1
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2025; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Chen Y, Wang E, Sites BD, Cohen SP. Integrating mechanistic-based and classification-based concepts into perioperative pain management: an educational guide for acute pain physicians. Reg Anesth Pain Med 2024; 49:581-601. [PMID: 36707224 DOI: 10.1136/rapm-2022-104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Chronic pain begins with acute pain. Physicians tend to classify pain by duration (acute vs chronic) and mechanism (nociceptive, neuropathic and nociplastic). Although this taxonomy may facilitate diagnosis and documentation, such categories are to some degree arbitrary constructs, with significant overlap in terms of mechanisms and treatments. In clinical practice, there are myriad different definitions for chronic pain and a substantial portion of chronic pain involves mixed phenotypes. Classification of pain based on acuity and mechanisms informs management at all levels and constitutes a critical part of guidelines and treatment for chronic pain care. Yet specialty care is often siloed, with advances in understanding lagging years behind in some areas in which these developments should be at the forefront of clinical practice. For example, in perioperative pain management, enhanced recovery protocols are not standardized and tend to drive treatment without consideration of mechanisms, which in many cases may be incongruent with personalized medicine and mechanism-based treatment. In this educational document, we discuss mechanisms and classification of pain as it pertains to commonly performed surgical procedures. Our goal is to provide a clinical reference for the acute pain physician to facilitate pain management decision-making (both diagnosis and therapy) in the perioperative period.
Collapse
Affiliation(s)
- Yian Chen
- Anesthesiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Brian D Sites
- Anesthesiology and Orthopaedics, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Steven P Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation and Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Ozdemir Y, Nakamoto K, Boivin B, Bullock D, Andrews NA, González-Cano R, Costigan M. Quantification of stimulus-evoked tactile allodynia in free moving mice by the chainmail sensitivity test. Front Pharmacol 2024; 15:1352464. [PMID: 38464715 PMCID: PMC10920263 DOI: 10.3389/fphar.2024.1352464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.
Collapse
Affiliation(s)
- Yildirim Ozdemir
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kazuo Nakamoto
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Bruno Boivin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Bullock
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nick A. Andrews
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- In Vivo Scientific Services, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Rafael González-Cano
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Michael Costigan
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
5
|
Williams M. Improving Translational Paradigms in Drug Discovery and Development. Curr Protoc 2021; 1:e273. [PMID: 34780124 DOI: 10.1002/cpz1.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite improved knowledge regarding disease causality, new drug targets, and enabling technologies, the attrition rate for compounds entering clinical trials has remained consistently high for several decades, with an average 90% failure rate. These failures are manifested in an inability to reproduce efficacy findings from animal models in humans and/or the occurrence of unexpected safety issues, and reflect failures in T1 translation. Similarly, an inability to sequentially demonstrate compound efficacy and safety in Phase IIa, IIb, and III clinical trials represents failures in T2 translation. Accordingly, T1 and T2 translation are colloquially termed 'valleys of death'. Since T2 translation dealt almost exclusively with clinical trials, T3 and T4 translational steps were added, with the former focused on facilitating interactions between laboratory- and population-based research and the latter on 'real world' health outcomes. Factors that potentially lead to T1/T2 compound attrition include: the absence of biomarkers to allow compound effects to be consistently tracked through development; a lack of integration/'de-siloing' of the diverse discipline-based and technical skill sets involved in drug discovery; the industrialization of drug discovery, which via volume-based goals often results in quantity being prioritized over quality; inadequate project governance and strategic oversight; and flawed decision making based on unreliable/irreproducible or incomplete data. A variety of initiatives have addressed this problem, including the NIH National Center for Advancing Translational Sciences (NCATS), which has focused on bringing an unbiased academic perspective to translation, to potentially revitalize the process. This commentary provides an overview of the basic concepts involved in translation, along with suggested changes in the conduct of biomedical research to avoid valleys of death, including the use of Translational Scoring as a tool to avoid translational attrition and the impact of the FDA Accelerated Approval Pathway in lowering the hurdle for drug approval. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
7
|
Cornelissen JC, Blough BE, Bohn LM, Negus SS, Banks ML. Some effects of putative G-protein biased mu-opioid receptor agonists in male rhesus monkeys. Behav Pharmacol 2021; 32:453-458. [PMID: 33883450 PMCID: PMC8266741 DOI: 10.1097/fbp.0000000000000634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G-protein-biased mu-opioid receptor (GPB-MOR) agonists are an emerging class of compounds being evaluated as candidate analgesics and agonist medications for opioid use disorder. Most of the basic pharmacology of GPB-MOR agonists has been conducted in rodents and much less is known how the basic behavioral pharmacology of these compounds translates to nonhuman primates. The present study determined the antinociceptive potency and time course of three putative GPB-MOR agonists: (+)-oliceridine (i.e. TRV130), SR14968, and SR17018 in male rhesus monkeys (n = 3). In addition, the respiratory effects of these compounds were also indirectly determined using a pulse oximeter to measure percent peripheral oxygen saturation (%SpO2). The largest intramuscular oliceridine dose (3.2 mg/kg) produced significant antinociception at 50°C, but not 54°C, and peak effects were between 10 and 30 min. Oliceridine also decreased SpO2 below the 90% threshold that would be clinically categorized as hypoxia in two out of three monkeys. The largest intramuscular SR14968 dose (0.32 mg/kg) produced 100% MPE at 50°C, but not 54°C, in two out of three monkeys, and peak effects were between 30 and 100 min. The largest intravenous SR17018 dose (1 mg/kg) produced 100% MPE at 50°C, but not 54°C, in the same two out of three monkeys, and peak effects were between 30 and 100 min. Solubility limitations for both SR14968 and SR17018 impaired our ability to determine in-vivo potency and effectiveness on antinociceptive and %SpO2 measures for these two compounds.
