1
|
Pan Q, Wang Y, Tian R, Wen Q, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Sphingosine-1 phosphate receptor 1 contributes to central sensitization in recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 2022; 23:25. [PMID: 35144528 PMCID: PMC8903593 DOI: 10.1186/s10194-022-01397-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.
Collapse
Affiliation(s)
- Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
3
|
Kittaka H, DeBrecht J, Mishra SK. Differential contribution of sensory transient receptor potential channels in response to the bioactive lipid sphingosine-1-phosphate. Mol Pain 2021; 16:1744806920903515. [PMID: 32089077 PMCID: PMC7040933 DOI: 10.1177/1744806920903515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hiroki Kittaka
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jennifer DeBrecht
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,The WM Keck Behavioral Center, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
5
|
Bioinformatics Analysis of Genes and Mechanisms in Postherpetic Neuralgia. Pain Res Manag 2020; 2020:1380504. [PMID: 33029266 PMCID: PMC7532419 DOI: 10.1155/2020/1380504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 01/03/2023]
Abstract
Objective Elderly patients are prone to postherpetic neuralgia (PHN), which may cause anxiety, depression, and sleep disorders and reduce quality of life. As a result, the life quality of patients was seriously reduced. However, the pathogenesis of PHN has not been fully elucidated, and current treatments remain inadequate. Therefore, it is important to explore the molecular mechanism of PHN. Methods We analyzed the GSE64345 dataset, which includes gene expression from the ipsilateral dorsal root ganglia (DRG) of PHN model rats. Differentially expressed genes (DEGs) were identified and analyzed by Gene Ontology. Protein-protein interaction (PPI) network was constructed. The miRNA associated with neuropathic pain and inflammation was found in miRNet. Hub genes were identified and analyzed in Comparative Toxicogenomics Database (CTD). miRNA-mRNA networks associated with PHN were constructed. Results A total of 116 genes were up-regulated in the DRG of PHN rats, and 135 genes were down-regulated. Functional analysis revealed that variations were predominantly enriched for genes involved in neuroactive ligand-receptor interactions, the Jak-STAT signaling pathway, and calcium channel activity. Eleven and thirty-one miRNAs associated with neuropathic pain and inflammation, respectively, were found. Eight hub genes (S1PR1, OPRM1, PDYN, CXCL3, S1PR5, TBX5, TNNI3, MYL7, PTGDR2, and FBXW2) associated with PHN were identified. Conclusions Bioinformatics analysis is a useful tool to explore the mechanism and pathogenesis of PHN. The identified hub genes may participate in the onset and development of PHN and serve as therapeutic targets.
Collapse
|
6
|
Li J, Zhu Y, Ma Z, Liu Y, Sun Z, Wu Y. miR-140 ameliorates neuropathic pain in CCI rats by targeting S1PR1. J Recept Signal Transduct Res 2020; 41:401-407. [PMID: 32924718 DOI: 10.1080/10799893.2020.1818091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajia Li
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Yunbo Zhu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Zheng Ma
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde City, Hebei Province, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, China
| | - Zhipeng Sun
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, China
| | - Yinghui Wu
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
7
|
Doyle TM, Janes K, Chen Z, Grace PM, Esposito E, Cuzzocrea S, Largent-Milnes TM, Neumann WL, Watkins LR, Spiegel S, Vanderah TW, Salvemini D. Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain 2020; 161:2107-2118. [PMID: 32301840 PMCID: PMC7554181 DOI: 10.1097/j.pain.0000000000001888] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
ABSTRACT Morphine-induced alterations in sphingolipid metabolism in the spinal cord and increased formation of the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) have been implicated in the development of morphine-induced hyperalgesia (OIH; increased pain sensitivity) and antinociceptive tolerance. These adverse effects hamper opioid use for treating chronic pain and contribute to dependence and abuse. S1P produces distinct effects through 5 G-protein-coupled receptors (S1PR1-5) and several intracellular targets. How S1P exerts its effects in response to morphine remains unknown. Here, we report that S1P contributes to the development of morphine-induced hyperalgesia and tolerance through S1P receptor subtype 1 (S1PR1) signaling in uninjured male and female rodents, which can be blocked by targeting S1PR1 with S1PR1 antagonists or RNA silencing. In mouse neuropathic pain models, S1PR1 antagonists blocked the development of tolerance to the antiallodynic effects of morphine without altering morphine pharmacokinetics and prevented prolonged morphine-induced neuropathic pain. Targeting S1PR1 reduced morphine-induced neuroinflammatory events in the dorsal horn of the spinal cord: increased glial marker expression, mitogen-activated protein kinase p38 and nuclear factor κB activation, and increased inflammatory cytokine expression, such as interleukin-1β, a cytokine central in the modulation of opioid-induced neural plasticity. Our results identify S1PR1 as a critical path for S1P signaling in response to sustained morphine and reveal downstream neuroinflammatory pathways impacted by S1PR1 activation. Our data support investigating S1PR1 antagonists as a clinical approach to mitigate opioid-induced adverse effects and repurposing the functional S1PR1 antagonist FTY720, which is FDA-approved for multiple sclerosis, as an opioid adjunct.
