading to increased expression of TFPI-2; this promotes TMZ-induced apoptosis, thereby making GB cells more sensitive to TMZ. Our findings indicate that overexpression of lncRNA AC003092.1 may be a potential therapy to overcome TMZ resistance in GB patients.
Collapse
|
12
|
Tran JR, Zheng X, Zheng Y. Lamin-B1 contributes to the proper timing of epicardial cell migration and function during embryonic heart development. Mol Biol Cell 2016; 27:3956-3963. [PMID: 27798236 PMCID: PMC5156536 DOI: 10.1091/mbc.e16-06-0462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/11/2022] Open
Abstract
Lamin proteins form a meshwork beneath the nuclear envelope and contribute to many different cellular processes. Mutations in lamins cause defective organogenesis in mouse models and human diseases that affect adipose tissue, brain, skeletal muscle, and the heart. In vitro cell culture studies have shown that lamins help maintain nuclear shape and facilitate cell migration. However, whether these defects contribute to improper tissue building in vivo requires further clarification. By studying the heart epicardium during embryogenesis, we show that Lb1-null epicardial cells exhibit in vivo and in vitro migratory delay. Transcriptome analyses of these cells suggest that Lb1 influences the expression of cell adhesion genes, which could affect cell migration during epicardium development. These epicardial defects are consistent with incomplete development of both vascular smooth muscle and compact myocardium at later developmental stages in Lb1-null embryos. Further, we found that Lb1-null epicardial cells have a delayed nuclear morphology change in vivo, suggesting that Lb1 facilitates morphological changes associated with migration. These findings suggest that Lb1 contributes to nuclear shape maintenance and migration of epicardial cells and highlights the use of these cells for in vitro and in vivo study of these classic cell biological phenomena.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
13
|
Hong J, Liu R, Chen L, Wu B, Yu J, Gao W, Pan J, Luo X, Shi H. Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice. Thromb Res 2015; 137:148-156. [PMID: 26603320 DOI: 10.1016/j.thromres.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor-2 (TFPI-2) regulates matrix metalloproteinases activation and extracellular matrix degradation. Over-expression of TFPI-2 enhances atherosclerotic plaque stability. The aim of this study is to investigate the effect of conditional knockout (KO) of TFPI-2 in vascular endothelial cells on the initiation and development of atherosclerotic plaque. METHODS A Cre/mloxP conditional KO system and Tek-Cre mice were used to generate offsprings with monoallelic deletion of the TFPI-2 gene in endothelial cells. TFPI-2(fl/+)/Tek-Cre mice, TFPI-2(fl/+) mice and ApoE(-/-) mice (n=6 for each group) were included. Arteries were obtained. HE, EVG and anti-α-SMA staining were used to examine the morphology of vessel and plaque. Protein expression and phosphorylation were detected by Western blot or immunohistochemistry. RESULTS TFPI-2(fl/+)/Tek-Cre mice were generated. TFPI-2 level decreased to 40.68% in TFPI-2(fl/+)/Tek-Cre group. TFPI-2(fl/+)/Tek-Cre developed plaques when no plaque was found in TFPI-2(fl/+) mice. Compared with ApoE(-/-) group, TFPI-2(fl/+)/Tek-Cre group has smaller plaque area, decreased lipid content and less buried fibrous cap layers. MMP-2 and MMP-9 in TFPI-2(fl/+)/Tek-Cre group was higher than in TFPI-2(fl/+)group. The phosphorylation of PPAR-α and PPAR-γ was decreased in TFPI-2(fl/+)/Tek-Cre group. CONCLUSIONS A novel mouse model is presented and can be used to investigate the role of TFPI-2 in the process of atherosclerosis. Our findings suggest that monoallelic deletion of TFPI-2 gene in vascular endothelial cells leads to significant downregulation of TFPI-2. TFPI-2 deficiency may accelerate initiation of atherosclerotic lesion in mice. Elevated MMP-2 and 9 and decreased phosphorylation of PPAR-α and PPAR-γ may contribute to this phenotype.