Collapse
Affiliation(s)
- Jeremy C. Cornelissen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA 27709
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 23298
| |
Collapse
|
8
|
Bagdas D, Sevdar G, Gul Z, Younis R, Cavun S, Tae HS, Ortells MO, Arias HR, Gurun MS. (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4) decreases nociception and emotional manifestations of neuropathic pain in mice by α7 nicotinic acetylcholine receptor potentiation. Neurol Res 2021; 43:1056-1068. [PMID: 34281483 DOI: 10.1080/01616412.2021.1949684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical intervention of pain is often accompanied by changes in affective behaviors, so both assays of affective and sensorial aspects of nociception play an important role in the development of novel analgesics. Although positive allosteric modulation (PAM) of α7 nicotinic acetylcholine receptors (nAChRs) has been recognized as a novel approach for the relief of sensorial aspects of pain, their effects on affective components of pain remain unclear. Therefore, we investigated whether PAM-4, a highly selective α7-nAChR PAM, attenuates inflammatory and neuropathic pain, as well as the concomitant depressive/anxiety comorbidities. The anti-nociceptive activity of PAM-4 was assessed in mice using the formalin test and chronic constriction injury (CCI)-induced neuropathic pain model. The anxiolytic- and antidepressant-like activity of PAM-4 was evaluated using the marble burying test and forced swimming test. Acute systemic administration of PAM-4 dose-dependently reversed formalin-induced paw licking behavior and CCI-induced mechanical allodynia without development of any motor impairment. PAM-4 reversed the decreased swimming time and number of buried marbles in CCI-treated mice, suggesting that this ligand attenuates chronic pain-induced depression-like behavior and anxiogenic-like effects. The effects of PAM-4 were inhibited by the α7-selective antagonist methyllycaconitine, indicating molecular mechanism mediated by α7-nAChRs. Indeed, electrophysiological recordings showed the PAM-4 enhances human α7 nAChRs with higher potency and efficacy compared to rat α7 nAChRs. These findings suggest that PAM-4 reduces both sensorial and affective behaviors induced by chronic pain in mice by α7-nAChR potentiation. PAM-4 deserves further investigations for the management of chronic painful conditions with comorbidities.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Gulce Sevdar
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Rabha Younis
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sinan Cavun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Moron, Argentina
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
9
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
10
|
A new hypertonic saline assay for analgesic screening in mice: effects of animal strain, sex, and diurnal phase. Can J Anaesth 2021; 68:672-682. [PMID: 33598887 DOI: 10.1007/s12630-021-01923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE There exists a pressing need for the identification of novel analgesics. We recently reported on a new preclinical assay for rapid analgesic screening based on intraplantar (i.pl.) injection of 10% hypertonic saline (HS) in female outbred (CD-1) mice. Herein, we characterized the HS assay's performance in inbred (C57BL/6) mice, sensitivity to sex differences, and effects of diurnal rhythm phase. METHODS In randomized, controlled, blinded in vivo animal experiments, we studied nociceptive responses induced by i.pl. HS in C57BL/6 (vs CD-1) mice of both sexes (n = 240) and determined diurnal rhythm phase effects in female animals. We established the HS assay's sensitivity to morphine by constructing dose-response curves and calculating half-maximal inhibitory doses (ID50s). RESULTS The injection of i.pl. HS produced nociceptive (licking and biting) responses in all C57BL/6 mice tested. In both C57BL/6 and CD-1 mice, the mean (95% confidence interval [CI]) response magnitudes were greater in females vs males (C57BL/6: 87 sec [64 to 110] vs 45 sec [29 to 61]; difference in means, 42 sec; 95% CI, 17 to 68; P < 0.001; n = 10/group; CD-1: 110 sec [95 to 126] vs 53 sec [32 to 74]; difference in means, 57 sec; 95% CI, 34 to 79; P < 0.001; n = 10/group). The mean (95% CI) nociceptive responses were greater at 24:00 hr than at 12:00 hr in C57BL/6 mice (64 sec [40 to 88] vs 37 sec [24 to 51]; difference in means, 27 sec; 95% CI, 7 to 47; P = 0.007; n = 10/group), but not in CD-1 mice (P = 0.97). Intravenous morphine dose-dependently attenuated nociceptive responses of both C57BL/6 and CD-1 mice (ID50, 0.6 and 2.5 mg·kg-1, respectively; P = 0.41). CONCLUSION These findings in inbred and outbred mice solidify the utility of the HS assay as an effective, rapid, robust, and versatile preclinical tool for analgesic screening.