Collapse
Affiliation(s)
- Timothy M. Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Kali Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Peter M. Grace
- Department of Symptom Research University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina 98122 Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina 98122 Italy
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - William L. Neumann
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, 200 University Park, Edwardsville, IL 62026, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University; School of Medicine, 1101 E Marshall St, Richmond, VA 23298, USA
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|
8
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
9
|
Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett 2019; 712:134483. [PMID: 31494223 DOI: 10.1016/j.neulet.2019.134483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a signaling molecule induced under stress such as energy insufficiency and ischemic/hypoxic conditions. Adenosine controls multiple physiological and pathological cellular and tissue function by activation of four G protein-coupled receptors (GPCR). Functional role of adenosine signaling in acute pain has been widely studied. However, the role of adenosine signaling in chronic pain is poorly understood. At acute levels, adenosine can be beneficial to anti-pain whereas a sustained elevation of adenosine can be detrimental to promote chronic pain. In recent years, extensive progress has been made to define the role of adenosine signaling in chronic pain and to dissect molecular new insight underlying the development of chronic pain. In this review, we summarize the differential role of adenosine signaling cascade in acute and chronic pain with a major focus on recent studies revealing adenosine ADORA2B receptor activation in the pathology of chronic pain. We further provide a therapeutic outlook of how multiple adenosine signaling components can be useful to treat chronic pain.
Collapse
Affiliation(s)
- Morayo G Adebiyi
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jeanne Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
10
|
Role of Na V1.6 and Na Vβ4 Sodium Channel Subunits in a Rat Model of Low Back Pain Induced by Compression of the Dorsal Root Ganglia. Neuroscience 2019; 402:51-65. [PMID: 30699332 DOI: 10.1016/j.neuroscience.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023]
Abstract
Low back pain is a common cause of chronic pain and disability. It is modeled in rodents by chronically compressing the lumbar dorsal root ganglia (DRG) with small metal rods, resulting in ipsilateral mechanical and cold hypersensitivity, and hyperexcitability of sensory neurons. Sodium channels are implicated in this hyperexcitability, but the responsible isoforms are unknown. In this study, we used siRNA-mediated knockdown of the pore-forming NaV1.6 and regulatory NaVβ4 sodium channel isoforms that have been previously implicated in a different model of low back pain caused by locally inflaming the L5 DRG. Knockdown of either subunit markedly reduced spontaneous pain and mechanical and cold hypersensitivity induced by DRG compression, and reduced spontaneous activity and hyperexcitability of sensory neurons with action potentials <1.5 msec (predominately cells with myelinated axons, based on conduction velocities measured in a subset of cells) 4 days after DRG compression. These results were similar to those previously obtained in the DRG inflammation model and some neuropathic pain models, in which sensory neurons other than nociceptors seem to play key roles. The cytokine profiles induced by DRG compression and DRG inflammation were also very similar, with upregulation of several type 1 pro-inflammatory cytokines and downregulation of type 2 anti-inflammatory cytokines. Surprisingly, the cytokine profile was largely unaffected by NaVβ4 knockdown in either model. The NaV1.6 channel, and the NaVβ4 subunit that can regulate NaV1.6 to enhance repetitive firing, play key roles in both models of low back pain; targeting the abnormal spontaneous activity they generate may have therapeutic value.