Collapse
Affiliation(s)
- Jin Hong
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Rongle Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Lewen Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Jia Yu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| |
Collapse
|
14
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
15
|
Cecchi F, Lih CJ, Lee YH, Walsh W, Rabe DC, Williams PM, Bottaro DP. Expression array analysis of the hepatocyte growth factor invasive program. Clin Exp Metastasis 2015; 32:659-76. [PMID: 26231668 DOI: 10.1007/s10585-015-9735-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/13/2015] [Indexed: 02/17/2023]
Abstract
Signaling by human hepatocyte growth factor (hHGF) via its cell surface receptor (MET) drives mitogenesis, motogenesis and morphogenesis in a wide spectrum of target cell types and embryologic, developmental and homeostatic contexts. Oncogenic pathway activation also contributes to tumorigenesis and cancer progression, including tumor angiogenesis and metastasis, in several prevalent malignancies. The HGF gene encodes full-length hHGF and two truncated isoforms known as NK1 and NK2. NK1 induces all three HGF activities at modestly reduced potency, whereas NK2 stimulates only motogenesis and enhances HGF-driven tumor metastasis in transgenic mice. Prior studies have shown that mouse HGF (mHGF) also binds with high affinity to human MET. Here we show that, like NK2, mHGF stimulates cell motility, invasion and spontaneous metastasis of PC3M human prostate adenocarcinoma cells in mice through human MET. To identify target genes and signaling pathways associated with motogenic and metastatic HGF signaling, i.e., the HGF invasive program, gene expression profiling was performed using PC3M cells treated with hHGF, NK2 or mHGF. Results obtained using Ingenuity Pathway Analysis software showed significant overlap with networks and pathways involved in cell movement and metastasis. Interrogating The Cancer Genome Atlas project also identified a subset of 23 gene expression changes in PC3M with a strong tendency for co-occurrence in prostate cancer patients that were associated with significantly decreased disease-free survival.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Chih-Jian Lih
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Young H Lee
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - William Walsh
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Daniel C Rabe
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA
| | - Paul M Williams
- Molecular Characterization and Clinical Assay Development Laboratory, Leidos Biomedical Research, Inc. and Frederick National Laboratory for Cancer Research, Frederick, MD, 21702-1201, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1501, USA. .,Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bldg 10 CRC Rm 2-3952, 10 Center Drive MSC 1107, Bethesda, MD, 20892-1107, USA.
| |
Collapse
|
16
|
Analysis of Gene Profiles in Glioma Cells Identifies Potential Genes, miRNAs, and Target Sites of Migratory Cells. TUMORI JOURNAL 2015; 101:542-8. [PMID: 25953448 DOI: 10.5301/tj.5000226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 11/20/2022]
Abstract
Aims To explore the potential molecular mechanisms involved in migratory glioma cells. Methods The gene expression profiles of GSE28167, employing human malignant glioma U251MG cells cultured on strictly aligned versus randomly oriented electrospun nanofibers of polycaprolactone, were downloaded from the Gene Expression Omnibus database. Gene differential expression analysis was carried out by the package of Gene Expression Omnibus query and limma in R language. The Gene Set Analysis Toolkit V2 was used for pathway analysis. Gene set enrichment analysis was used to screen for target sites of transcription factors, miRNA and small drug molecules. Results Totally 586 differentially expressed genes were identified and the differentially expressed genes were mainly enriched in the pathway of muscle cell TarBase, MAPK cascade, adipogenesis and epithelium TarBase. Thirty-two significant target sites of transcription factors, such as hsa_RTAAACA_V$FREAC2_01, were screened. The top 20 potential miRNAs including MIR-124A, MIR-34A and MIR-34C were screened for a constructing gene-miRNA interaction network. Small molecules that can inhibit the motility of glioma cells such as diclofenamide and valinomycin were mined. By integrating the regulatory relationships among transcription factors, miRNAs and differentially expressed genes, we found that 7 differentially expressed genes, including SOX4, ANKRD28 and CCND1, might play crucial roles in the migration of glioma cells. Conclusions The screened migration-associated genes, significant pathways, and small molecules give us new insight for the mechanism of migratory glioma cells. Interest in such genes as potential target genes in the treatment of glioblastoma justifies functional validation studies.