Collapse
|
11
|
Islam A, Rahman MA, Brenner MB, Moore A, Kellmyer A, Buechler HM, DiGiorgio F, Verchio VR, McCracken L, Sumi M, Hartley R, Lizza JR, Moura-Letts G, Fischer BD, Keck TM. Abuse Liability, Anti-Nociceptive, and Discriminative Stimulus Properties of IBNtxA. ACS Pharmacol Transl Sci 2020; 3:907-920. [DOI: 10.1021/acsptsci.0c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Bradford D. Fischer
- Cooper Medical School of Rowan University, 401 Broadway, Camden, New Jersey 08103, United States
| | - Thomas M. Keck
- Cooper Medical School of Rowan University, 401 Broadway, Camden, New Jersey 08103, United States
| |
Collapse
|
12
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
13
|
Schwienteck KL, Blake S, Bremer PT, Poklis JL, Townsend EA, Negus SS, Banks ML. Effectiveness and selectivity of a heroin conjugate vaccine to attenuate heroin, 6-acetylmorphine, and morphine antinociception in rats: Comparison with naltrexone. Drug Alcohol Depend 2019; 204:107501. [PMID: 31479865 PMCID: PMC6878171 DOI: 10.1016/j.drugalcdep.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND One emerging strategy to address the opioid crisis includes opioid-targeted immunopharmacotherapies. This study compared effectiveness of a heroin-tetanus toxoid (TT) conjugate vaccine to antagonize heroin, 6-acetylmorphine (6-AM), morphine, and fentanyl antinociception in rats. METHODS Adult male and female Sprague Dawley rats received three doses of active or control vaccine at weeks 0, 2, and 4. Vaccine pharmacological selectivity was assessed by comparing opioid dose-effect curves in 50 °C warm-water tail-withdrawal procedure before and after active or control heroin-TT vaccine. Route of heroin administration [subcutaneous (SC) vs. intravenous [IV)] was also examined as a determinant of vaccine effectiveness. Continuous naltrexone treatment (0.0032-0.032 mg/kg/h) effects on heroin, 6-AM, and morphine antinociceptive potency were also determined as a benchmark for minimal vaccine effectiveness. RESULTS The heroin-TT vaccine decreased potency of SC heroin (5-fold), IV heroin (3-fold), and IV 6-AM (3-fold) for several weeks without affecting IV morphine or SC and IV fentanyl potency. The control vaccine did not alter potency of any opioid. Naltrexone dose-dependently decreased antinociceptive potency of SC heroin, and treatment with 0.01 mg/kg/h naltrexone produced similar, approximate 8-fold decreases in potencies of SC and IV heroin, IV 6-AM, and IV morphine. The combination of naltrexone and active vaccine was more effective than naltrexone alone to antagonize SC heroin but not IV heroin. CONCLUSIONS The heroin-TT vaccine formulation examined is less effective, but more selective, than chronic naltrexone to attenuate heroin antinociception in rats. Furthermore, these results provide an empirical framework for future preclinical opioid vaccine research to benchmark effectiveness against naltrexone.
Collapse
Affiliation(s)
- Kathryn L. Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Steven Blake
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul T. Bremer
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
14
|
Gould RW, Gunter BW, Bubser M, Matthews RT, Teal LB, Ragland MG, Bridges TM, Garrison AT, Winder DG, Lindsley CW, Jones CK. Acute Negative Allosteric Modulation of M 5 Muscarinic Acetylcholine Receptors Inhibits Oxycodone Self-Administration and Cue-Induced Reactivity with No Effect on Antinociception. ACS Chem Neurosci 2019; 10:3740-3750. [PMID: 31268669 DOI: 10.1021/acschemneuro.9b00274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Opioid use disorder (OUD) is a debilitating neuropsychiatric condition characterized by compulsive opioid use, dependence, and repeated relapse after periods of abstinence. Given the high risk of developing OUD following prescription opioid use, the continued need for opioid-induced analgesia, and the limitations of current OUD treatments, it is necessary to develop novel, non-opioid-based treatments for OUD and decrease abuse potential of prescription opioids. Recent evidence suggests that negative allosteric modulation (NAM) of the M5 muscarinic acetylcholine receptor (M5 mAChR) may provide an alternative therapeutic approach for the treatment of OUD. Previous studies demonstrated localization of M5 mAChR expression within the mesocorticolimbic reward circuitry and that the selective M5 NAM ML375 attenuates both cocaine and alcohol self-administration in rats. In the present study, the effects of ML375 were evaluated in rats self-administering the μ-opioid agonists oxycodone or remifentanil on a progressive ratio (PR) schedule or on cue reactivity (a rodent model of relapse) in the absence of oxycodone following 72 h of abstinence. ML375 reduced the PR break point for oxycodone and remifentanil self-administration and attenuated cue-elicited responding. Importantly, ML375 did not affect sucrose pellet-maintained responding on a PR schedule or opioid-induced antinociception using the hot-plate and tail-flick assays. We also confirm expression of M5 mAChR mRNA in the ventral tegmental area and show that this is primarily on dopamine (tyrosine hydroxylase mRNA-positive) neurons. Taken together, these findings suggest that selective functional antagonism of the M5 mAChR may represent a novel, non-opioid-based treatment for OUD.