Collapse
|
11
|
Ibrahim SIA, Xie W, Strong JA, Tonello R, Berta T, Zhang JM. Mineralocorticoid Antagonist Improves Glucocorticoid Receptor Signaling and Dexamethasone Analgesia in an Animal Model of Low Back Pain. Front Cell Neurosci 2018; 12:453. [PMID: 30524245 PMCID: PMC6262081 DOI: 10.3389/fncel.2018.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Low back pain, a leading cause of disability, is commonly treated by epidural steroid injections that target the anti-inflammatory glucocorticoid receptor (GR). However, their efficacy has been controversial. All currently used epidural steroids also activate the pro-inflammatory mineralocorticoid receptor (MR) with significant potency. Local inflammation of the dorsal root ganglia (DRG), a rat model of low back pain, was used. This model causes static and dynamic mechanical allodynia, cold allodynia and guarding behavior (a measure of spontaneous pain), and activates the MR, with pro-nociceptive effects. In this study, effects of local Dexamethasone (DEX; a glucocorticoid used in epidural injections), and eplerenone (EPL; a second generation, more selective MR antagonist) applied to the DRG at the time of inflammation were examined. Mechanical and spontaneous pain behaviors were more effectively reduced by the combination of DEX and EPL than by either alone. The combination of steroids was particularly more effective than DEX alone or the model alone (3-fold improvement for mechanical allodynia) at later times (day 14). Immunohistochemical analysis of the GR in the DRG showed that the receptor was expressed in neurons of all size classes, and in non-neuronal cells including satellite glia. The GR immunoreactivity was downregulated by DRG inflammation (48%) starting on day 1, consistent with the reduction of GR (57%) observed by Western blot, when compared to control animals. On day 14, the combination of DEX and EPL resulted in rescue of GR immunoreactivity that was not seen with DEX alone, and was more effective in reducing a marker for satellite glia activation/neuroinflammation. The results suggest that EPL may enhance the effectiveness of clinically used epidural steroid injections, in part by enhancing the availability of the GR. Thus, the glucocorticoid-mineralocorticoid interactions may limit the effectiveness of epidural steroids through the regulation of the GR in the DRG.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Sim-Selley LJ, Wilkerson JL, Burston JJ, Hauser KF, McLane V, Welch SP, Lichtman AH, Selley DE. Differential Tolerance to FTY720-Induced Antinociception in Acute Thermal and Nerve Injury Mouse Pain Models: Role of Sphingosine-1-Phosphate Receptor Adaptation. J Pharmacol Exp Ther 2018; 366:509-518. [PMID: 29945931 PMCID: PMC6090176 DOI: 10.1124/jpet.118.248260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 11/22/2022] Open
Abstract
The immunomodulatory prodrug 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), which acts as an agonist for sphingosine-1-phosphate (S1P) receptors (S1PR) when phosphorylated, is proposed as a novel pain therapeutic. In this study, we assessed FTY720-mediated antinociception in the radiant heat tail-flick test and in the chronic constriction injury (CCI) model of neuropathic pain in mice. FTY720 produced antinociception and antiallodynia, respectively, and these effects were dose-dependent and mimicked by the S1PR1-selective agonist CYM-5442. Repeated administration of FTY720 for 1 week produced tolerance to acute thermal antinociception, but not to antiallodynia in the CCI model. S1PR-stimulated [35S]GTPγS autoradiography revealed apparent desensitization of G protein activation by S1P or the S1PR1 agonist 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2,4-oxadiazole (SEW-2871) throughout the brain. Similar results were seen in spinal cord membranes, whereby the Emax value of S1PR-stimulated [35S]GTPγS binding was greatly reduced in repeated FTY720-treated mice. These results suggest that S1PR1 is a primary target of FTY720 in alleviating both acute thermal nociception and chronic neuropathic nociception. Furthermore, the finding that tolerance develops to antinociception in the tail-flick test but not in chronic neuropathic pain suggests a differential mechanism of FTY720 action between these models. The observation that repeated FTY720 administration led to desensitized S1PR1 signaling throughout the central nervous system suggests the possibility that S1PR1 activation drives the acute thermal antinociceptive effects, whereas S1PR1 desensitization mediates the following: 1) tolerance to thermal antinociceptive actions of FTY720 and 2) the persistent antiallodynic effects of FTY720 in neuropathic pain by producing functional antagonism of pronociceptive S1PR1 signaling.
Collapse
Affiliation(s)
- Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - James J Burston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Virginia McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Sandra P Welch
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
13
|
Cavichioli FJ, Bernal GNB, Holzmann I, Klein JB, Escarcena R, Del Olmo E, San Feliciano A, Cechinel Filho V, Quintão NLM. Anti-hyperalgesic effects of two sphingosine derivatives in different acute and chronic models of hyperalgesia in mice. Pharmacol Rep 2018; 70:753-759. [PMID: 29936362 DOI: 10.1016/j.pharep.2018.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND The study evaluated the effects of two sphingosine derivatives N-(2-tert-butoxycarbamylhexadecyl)glutaramide (AA) and N-(1-benzyloxyhexadec-2-yl)glutaramide (OA) in different models of hypersensitivity in mice. METHODS Male Swiss mice were orally pre-treated with AA or OA (0.3-3mg/kg). After 1h, they received λ-carrageenan (300μg/paw), lipopolysaccharide (LPS; 100ng/paw), bradykinin (BK; 500ng/paw) or prostaglandin E2 (PGE2; 0.1nmol/paw) or epinephrine (100ng/paw), and the mechanical withdrawal thresholds were evaluated using von Frey filament (0.6g) at different time points. The effect of the compounds against inflammatory and neuropathic pain was also evaluated using complete Freund's adjuvant (CFA), or by performing partial sciatic nerve ligation (PSNL). RESULTS Animals pre-treated with AA and OA reduced hypersensitivity induced by carrageenan, LPS and BK, and modest inhibition of PGE2-induced hypersensitivity and carrageenan-induced paw oedema were observed in mice treated with OA. Though the partial effect presented by AA and OA, when dosed once a day, both compounds were able to significantly reduce the persistent inflammatory and neuropathic pain induced by CFA and PSNL, respectively. CONCLUSION These results demonstrate that the sphingosine derivatives AA and OA present important anti-hypersensitive effects, suggesting a possible interaction with the kinin signalling pathway. This may represent an interesting tool for the management of acute and chronic pain, with good bioavailability and safety.