Collapse
|
17
|
Lai YH, He RY, Chou JL, Chan MWY, Li YF, Tai CK. Promoter hypermethylation and silencing of tissue factor pathway inhibitor-2 in oral squamous cell carcinoma. J Transl Med 2014; 12:237. [PMID: 25179542 PMCID: PMC4160550 DOI: 10.1186/s12967-014-0237-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
Background The treatment of oral squamous cell carcinoma (OSCC) following early detection is associated with good outcomes. Therefore, the survival and prognosis of OSCC patients could be hugely improved by identifying reliable biomarkers for the early diagnosis of the disease. Our previous methylation microarray analysis results have suggested that the gene encoding tissue factor pathway inhibitor-2 (TFPI-2) is a potential clinical predictor as well as a key regulator involved in OSCC malignancy. Methods Methylation of the TFPI-2 promoter in oral tissue specimens was evaluated by bisulfite sequencing assay, quantitative methylation-specific PCR, and pyrosequencing assay. The differences in methylation levels among the groups were compared using the Mann–Whitney U test. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the discrimination ability for detecting OSCC. Cellular TFPI-2 expression was analyzed by quantitative reverse-transcription PCR before and after treatment with 5′-aza-2′-deoxycytidine and trichostatin A, to confirm whether TFPI-2 was epigenetically silenced in OSCC cells. We investigated whether TFPI-2 plays a role as a tumor suppressor by establishing TFPI-2-overexpressing OSCC cells and subjecting them to in vitro cellular proliferation, migration, and invasion assays, as well as an in vivo metastasis assay. Results TFPI-2 was hypermethylated in OSCC tissues versus normal oral tissues (P < 0.0001), with AUROC = 0.91, when using a pyrosequencing assay to quantify the methylation level. TFPI-2 silencing in OSCC was regulated by both DNA methylation and chromatin histone modification. Restoration of TFPI-2 counteracted the invasiveness of OSCC by inhibiting the enzymatic activity of matrix metalloproteinase-2, and consequently interfered with OSCC metastasis in vivo. Conclusions Our data suggest strongly that TFPI-2 is a down-regulated tumor suppressor gene in OSCC, probably involving epigenetic silencing mechanisms. The loss of TFPI-2 expression is a key event for oral tumorigenesis, especially in the process of tumor metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Fen Li
- Department of Life Science and Institutes of Molecular Biology and Biomedical Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
| | | |
Collapse
|
18
|
Das A, Chai JC, Jung KH, Das ND, Kang SC, Lee YS, Seo H, Chai YG. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells. Exp Cell Res 2014; 328:361-78. [PMID: 25193078 DOI: 10.1016/j.yexcr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/21/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Nando Dulal Das
- Clinical Research Centre, Inha University School of Medicine, Incheon 400-711, Republic of Korea.
| | - Sung Chul Kang
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Hyemyung Seo
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
19
|
Song Y, Gong K, Yan H, Hong W, Wang L, Wu Y, Li W, Li W, Cao Z. Sj7170, a unique dual-function peptide with a specific α-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom. J Biol Chem 2014; 289:11667-11680. [PMID: 24584937 DOI: 10.1074/jbc.m113.540419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators.
Collapse
Affiliation(s)
- Yu Song
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ke Gong
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong Yan
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Hong
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Le Wang
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
20
|
Berezin V, Walmod PS, Filippov M, Dityatev A. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases. PROGRESS IN BRAIN RESEARCH 2014; 214:353-88. [DOI: 10.1016/b978-0-444-63486-3.00015-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wang GJ, Wang YB, Li DIN, Li C, Deng BB. Expression of tissue factor pathway inhibitor-2 in gastric stromal tumor and its clinical significance. Exp Ther Med 2013; 7:513-517. [PMID: 24396436 PMCID: PMC3881048 DOI: 10.3892/etm.2013.1448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/02/2013] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to explore the expression of tissue factor pathway inhibitor-2 (TFPI-2) in gastric stromal tissue and its clinical significance. TFPI-2 expression was detected by immunohistochemical analysis, RT-PCR and western blotting in tumor, peritumoral and gastric normal tissues from 72 patients with gastric stromal tumors. The level of TFPI-2 expression was observed to be significantly higher in gastric normal tissue than in peritumoral tissue, and was significantly higher in peritumoral tissue than in tumor tissue (P<0.01). As the NIH grade increased, the level of TFPI-2 expression decreased (P<0.01). A low expression level of TFPI-2 was closely associated with invasion and metastasis of gastric stromal tumors. In conclusion, the level of TFPI-2 expression was higher in gastric normal tissue than in gastric stromal tumors. Low expression levels of TFPI-2 may be associated with invasion and metastasis of gastric stromal tumors.