Collapse
|
15
|
Schwienteck KL, Faunce KE, Rice KC, Obeng S, Zhang Y, Blough BE, Grim TW, Negus SS, Banks ML. Effectiveness comparisons of G-protein biased and unbiased mu opioid receptor ligands in warm water tail-withdrawal and drug discrimination in male and female rats. Neuropharmacology 2019; 150:200-209. [PMID: 30660628 DOI: 10.1016/j.neuropharm.2019.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/27/2018] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
One emerging strategy to address the opioid crisis is the development of mu opioid receptor (MOR) ligands that preferentially signal the G-protein vs. β-arrestin pathway. The present study compared the relative potency and effectiveness of two G-protein biased (GPB)-MOR ligands TRV130 and SR-14968 to five unbiased MOR ligands (NAQ, nalbuphine, buprenorphine, morphine, and methadone) on therapeutic-related (e.g. antinociception) and abuse-related (e.g. discriminative stimulus effects) endpoints. Male and female rats were tested in a warm water tail-withdrawal procedure (50 °C) or trained to discriminate fentanyl (0.04 mg/kg, SC) from saline in a two-lever food-reinforced discrimination procedure. TRV130 and SR-14968 were approximately two-fold more potent to produce fentanyl stimulus effects vs. antinociception. Morphine, fentanyl, and methadone were significantly more potent in the fentanyl discrimination vs. tail withdrawal procedure. In addition, maximum antinociceptive and discriminative stimulus effects of fixed-proportion fentanyl/naltrexone mixtures (1:0.018, 1:0.054, 1:0.18, 1:0.3, and 1:0.54) were used to quantify 1) the relative in vivo efficacy of the two GPB-MOR agonists and five unbiased MOR ligands, and 2) potential species differences in MOR ligand effects between rats and monkeys. The efficacy-effect function generated from the fentanyl/naltrexone mixtures stratified the five unbiased ligands consistent with agonist-stimulated GTPγS binding (NAQ = nalbuphine < buprenorphine < morphine < methadone). However, TRV130 and SR-14968 produced greater antinociception and less fentanyl-like stimulus effects than was predicted. Furthermore, there was a significant positive correlation between rat and monkey antinociceptive effects. Overall, these results demonstrate GPB-MOR agonists produce undesirable abuse-related effects, albeit with slightly better potency and efficacy ratios compared to unbiased agonists. This article is part of the Special Issue entitled 'Opioid Neuropharmacology: Advances in treating pain and opioid addiction'.
Collapse
Affiliation(s)
- Kathryn L Schwienteck
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kaycee E Faunce
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, MD, USA
| | - Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle, NC, USA
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - S Stevens Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
Yezierski RP, Hansson P. Inflammatory and Neuropathic Pain From Bench to Bedside: What Went Wrong? THE JOURNAL OF PAIN 2018; 19:571-588. [DOI: 10.1016/j.jpain.2017.12.261] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
|
17
|
Bagdas D, Meade JA, Alkhlaif Y, Muldoon PP, Carroll FI, Damaj MI. Effect of nicotine and alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. Eur J Pain 2018; 22:10.1002/ejp.1231. [PMID: 29633429 PMCID: PMC6179949 DOI: 10.1002/ejp.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical assays of affective and sensorial aspects of nociception play a key role in research on both the neurobiology of pain and the development of novel analgesics. Therefore, we investigated the effects of nicotine and alpha-7 nicotinic acetylcholine receptor (nAChR) modulators in the negative affective and sensory components of visceral pain in mice. METHODS AND RESULTS Intraperitoneal acetic acid (AA) administration resulted in a robust stretching behaviour and conditioned place aversion (CPA) in mice. We observed a dose-dependent reduction in AA-induced stretching and CPA by the nonselective nAChRs agonist nicotine. Mecamylamine, a nonselective nAChRs agonist, was able to block its effects; however, hexamethonium, a peripherally restricted nonselective nicotinic antagonist, was able to block nicotine's effect on stretching behaviour but not on CPA. In addition, systemic administration of α7 nAChR full agonists PHA543613 and PNU282987 was failed to block stretching and CPA behaviour induced by AA. However, the α7 nAChR-positive allosteric modulator PNU120596 blocked AA-induced CPA in a dose-dependent manner without reducing stretching behaviours. CONCLUSIONS Our data revealed that while nonselective nAChR activation induces antinociceptive properties on the sensorial and affective signs of visceral pain in mice, α7 nAChRS activation has no effect on these responses. In addition, nonselective nAChR activation-induced antinociceptive effect on stretching behaviour was mediated by central and peripheral mechanisms. However, the effect of nonselective nAChR activation on CPA was mediated centrally. Furthermore, our data suggest a pivotal role of allosteric modulation of α7 nAChRS in the negative affective, but not sensory, component of visceral pain. SIGNIFICANCE The present results suggest that allosteric modulation of α7 nAChR may provide new strategies in affective aspects of nociception.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie A. Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Pretal P. Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - F. Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613
| |
Collapse
|
18
|
Annecchino LA, Schultz SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv 2018; 2:2398212818776561. [PMID: 32166142 PMCID: PMC7058203 DOI: 10.1177/2398212818776561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Patch clamp electrophysiology has transformed research in the life sciences over the last few decades. Since their inception, automatic patch clamp platforms have evolved considerably, demonstrating the capability to address both voltage- and ligand-gated channels, and showing the potential to play a pivotal role in drug discovery and biomedical research. Unfortunately, the cell suspension assays to which early systems were limited cannot recreate biologically relevant cellular environments, or capture higher order aspects of synaptic physiology and network dynamics. In vivo patch clamp electrophysiology has the potential to yield more biologically complex information and be especially useful in reverse engineering the molecular and cellular mechanisms of single-cell and network neuronal computation, while capturing important aspects of human disease mechanisms and possible therapeutic strategies. Unfortunately, it is a difficult procedure with a steep learning curve, which has restricted dissemination of the technique. Luckily, in vivo patch clamp electrophysiology seems particularly amenable to robotic automation. In this review, we document the development of automated patch clamp technology, from early systems based on multi-well plates through to automated planar-array platforms, and modern robotic platforms capable of performing two-photon targeted whole-cell electrophysiological recordings in vivo.