Collapse
Affiliation(s)
| | - Graylin N B Bernal
- Biomedicine Course, Universidade do Vale do Itajaí, Santa Catarina, Brazil
| | - Iandra Holzmann
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Santa Catarina, Brazil
| | - Juliana Bagatini Klein
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Santa Catarina, Brazil
| | - Ricardo Escarcena
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Esther Del Olmo
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Arturo San Feliciano
- Departament of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Valdir Cechinel Filho
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Santa Catarina, Brazil; Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí, Santa Catarina, Brazil
| | - Nara L M Quintão
- Biomedicine Course, Universidade do Vale do Itajaí, Santa Catarina, Brazil; Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
14
|
Questions and perspectives on involvement of S1PR1 in cancer-induced bone pain and neuroinflammation. Pain 2018; 159:999-1000. [PMID: 29672456 DOI: 10.1097/j.pain.0000000000001168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
16
|
Active Nerve Regeneration with Failed Target Reinnervation Drives Persistent Neuropathic Pain. eNeuro 2017; 4:eN-NWR-0008-17. [PMID: 28197545 PMCID: PMC5290455 DOI: 10.1523/eneuro.0008-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerves can regenerate and, when injured, may cause neuropathic pain. We propose that the active regeneration process plays a pivotal role in the maintenance of neuropathic pain. In one commonly used rodent neuropathic pain model, pronounced pain behaviors follow ligation and cutting of the L5 spinal nerve. We found that the injured nerve regenerates into the sciatic nerve and functionally reinnervates target tissues: the regenerated nerve conducts electrical signals, mechanical responses, and tracers between the leg/hindpaw and axotomized sensory ganglion. The regenerating nerve is the primary source of abnormal spontaneous activity detected in vivo. Disrupting the regeneration inhibited pain. First, semaphorin 3A, an inhibitory axonal guidance molecule, reduced functional regeneration, spontaneous activity, and pain behaviors when applied to the injury site in vivo. Second, knockdown of the upregulated growth-associated protein 43 (GAP43) with siRNA injected into the axotomized sensory ganglion reduced pain behaviors. We next examined the spared nerve injury model, in which pain behaviors are essentially permanent. The regeneration resulted in tangled GAP43-positive neuromas at the nerve injury site without target reinnervation. Perfusing the nerve stump with semaphorin 3A, but not removing the tangled fibers, prevented or reversed pain behaviors. This effect far outlasted the semaphorin 3A perfusion. Hence, in this model the long-lasting chronic pain may reflect the anatomical inability of regenerating nerves to successfully reinnervate target tissues, resulting in an ongoing futile regeneration process. We propose that specifically targeting the regeneration process may provide effective long-lasting pain relief in patients when functional reinnervation becomes impossible.
Collapse
|
17
|
Upregulation of the sodium channel NaVβ4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation. Pain 2017; 157:879-891. [PMID: 26785322 DOI: 10.1097/j.pain.0000000000000453] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
High-frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all isoforms in adult DRG, NaV1.6 is the main carrier of tetrodotoxin-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons, the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA-mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRG showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression, and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch-clamp recordings of tetrodotoxin-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current, effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6.
Collapse
|
18
|
Nagy V, Cole T, Van Campenhout C, Khoung TM, Leung C, Vermeiren S, Novatchkova M, Wenzel D, Cikes D, Polyansky AA, Kozieradzki I, Meixner A, Bellefroid EJ, Neely GG, Penninger JM. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. Cell Cycle 2016; 14:1799-808. [PMID: 25891934 DOI: 10.1080/15384101.2015.1036209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.