Collapse
Affiliation(s)
- Gui-Jun Wang
- Department of General Surgery, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yu-Bin Wang
- Department of General Surgery, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - DI-Nuo Li
- Department of General Surgery, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chen Li
- Liaoning Province Key Laboratory of Medical Tissue Engineering, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Bei-Bei Deng
- Department of Gynecology, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
22
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
23
|
Lavergne M, Jourdan ML, Blechet C, Guyetant S, Pape AL, Heuze-Vourc'h N, Courty Y, Lerondel S, Sobilo J, Iochmann S, Reverdiau P. Beneficial role of overexpression of TFPI-2 on tumour progression in human small cell lung cancer. FEBS Open Bio 2013; 3:291-301. [PMID: 23905012 PMCID: PMC3722576 DOI: 10.1016/j.fob.2013.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a potent inhibitor of plasmin, a protease which is involved in tumour progression by activating (MMPs). This therefore makes TFPI-2 a potential inhibitor of invasiveness and the development of metastases. In this study, low levels of TFPI-2 expression were found in 65% of patients with small cell lung cancer (SCLC), the most aggressive type of lung cancer. To study the impact of TFPI-2 in tumour progression, TFPI-2 was overexpressed in NCI-H209 SCLC cells which were orthotopically implanted in nude mice. Investigations showed that TFPI-2 inhibited lung tumour growth. Such inhibition could be explained in vitro by a decrease in tumour cell viability, blockade of G1/S phase cell cycle transition and an increase in apoptosis shown in NCI-H209 cells expressing TFPI-2. We also demonstrated that TFPI-2 upregulation in NCI-H209 cells decreased MMP expression, particularly by downregulating MMP-1 and MMP-3. Moreover, TFPI-2 inhibited phosphorylation of the MAPK signalling pathway proteins involved in the induction of MMP transcripts, among which MMP-1 was predominant in SCLC tissues and was inversely expressed with TFPI-2 in 35% of cases. These results suggest that downregulation of TFPI-2 expression could favour the development of SCLC. The Tissue Factor Pathway Inhibitor-2 inhibits small cell lung cancer growth Monitoring of small cell lung cancer growth in a mouse orthotopic model by imaging Increasing information on the role of TFPI-2 in human lung tumour cells Increasing information on TFPI-2 and protease expression in human tissue samples
Collapse
Affiliation(s)
- Marion Lavergne
- EA 6305, Université François Rabelais de Tours, Tours F-37032, France ; Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, Tours F-37032, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jazirehi AR, Torres-Collado AX, Nazarian R. Research Highlights: Highlights from the latest articles in epigenomics. Epigenomics 2013. [DOI: 10.2217/epi.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Antoni X Torres-Collado
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ramin Nazarian
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Nigro CL, Wang H, McHugh A, Lattanzio L, Matin R, Harwood C, Syed N, Hatzimichael E, Briasoulis E, Merlano M, Evans A, Thompson A, Leigh I, Fleming C, Inman GJ, Proby C, Crook T. Methylated Tissue Factor Pathway Inhibitor 2 (TFPI2) DNA in Serum Is a Biomarker of Metastatic Melanoma. J Invest Dermatol 2013; 133:1278-85. [DOI: 10.1038/jid.2012.493] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Harter PN, Dützmann S, Drott U, Zachskorn C, Hattingen E, Capper D, Gessler F, Senft C, Seifert V, Plate KH, Kögel D, Mittelbronn M. Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model. Neuropathology 2013; 33:515-25. [PMID: 23384223 DOI: 10.1111/neup.12018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 12/25/2012] [Indexed: 11/27/2022]
Abstract
In vitro and descriptive studies of human tissue samples revealed the pro-coagulant glycoprotein tissue factor (TF) as a potent player in glioma cell infiltration that is activated by hypoxia and has also been shown to be upregulated by mutations of TP53 or PTEN. Here we present the morphological and genetic characterization of a novel glioblastoma in vivo model and provide evidence that treatment with an antibody targeting TF leads to reduced glioma cell invasiveness. Therefore, we established a murine xenograft treatment model by transplanting the angiogenic and diffusely infiltrating human glioma cell line MZ-18 with endogenous TF expression into nude mice brains and treating these mice with an intracranial osmotic pump system continuously infusing a monoclonal antibody against TF (mAb TF9-10H10). The human MZ-18 cell line harbors two TP53 mutations resulting in a strong nuclear accumulation of p53, thereby facilitating the unambiguous identification of tumor cells in the xenograft model. Intracranial application of TF9-10H10 significantly reduced invasion of MZ-18 cells compared to mock-treated control animals. The extent of activated blood vessels was also reduced upon anti-TF treatment. Thus, targeting the TF pathway might be a promising treatment strategy for future glioblastoma therapies, by affecting both invading tumor cells and tumor vasculature.