Collapse
Affiliation(s)
- Luca A. Annecchino
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
19
|
Bagdas D, Gurun MS, Flood P, Papke RL, Damaj MI. New Insights on Neuronal Nicotinic Acetylcholine Receptors as Targets for Pain and Inflammation: A Focus on α7 nAChRs. Curr Neuropharmacol 2018; 16:415-425. [PMID: 28820052 PMCID: PMC6018191 DOI: 10.2174/1570159x15666170818102108] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nicotine and nicotinic acetylcholine receptors (nAChRs) have been explored for the past three decades as targets for pain control. The aim of this review is to introduce readers particularly to α7 nAChRs in a perspective of pain and its modulation. METHODS Developments for α7 nAChR modulators and recent animal studies related to pain are reviewed. RESULTS Accumulating evidences suggest that selective ligands for α7 nAChRs hold promise in the treatment of chronic pain conditions as they lack many of side effects associated with other nicotinic receptor types. CONCLUSION This review provides the reader recent insights on α7 nAChRs from structure and function to the latest findings on the pharmacology and therapeutic targeting of these receptors for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Deniz Bagdas
- Address correspondence to this author at the Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613; Tel/Fax: +1-804-828-9256; E-mail:
| | | | | | | | | |
Collapse
|
20
|
Cioffi CL. Modulation of Glycine-Mediated Spinal Neurotransmission for the Treatment of Chronic Pain. J Med Chem 2017; 61:2652-2679. [PMID: 28876062 DOI: 10.1021/acs.jmedchem.7b00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pain constitutes a significant and expanding worldwide health crisis. Currently available analgesics poorly serve individuals suffering from chronic pain, and new therapeutic agents that are more effective, safer, and devoid of abuse liabilities are desperately needed. Among the myriad of cellular and molecular processes contributing to chronic pain, spinal disinhibition of pain signaling to higher cortical centers plays a critical role. Accumulating evidence shows that glycinergic inhibitory neurotransmission in the spinal cord dorsal horn gates nociceptive signaling, is essential in maintaining physiological pain sensitivity, and is diminished in pathological pain states. Thus, it is hypothesized that agents capable of enhancing glycinergic tone within the dorsal horn could obtund nociceptor signaling to the brain and serve as analgesics for persistent pain. This Perspective highlights the potential that pharmacotherapies capable of increasing inhibitory spinal glycinergic neurotransmission hold in providing new and transformative analgesic therapies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences , Albany College of Pharmacy and Health Sciences , 106 New Scotland Avenue , Albany , New York 12208 United States
| |
Collapse
|
21
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
22
|
A humanized phenotypic screening platform for chronic pain. Nat Methods 2017. [DOI: 10.1038/nmeth.f.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
24
|
Smith MM, Clarke EC, Little CB. Considerations for the design and execution of protocols for animal research and treatment to improve reproducibility and standardization: "DEPART well-prepared and ARRIVE safely". Osteoarthritis Cartilage 2017; 25:354-363. [PMID: 27816577 DOI: 10.1016/j.joca.2016.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the factors in experimental design that contribute to poor translation of pre-clinical research to therapies for patients with osteoarthritis (OA) and how this might be improved. METHODS Narrative review of the literature, and evaluation of the different stages of design conduct and analysis of studies using animal models of OA to define specific issues that might reduce quality of evidence and how this can be minimised. RESULTS Preventing bias and improving experimental rigour and reporting are important modifiable factors to improve translation from pre-clinical animal models to successful clinical trials of therapeutic agents. Despite publication and adoption by many journals of guidelines such as Animals in Research: Reporting In Vivo Experiments (ARRIVE), experimental animal studies published in leading rheumatology journals are still deficient in their reporting. In part, this may be caused by researchers first consulting these guidelines after the completion of experiments, at the time of publication. This review discusses factors that can (1) bias the outcome of experimental studies using animal models of osteoarthritis or (2) alter the quality of evidence for translation. We propose a checklist to consult prior to starting experiments; in the Design and Execution of Protocols for Animal Research and Treatment (DEPART). CONCLUSIONS Following DEPART during the design phase will enable completion of the ARRIVE checklist at the time of publication, and thus improve the quality of evidence for inclusion of experimental animal research in meta-analyses and systematic reviews: "DEPART well-prepared and ARRIVE safely".