Collapse
Key Words
- BSA, bovine serum albumin
- Brn3d, brain 3d
- CGNL1, cyclin L1
- ChIP, chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DDK, DYKDDDDK epitope
- Drgx, dorsal root ganglia homeobox
- ECL, enhanced chemiluminescence
- En1, engrailed-1
- FDR, false discovery rate
- FPKM, fragments per kilobase exon
- GAPDH, glyceraldehyde 3-phospate dehydrogenase
- GEO, gene expression omnibus
- GFP, green fluorescent protein
- HEK293, human embryonic kidney cell 293
- HRP, horseraddish peroxidase
- HSAN, hereditary and sensory autonomic neuropathy
- Hamlet
- Hmx3, H6 family homeobox 3
- IL1R1, interleukin 1 receptor type 1
- MO, morpholino oligonucleotide
- NBT/BCIP, nitro blue tetrazolium / 5-bromo-4-chloro-3-indolyl-phosphate
- PBS, phosphate buffered saline
- PDB, protein data base
- PMID, pubmed identification.
- PRDM12
- PRDM12, PR homology domain-containing member 12
- RA, retinoic acid
- RT-qPCR, real-time quantitative polymerase chain reaction
- S1PR1, Sphi8ngosine-1-phosphate receptor 1
- SET, Su(var)3–9 and ‘Enhancer of zeste’
- Sncg, Synuclein Gamma (Breast Cancer-Specific Protein 1)
- TRH(DE), tryrotropin-releasing hormone degrading enzyme
- TRHDE
- TRHDE, tyrotropin-releasing hormone degrading enzyme
- Tlx3, T-cell leukemia homeobox 3
- nociception
- pCMV6, plasmid cytomegalovirus
- sensory neurons
Collapse
Affiliation(s)
- Vanja Nagy
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; UNSW Medicine, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barbosa C, Tan ZY, Wang R, Xie W, Strong JA, Patel RR, Vasko MR, Zhang JM, Cummins TR. Navβ4 regulates fast resurgent sodium currents and excitability in sensory neurons. Mol Pain 2015; 11:60. [PMID: 26408173 PMCID: PMC4582632 DOI: 10.1186/s12990-015-0063-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased electrical activity in peripheral sensory neurons including dorsal root ganglia (DRG) and trigeminal ganglia neurons is an important mechanism underlying pain. Voltage gated sodium channels (VGSC) contribute to the excitability of sensory neurons and are essential for the upstroke of action potentials. A unique type of VGSC current, resurgent current (INaR), generates an inward current at repolarizing voltages through an alternate mechanism of inactivation referred to as open-channel block. INaRs are proposed to enable high frequency firing and increased INaRs in sensory neurons are associated with pain pathologies. While Nav1.6 has been identified as the main carrier of fast INaR, our understanding of the mechanisms that contribute to INaR generation is limited. Specifically, the open-channel blocker in sensory neurons has not been identified. Previous studies suggest Navβ4 subunit mediates INaR in central nervous system neurons. The goal of this study was to determine whether Navβ4 regulates INaR in DRG sensory neurons. RESULTS Our immunocytochemistry studies show that Navβ4 expression is highly correlated with Nav1.6 expression predominantly in medium-large diameter rat DRG neurons. Navβ4 knockdown decreased endogenous fast INaR in medium-large diameter neurons as measured with whole-cell voltage clamp. Using a reduced expression system in DRG neurons, we isolated recombinant human Nav1.6 sodium currents in rat DRG neurons and found that overexpression of Navβ4 enhanced Nav1.6 INaR generation. By contrast neither overexpression of Navβ2 nor overexpression of a Navβ4-mutant, predicted to be an inactive form of Navβ4, enhanced Nav1.6 INaR generation. DRG neurons transfected with wild-type Navβ4 exhibited increased excitability with increases in both spontaneous activity and evoked activity. Thus, Navβ4 overexpression enhanced INaR and excitability, whereas knockdown or expression of mutant Navβ4 decreased INaR generation. CONCLUSION INaRs are associated with inherited and acquired pain disorders. However, our ability to selectively target and study this current has been hindered due to limited understanding of how it is generated in sensory neurons. This study identified Navβ4 as an important regulator of INaR and excitability in sensory neurons. As such, Navβ4 is a potential target for the manipulation of pain sensations.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Ruizhong Wang
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Reesha R Patel
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, 320 West 25th Street, NB-414F, Indianapolis, IN, 46202-2266, USA.
| |
Collapse
|
20
|
Healy LM, Michell-Robinson MA, Antel JP. Regulation of human glia by multiple sclerosis disease modifying therapies. Semin Immunopathol 2015; 37:639-49. [DOI: 10.1007/s00281-015-0514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
|
21
|
Weth D, Benetti C, Rauch C, Gstraunthaler G, Schmidt H, Geisslinger G, Sabbadini R, Proia RL, Kress M. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo. Front Neurosci 2015; 9:140. [PMID: 25954148 PMCID: PMC4406086 DOI: 10.3389/fnins.2015.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/04/2015] [Indexed: 11/19/2022] Open
Abstract
At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (10(5)/μl, 10(6)/μl, 10(7)/μl) and assessed in mice with different genetic backgrounds (WT, S1P1 (fl/fl), SNS-S1P1 (-/-), S1P3 (-/-)). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.