Collapse
Affiliation(s)
- Patrick N Harter
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jia Y, Yang Y, Brock MV, Cao B, Zhan Q, Li Y, Yu Y, Herman JG, Guo M. Methylation of TFPI-2 is an early event of esophageal carcinogenesis. Epigenomics 2012; 4:135-46. [PMID: 22449186 DOI: 10.2217/epi.12.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS To explore the epigenetic changes and the function of TFPI-2 in esophageal cancer. MATERIALS & METHODS Nine esophageal cancer cell lines, nine normal esophageal mucosa, 60 esophageal dysplasia and 106 advanced esophageal cancer samples were included in this study. TFPI-2 methylation was examined by methylation-specific PCR. TFPI-2 expression was evaluated by immunohistochemistry in tissue samples. The effect of TFPI-2 on proliferation, apoptosis, invasion and migration was analyzed by colony formation assay, western blot assay, transwell assay and flow cytometric analysis. RESULTS TFPI-2 expression was regulated by promoter region hypermethylation in human esophageal cancer cell lines, and TFPI-2 expression is inversely correlated with methylation in primary cancer. Methylation was found in 28.2, 33.3 and 33.3% of grade 1, 2 and 3 esophageal dysplasia, and 67% of primary esophageal cancer, but no methylation was found in normal mucosa. Methylation is significantly related to tumor differentiation. Inhibition of invasion, migration, colony formation and proliferation, and induction of apoptosis occurred with the restoration of TFPI-2 expression in the KYSE70 cell line. CONCLUSION TFPI-2 is frequently methylated in esophageal cancer with a progression tendency. TFPI-2 is a potential tumor suppressor in esophageal cancer.
Collapse
Affiliation(s)
- Yan Jia
- Department of Gastroenterology & Hepatology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Q, Zhang Y, Wang SZ, Wang N, Jiang WG, Ji YH, Zhang SL. Reduced expression of tissue factor pathway inhibitor-2 contributes to apoptosis and angiogenesis in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:1. [PMID: 22208663 PMCID: PMC3314549 DOI: 10.1186/1756-9966-31-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/02/2012] [Indexed: 12/23/2022]
Abstract
Background Tissue factor pathway inhibitor-2 (TFPI-2) is an extracellular matrix associated broad-spectrum Kunitz-type serine proteinase inhibitor. Recently, down regulation of TFPI-2 was suggested to be involved in tumor invasion and metastasis in some cancers. Methods This study involved 12 normal cervical squamous epithelia, 48 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer. The expression of TFPI-2, Ki-67 and vascular endothelial growth factor (VEGF) were investigated by immunohistochemistry staining. The apoptolic index(AI) was determined with an in situ end-labeling assay(TUNEL). And the marker of CD34 staining was used as an indicator of microvessel density (MVD). Results TFPI-2 expression has a decreasing trend with the progression of cervical cancer and was significantly correlated with FIGO stage, lymph node metastasis and HPV infection. In addition, there were significant positive correlations between the grading of TFPI-2 expression and AI(P = 0.004). In contrast, the expression of TFPI-2 and VEGF or MVD was negatively correlated (both p < 0.001). However, we did not establish any significant correlation between Ki-67 and TFPI-2 expression in cervical cancer. Conclusions The results suggested that the expression of TFPI-2 had a decreasing trend with tumor progression of cervical cancer. There was a close association between the expression of TFPI-2 and tumor cell apoptosis and angiogenesis in patients with cervical cancer. TFPI-2 may play an inhibitive role during the development of cervical cancer.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Begley GS, Horvath AR, Taylor JC, Higgins CF. Cytoplasmic domains of the transporter associated with antigen processing and P-glycoprotein interact with subunits of the proteasome. Mol Immunol 2005; 345:124-31. [PMID: 15488952 DOI: 10.1016/j.canlet.2013.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023]
Abstract
The proteasome is a multi-protein complex that degrades cellular proteins as well as foreign proteins destined for antigen presentation. The latter function involves the immunoproteasome, in which several proteasome subunits are exchanged for gamma-interferon-induced subunits. The transporter associated with antigen processing (TAP) transports proteasome-generated peptides across the membrane of the endoplasmic reticulum (ER) prior to presentation on the plasma membrane. We demonstrate interactions between the cytoplasmic domains of TAP subunits and subunits of both the proteasome and the immunoproteasome, suggesting direct targeting of antigenic peptides to the ER via a TAP-proteasome association. We also show interaction between one of the cytoplasmic domains of P-glycoprotein and a proteasome subunit, but not the corresponding immunoproteasome subunit, suggesting a possible role for P-glycoprotein in the transport of proteasome-derived peptides.
Collapse
Affiliation(s)
- Gail S Begley
- Biology Department, Northeastern University, 330 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|