Collapse
Affiliation(s)
- M M Smith
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - E C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute (University of Sydney), Level 10, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
25
|
Hummel M, Whiteside GT. Measuring and realizing the translational significance of preclinical in vivo studies of painful osteoarthritis. Osteoarthritis Cartilage 2017; 25:376-384. [PMID: 27592040 DOI: 10.1016/j.joca.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
In this communication, we discuss some key issues surrounding the translation of preclinical efficacy studies in models of painful osteoarthritis (OA) to the clinical arena. We highlight potential pitfalls which could negatively impact successful translation. These include lack of alignment between a model + endpoint and the intended clinical population, employing testing strategies in animals that are not appropriate for the targeted human population such as pre-emptive treatment and lastly, underestimating the magnitude of the efficacy signal in animals that may be needed to see an effect in the clinical population. Through careful analysis, we highlight the importance of each pitfall by providing relevant examples that will hopefully improve future chances of optimizing translation in the area of OA pain research. We advocate advancing publications directed at comparing methods, outcomes and conclusions between preclinical and clinical studies, regardless of whether the findings are positive or negative, are important for improving the potential for a desired successful translation from the bench to bedside.
Collapse
Affiliation(s)
- M Hummel
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, USA
| | - G T Whiteside
- Discovery Research, Purdue Pharma L.P., 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| |
Collapse
|
26
|
Schaffler K, Nicolas LB, Borta A, Brand T, Reitmeir P, Roebling R, Scholpp J. Investigation of the predictive validity of laser-EPs in normal, UVB-inflamed and capsaicin-irritated skin with four analgesic compounds in healthy volunteers. Br J Clin Pharmacol 2017; 83:1424-1435. [PMID: 28139023 DOI: 10.1111/bcp.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022] Open
Abstract
AIMS The aim of the present study was to assess the predictivity of laser-(radiant-heat)-evoked potentials (LEPs) from the vertex electroencephalogram, using an algesimetric procedure, testing the anti-nociceptive/anti-hyperalgesic effects of single oral doses of four marketed analgesics (of different compound classes) vs. placebo, in healthy volunteers with three skin types. METHODS This was a randomized, placebo-controlled, single-blind, five-way-crossover trial. Twenty-five healthy male/female Caucasians were included (receiving celecoxib 200 mg, pregabalin 150 mg, duloxetine 60 mg, lacosamide 100 mg or placebo) in a Williams design, with CO2 laser-induced painful stimuli to normal, ultraviolet (UV) B-inflamed and capsaicin-irritated skin. LEPs and visual analogue scale ratings were taken at baseline and hourly for 6 h postdose from all three skin types. RESULTS In normal skin, the averaged postdose LEP peak-to-peak-(PtP)-amplitudes were reduced by pregabalin (-2.68 μV; 95% confidence interval (CI) -4.16, 1.19) and duloxetine (-1.73 μV; 95% CI -3.21, -0.26) but not by lacosamide and celecoxib vs. placebo. On UVB-irradiated skin, reflecting inflammatory pain, celecoxib induced a pronounced reduction in LEP PtP amplitudes vs. placebo (-6.2 μV; 95% CI -7.88, -4.51), with a smaller reduction by duloxetine (-4.54 μV; 95% CI -6.21, -2.87) and pregabalin (-3.72 μV; 95% CI -5.40, -2.04), whereas lacosamide was inactive. LEP PtP amplitudes on capsaicin-irritated skin, reflecting peripheral/spinal sensitization, as in neuropathic pain, were reduced by pregabalin (-3.78 μV; 95% CI -5.31, -2.25) and duloxetine (-2.32 μV; 95% CI -3.82, -0.82) but not by celecoxib or lacosamide vs. placebo, which was in agreement with known clinical profiles. Overall, PtP amplitude reductions were in agreement with subjective ratings. CONCLUSIONS LEP algesimetry is sensitive to analgesics with different modes of action and may enable the effects of novel analgesics to be assessed during early clinical development.
Collapse
Affiliation(s)
| | - Laurent B Nicolas
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Borta
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tobias Brand
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Reitmeir
- HPR, Human Pharmacodynamic Research GmbH, Munich, Germany
| | - Robert Roebling
- Medicine, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joachim Scholpp
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
27
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
28
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Bagdas D, Muldoon PP, AlSharari S, Carroll FI, Negus SS, Damaj MI. Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 2016; 102:236-43. [PMID: 26639043 PMCID: PMC5574195 DOI: 10.1016/j.neuropharm.2015.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023]
Abstract
Pain encompasses both a sensory as well as an affective dimension and these are differentially processed in the brain and periphery. It is therefore important to develop animal models to reflect the non-reflexive assays in pain. In this study, we compared effects of the mu opioid receptor agonist morphine, the nonsteroidal anti-inflammatory drug ketoprofen and the kappa receptor opioid agonist U50,488H and antagonist JDTic on acetic acid-induced stretching and acetic acid-induced aversion in the condition place aversion (CPA) test in male ICR mice. Intraperitoneal administration of acetic acid (0.32-1%) was equipotent in stimulating stretching and CPA. Ketoprofen, morphine and U50,488H all inhibited the acid-induced stretching. Ketoprofen and morphine also blocked the acid-induced CPA but U50,488H failed to do so. The reversal ability of ketoprofen and morphine on acid-induced CPA is unique to pain-stimulated place aversion since these drugs failed to reduce non-noxious LiCl-induced CPA. Overall, this study characterized and validated a preclinical mouse model of pain-related aversive behavior that can be used to assess genetic and biological mechanisms of pain as well as improving the predictive validity of preclinical studies on candidate analgesics.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Ketoprofen/pharmacology
- Male
- Mice
- Mice, Inbred ICR
- Morphine/pharmacology
- Piperidines/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Tetrahydroisoquinolines/pharmacology
- Visceral Pain/physiopathology
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa 16059, Turkey.