Collapse
Affiliation(s)
- Daniela Weth
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Camilla Benetti
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Caroline Rauch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Gerhard Gstraunthaler
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| | - Helmut Schmidt
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical PharmacologyFrankfurt, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical PharmacologyFrankfurt, Germany
| | | | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD, USA
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
22
|
Li C, Li JN, Kays J, Guerrero M, Nicol GD. Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3. J Neuroinflammation 2015; 12:70. [PMID: 25880547 PMCID: PMC4397880 DOI: 10.1186/s12974-015-0286-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts through a family of five G-protein-coupled receptors (S1PR1-5) and plays a key role in regulating the inflammatory response. Our previous studies demonstrated that rat sensory neurons express the mRNAs for all five S1PRs and that S1P increases neuronal excitability primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability. METHODS Isolated sensory neurons were treated with either short-interfering RNAs (siRNAs) or a variety of pharmacological agents targeted to S1PR1/R2/R3 to determine the role(s) of these receptors in regulating neuronal excitability. The excitability of isolated sensory neurons was assessed by using whole-cell patch-clamp recording to measure the capacity of these cells to fire action potentials (APs). RESULTS After siRNA treatment, exposure to S1P failed to augment the excitability. Pooled siRNA targeted to S1PR1 and R3 also blocked the enhanced excitability produced by S1P. Consistent with the siRNA results, pretreatment with W146 and CAY10444, selective antagonists for S1PR1 and S1PR3, respectively, prevented the S1P-induced increase in neuronal excitability. Similarly, S1P failed to augment excitability after pretreatment with either VPC 23019, which is a S1PR1 and R3 antagonist, or VPC 44116, the phosphonate analog of VPC 23019. Acute exposure (10 to 15 min) to either of the well-established functional antagonists, FTY720 or CYM-5442, produced a significant increase in the excitability. Moreover, after a 1-h pretreatment with FTY720 (an agonist for S1PR1/R3/R4/R5), neither SEW2871 (S1PR1 selective agonist) nor S1P augmented the excitability. However, after pretreatment with CYM-5442 (selective for S1PR1), SEW2871 was ineffective, but S1P increased the excitability of some, but not all, sensory neurons. CONCLUSIONS These results demonstrate that the enhanced excitability produced by S1P is mediated by activation of S1PR1 and/or S1PR3.
Collapse
Affiliation(s)
- Chao Li
- Medical Neuroscience Program, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Jun-nan Li
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA. .,Department of Pharmacology, Harbin Medical University, Harbin, Peoples' Republic of China.
| | - Joanne Kays
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| | - Miguel Guerrero
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Xie W, Strong JA, Zhang JM. Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain. Neuroscience 2015; 291:317-30. [PMID: 25686526 DOI: 10.1016/j.neuroscience.2015.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/21/2015] [Accepted: 02/05/2015] [Indexed: 11/15/2022]
Abstract
In the spinal nerve ligation (SNL) model of neuropathic pain, as in other pain models, abnormal spontaneous activity of myelinated sensory neurons occurs early and is essential for establishing pain behaviors and other pathologies. Sympathetic sprouting into the dorsal root ganglion (DRG) is observed after SNL, and sympathectomy reduces pain behavior. Sprouting and spontaneous activity may be mutually reinforcing: blocking neuronal activity reduces sympathetic sprouting, and sympathetic spouts functionally increase spontaneous activity in vitro. However, most studies in this field have used nonspecific methods to block spontaneous activity, methods that also block evoked and normal activity. In this study, we injected small inhibitory (si) RNA directed against the NaV1.6 sodium channel isoform into the DRG before SNL. This isoform can mediate high-frequency repetitive firing, like that seen in spontaneously active neurons. Local knockdown of NaV1.6 markedly reduced mechanical pain behaviors induced by SNL, reduced sympathetic sprouting into the ligated sensory ganglion, and blocked abnormal spontaneous activity and other measures of hyperexcitability in myelinated neurons in the ligated sensory ganglion. Immunohistochemical experiments showed that sympathetic sprouting preferentially targeted NaV1.6-positive neurons. Under these experimental conditions, NaV1.6 knockdown did not prevent or strongly alter single evoked action potentials, unlike previous less specific methods used to block spontaneous activity. NaV1.6 knockdown also reduced pain behaviors in another pain model, chronic constriction of the sciatic nerve, provided the model was modified so that the lesion site was relatively close to the siRNA-injected lumbar DRGs. The results highlight the relative importance of abnormal spontaneous activity in establishing both pain behaviors and sympathetic sprouting, and suggest that the NaV1.6 isoform may have value as a therapeutic target.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| | - J-M Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA.