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - F Ivy Carroll
- Center for Drug Discovery, Research Triangle Institute, PO Box 12194, Research Triangle Park, NC 27709-2194, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
30
|
Navratilova E, Morimura K, Xie JY, Atcherley CW, Ossipov MH, Porreca F. Positive emotions and brain reward circuits in chronic pain. J Comp Neurol 2016; 524:1646-52. [PMID: 26788716 DOI: 10.1002/cne.23968] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
Chronic pain is an important public health problem that negatively impacts the quality of life of affected individuals and exacts enormous socioeconomic costs. Chronic pain is often accompanied by comorbid emotional disorders including anxiety, depression, and possibly anhedonia. The neural circuits underlying the intersection of pain and pleasure are not well understood. We summarize recent human and animal investigations and demonstrate that aversive aspects of pain are encoded in brain regions overlapping with areas processing reward and motivation. We highlight findings revealing anatomical and functional alterations of reward/motivation circuits in chronic pain. Finally, we review supporting evidence for the concept that pain relief is rewarding and activates brain reward/motivation circuits. Adaptations in brain reward circuits may be fundamental to the pathology of chronic pain. Knowledge of brain reward processing in the context of pain could lead to the development of new therapeutics for the treatment of emotional aspects of pain and comorbid conditions.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, 85721
| | - Kozo Morimura
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, 85721.,Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Saitama, 330-0854, Japan
| | - Jennifer Y Xie
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, 85721
| | | | - Michael H Ossipov
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, 85721
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
31
|
Parent A, Tétreault P, Roux M, Belleville K, Longpré JM, Beaudet N, Goffaux P, Sarret P. Descending nociceptive inhibition is modulated in a time-dependent manner in a double-hit model of chronic/tonic pain. Neuroscience 2016; 315:70-8. [DOI: 10.1016/j.neuroscience.2015.11.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
32
|
Whiteside GT, Pomonis JD, Kennedy JD. Preclinical Pharmacological Approaches in Drug Discovery for Chronic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:303-23. [PMID: 26920017 DOI: 10.1016/bs.apha.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, animal behavioral models, particularly those used in pain research, have been increasingly scrutinized and criticized for their role in the poor translation of novel pharmacotherapies for chronic pain. This chapter addresses the use of animal models of pain used in drug discovery research. It highlights how, when, and why animal models of pain are used as one of the many experimental tools used to gain better understanding of target mechanisms and rank-order compounds in the iterative process of establishing structure-activity relationship. Together, these models help create an "analgesic signature" for a compound and inform the indications most likely to yield success in clinical trials. In addition, the authors discuss some often underappreciated aspects of currently used (traditional) animal models of pain, including simply applying basic pharmacological principles to study design and data interpretation as well as consideration of efficacy alongside side effect measures as part of the overall conclusion of efficacy. This is provided to add perspective regarding current efforts to develop new models and endpoints both in rodents and in larger animal species as well as assess cognitive and/or affective aspects of pain. Finally, the authors suggest ways in which efficacy evaluation in animal models of pain, whether traditional or new, might better align with clinical standards of analysis, citing examples where applying effect size and number needed to treat estimations to animal model data suggest that the efficacy bar often may be set too low preclinically to allow successful translation to the clinical setting.
Collapse
Affiliation(s)
| | - James D Pomonis
- American Preclinical Services, LLC, Minneapolis, Minnesota, USA
| | | |
Collapse
|
33
|
Hunter DJ, Little CB. The great debate: Should Osteoarthritis Research Focus on "Mice" or "Men"? Osteoarthritis Cartilage 2016; 24:4-8. [PMID: 26707987 DOI: 10.1016/j.joca.2015.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 02/02/2023]
Affiliation(s)
- D J Hunter
- Rheumatology Department, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Royal North Shore Hospital, Kolling Institute and Institute of Bone and Joint Research, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|
34
|
Opioids and TRPV1 in the peripheral control of neuropathic pain--Defining a target site in the injured nerve. Neuropharmacology 2015; 101:330-40. [PMID: 26453963 DOI: 10.1016/j.neuropharm.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Targeting peripheral neuropathic pain at its origin may prevent the development of hypersensitivity. Recently we showed this can be mediated by opioid receptors at the injured nerve trunk. Here, we searched for the most relevant peripheral site to block transient receptor potential vanilloid 1 (TRPV1), and investigated analgesic interactions between TRPV1 and opioids in neuropathy. In a chronic constriction injury (CCI) of the sciatic nerve in mice, we assessed the effects of μ-, δ- and κ-opioid receptor agonists and TRPV1 antagonist (SB366791) injected at the CCI site or into the injured nerve-innervated paw on spontaneous paw lifting, heat and mechanical sensitivity. We also examined TRPV1 expression in total membrane and plasma membrane fractions from nerves and paws. We found that opioids and SB366791 co-injected in per se nonanalgesic doses at the CCI site or into the paw diminished heat and mechanical sensitivity. SB366791 alone dose-dependently alleviated heat and mechanical sensitivity. TRPV1 blockade in the paw was more effective than at the CCI site. None of the treatments diminished spontaneous paw lifting. TRPV1 expression analysis suggests that the levels of functional TRPV1 do not critically determine the TRPV1 antagonist-mediated analgesia. Together, the identification of the primary action site in damaged nerves is crucial for effective pain control. Contrary to opioids, the TRPV1 blockade in the injured nerve peripheral terminals, rather than at the nerve trunk, appears promising against heat pain. Opioid/TRPV1 antagonist combinations at both locations partially reduced neuropathy-triggered heat and mechanical pain.