| |
Collapse
|
24
|
Beroukas D, Selhorst M, M. Pitson S, Matusica D, L. Gibbins I, Kress M, V. Haberberger R. Sphingosine kinase 1 in murine dorsal root ganglia. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
25
|
Langeslag M, Quarta S, Leitner MG, Kress M, Mair N. Sphingosine 1-phosphate to p38 signaling via S1P1 receptor and Gαi/o evokes augmentation of capsaicin-induced ionic currents in mouse sensory neurons. Mol Pain 2014; 10:74. [PMID: 25431213 PMCID: PMC4280769 DOI: 10.1186/1744-8069-10-74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
The perception of painful thermal stimuli by sensory neurons is largely mediated by TRPV1. Upon tissue injury or inflammation, S1P is secreted by thrombocytes as part of an inflammatory cocktail, which sensitizes nociceptive neurons towards thermal stimuli. S1P acts on G-protein coupled receptors that are expressed in sensory neurons and sensitize TRPV1 channels towards thermal stimuli. In this study, the S1P mediated signaling pathway required for sensitization of TRPV1 channels was explored.The capsaicin induced peak inward current (ICAPS) of sensory neurons was significantly increased after S1P stimulation within minutes after application. The potentiation of ICAPS resulted from activation of Gαi through G-protein coupled receptors for S1P. Consequently, Gαi led to a signaling cascade, involving phosphoinositide-3-kinase (PI3K) and protein kinase C, which augmented ICAPS in nociceptive neurons. The S1P1 receptor agonist SEW2871 resulted in activation of the same signaling pathway and potentiation of ICAPS. Furthermore, the mitogen-activated protein kinase p38 was phosphorylated after S1P stimulation and inhibition of p38 signaling by SB203580 prevented the S1P-induced ICAPS potentiation. The current data suggest that S1P sensitized ICAPS through G-protein coupled S1P1 receptor activation of Gαi-PI3K-PKC-p38 signaling pathway in sensory neurons.
Collapse
Affiliation(s)
- Michiel Langeslag
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Serena Quarta
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Michael G Leitner
- />Department of Neurophysiology, Institute for Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Michaela Kress
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| | - Norbert Mair
- />Division Physiology, DPMP, Medical University Innsbruck, Fritz-Pregl-Str. 3-I, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Selley DE, Welch SP, Sim-Selley LJ. Sphingosine lysolipids in the CNS: endogenous cannabinoid antagonists or a parallel pain modulatory system? Life Sci 2013; 93:187-93. [PMID: 23782998 DOI: 10.1016/j.lfs.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/02/2013] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
Abstract
A significant number of patients experience chronic pain and the intractable side effects of currently prescribed pain medications. Recent evidence indicates important pain-modulatory roles for two classes of G-protein-coupled receptors that are activated by endogenous lipid ligands, the endocannabinoid (eCB) and sphingosine-1-phosphate (S1P) receptors, which are widely expressed in both the immune and nervous systems. In the central nervous system (CNS), CB1 cannabinoid and S1P1 receptors are most abundantly expressed and exhibit overlapping anatomical distributions and similar signaling mechanisms. The eCB system has emerged as a potential target for treatment of chronic pain, but comparatively little is known about the roles of S1P in pain regulation. Both eCB and S1P systems modulate pain perception via the central and peripheral nervous systems. In most paradigms studied, the eCB system mainly inhibits pain perception. In contrast, S1P acting peripherally at S1P1 and S1P3 receptors can enhance sensitivity to various pain stimuli or elicit spontaneous pain. However, S1P acting at S1P1 receptors and possibly other targets in the CNS can attenuate sensitivity to various pain stimuli. Interestingly, other endogenous sphingolipid derivatives might play a role in central pain sensitization. Moreover, these sphingolipids can also act as CB1 cannabinoid receptor antagonists, but the physiological relevance of this interaction is unknown. Overall, both eCB and sphingolipid systems offer promising targets for the treatment of chronic pain. This review compares and contrasts the eCB and S1P systems with a focus on their roles in pain modulation, and considers possible points of interaction between these systems.
Collapse
Affiliation(s)
- Dana E Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | | | | |
Collapse
|
27
|
Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera IG, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
|
28
|
Xie W, Strong JA, Ye L, Mao JX, Zhang JM. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 2013; 154:1170-80. [PMID: 23622763 DOI: 10.1016/j.pain.2013.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/26/2013] [Indexed: 11/15/2022]
Abstract
Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
29
|
Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol Sci 2013; 34:110-8. [DOI: 10.1016/j.tips.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
|
30
|
Finley A, Chen Z, Esposito E, Cuzzocrea S, Sabbadini R, Salvemini D. Sphingosine 1-phosphate mediates hyperalgesia via a neutrophil-dependent mechanism. PLoS One 2013; 8:e55255. [PMID: 23372844 PMCID: PMC3555820 DOI: 10.1371/journal.pone.0055255] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/21/2012] [Indexed: 01/12/2023] Open
Abstract
Novel classes of pain-relieving molecules are needed to fill the void between non-steroidal anti-inflammatory agents and narcotics. We have recently shown that intraplantar administration of sphingosine 1-phosphate (S1P) in rats causes peripheral sensitization and hyperalgesia through the S1P(1) receptor subtype (S1PR(1)): the mechanism(s) involved are largely unknown and were thus explored in the present study. Intraplantar injection of carrageenan in rats led to a time-dependent development of thermal hyperalgesia that was associated with pronounced edema and infiltration of neutrophils in paw tissues. Inhibition of 1) S1P formation with SK-I, a sphingosine kinase inhibitor, 2) S1P bioavailability with the S1P blocking antibody Sphingomab, LT1002 (but not its negative control, LT1017) or 3) S1P actions through S1PR(1) with the selective S1PR(1) antagonist, W146 (but not its inactive enantiomer, W140) blocked thermal hyperalgesia and infiltration of neutrophils. Taken together, these findings identify S1P as an important contributor to inflammatory pain acting through S1PR(1) to elicit hyperalgesia in a neutrophil-dependant manner. In addition and in further support, we demonstrate that the development of thermal hyperalgesia following intraplantar injection of S1P or SEW2871 (an S1PR(1) agonist) was also associated with neutrophilic infiltration in paw tissues as these events were attenuated by fucoidan, an inhibitor of neutrophilic infiltration. Importantly, FTY720, an FDA-approved S1P receptor modulator known to block S1P-S1PR(1) signaling, attenuated carrageenan-induced thermal hyperalgesia and associated neutrophil infiltration. Targeting the S1P/S1PR(1) axis opens a therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents.
Collapse
Affiliation(s)
- Amanda Finley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Roger Sabbadini
- Lpath, Inc., and Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
31
|
Kays JS, Li C, Nicol GD. Expression of sphingosine 1-phosphate receptors in the rat dorsal root ganglia and defined single isolated sensory neurons. Physiol Genomics 2012; 44:889-901. [PMID: 22805346 PMCID: PMC3472456 DOI: 10.1152/physiolgenomics.00053.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022] Open
Abstract
Previously, we demonstrated that sphingosine 1-phosphate (S1P) increased the excitability of small-diameter sensory neurons, in part, through activation of S1P receptor 1 (S1PR(1)), suggesting that other S1PRs can modulate neuronal excitability. Therefore, studies were undertaken to establish the expression profiles of S1PRs in the intact dorsal root ganglion (DRG) and in defined single isolated sensory neurons. To determine mRNA expression of S1PRs in the DRG, SYBR green quantitative PCR (qPCR) was used. To determine the expression of S1PR mRNAs in single neurons of defined diameters, a preamplification protocol utilizing Taqman primer and probes was used to enhance the sensitivity of detection. The preamplification protocol also permitted detection of mRNA for two hallmark neuronal receptor/ion channels, TRPV1 and P(2)X(3). Expression profiles of S1PR mRNA isolated from lung and brain were used as positive control tissues. In the intact DRG, the order of expression of S1PRs was S1PR(3)>>R(1)≈R(2)>R(5)≈R(4). In the single neurons, the expression of S1PRs was quite variable with some neurons expressing all five subtypes, whereas some expressing only one subtype. In contrast to the DRG, S1PR(1) was the highest expressing subtype in 10 of the 18 small-, medium-, and large-diameter sensory neurons. S1PR(1) was the second highest expressor in -50% of those remaining neurons. Overall, in the single neurons, the order of expression was S1PR(1)>>R(3)≈R(5)>R(4)>R(2). The results obtained from the single defined neurons are consistent with our previous findings wherein S1PR(1) plays a prominent but not exclusive role in the enhancement of neuronal excitability.
Collapse
Affiliation(s)
- J. S. Kays
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, Indiana; and
| | - Chao Li
- Medical Neuroscience Program, School of Medicine, Indiana University, Indianapolis, Indiana
| | - G. D. Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, Indiana; and
| |
Collapse
|