Collapse
|
35
|
Prado WA, Rossaneis AC, Carvalho I, Zamoner LOB, Corrado AP. Neamine and 2-deoxystreptamine neomycin derivatives exhibit antinociceptive activity in rat models of phasic, incision and neuropathic pain. J Pharm Pharmacol 2015; 67:1696-704. [PMID: 26376780 DOI: 10.1111/jphp.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/19/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess the antinociceptive activity of the neomycin derivatives neamine and 2-deoxystreptamine following intraspinal administration in rats. METHODS We used the tail-flick test and measured the threshold to mechanical stimulation in models of incisional and neuropathic pain. KEY FINDINGS The derivatives produced antinociception in the tail-flick test and reduced mechanical allodynia in models of incisional and neuropathic pain. The approximate ED50 in milligrams (confidence limits in parenthesis) in these tests were 1.35 mg (0.61; 2.95), 0.20 mg (0.14; 0.27) and 0.28 mg (0.12; 0.63) for neamine, and 1.05 mg (0.68; 1.60), 0.78 mg (0.776; 0.783) and 0.79 mg (0.46; 1.34) for 2-deoxystreptamine, respectively. Neamine was more potent than 2-deoxystreptamine in the incisional and neuropathic pain models, but they had similar potency in the tail-flick test. Tetra-azidoneamine, a neamine derivative in which free amino groups are replaced with azido groups, did not change the incisional mechanical allodynia. The reduction of incisional allodynia by neamine and 2-deoxystreptamine was transitorily antagonized by intrathecal administration of calcium chloride. CONCLUSIONS The intraspinal administration of neamine and 2-deoxystreptamine is antinociceptive in rats. The presence of amino groups in the structure of these derivatives is fundamental to their antinociceptive effect, which may be due to a calcium antagonist activity.
Collapse
Affiliation(s)
- Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana C Rossaneis
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ivone Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Otávio B Zamoner
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre P Corrado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Abstract
Animal models of osteoarthritis are extensively used for investigating disease pathways and for preclinical testing of novel therapies. Their predictive utility, however, has often been questioned, mainly because preclinical efficacy of novel therapeutics is poorly translated in clinical trials. In the current narrative review, we consider the preclinical models that were used to support undertaking clinical trials for disease-modifying osteoarthritis drugs, and compare outcomes between clinical and preclinical studies. We discuss this in light of the 1999 Food and Drug Administration draft guidelines for industry for use in the development of drugs, devices, and biological products intended for the treatment of osteoarthritis, which raised five considerations on the usefulness of osteoarthritis models. We systematically discuss what has been learnt regarding these five points since 1999, with emphasis on replicating distinct risk factors and subtypes of human osteoarthritis, and on comprehensive evaluation of the disease in animals, including pathology of all joint tissues, biomarker analysis, and assessment of pain and joint function. Finally, we discuss lessons learnt and propose some recommendations for how the evidence from preclinical research might be strengthened with a view to improving success in clinical translation.
Collapse
Affiliation(s)
- Anne-Marie Malfait
- Department of Medicine, Division of Rheumatology, and Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
37
|
Freitas KC, Hillhouse TM, Leitl MD, Negus SS. Effects of acute and sustained pain manipulations on performance in a visual-signal detection task of attention in rats. Drug Dev Res 2015; 76:194-203. [PMID: 26077965 DOI: 10.1002/ddr.21255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/30/2015] [Indexed: 01/28/2023]
Abstract
Preclinical Research Patients with pain often display cognitive impairment including deficits in attention. The visual-signal detection task (VSDT) is a behavioral procedure for assessment of attention in rodents. Male Sprague Dawley rats were trained in a VSDT and tested with three different noxious stimuli: (i) intraperitoneal injection of lactic acid; (ii) intraplantar injection of formalin; and (iii) intraplantar injection of complete Freund's adjuvant (CFA). The muscarinic acetylcholine receptor antagonist, scopolamine was also tested as a positive control. Scopolamine (0.01-1.0 mg/kg) dose dependently reduced accuracy and increased response latencies during completed trials with higher scopolamine doses increasing omissions. Lactic acid (0.56-5.6% ip) also increased response latencies and omissions, although it failed to alter measures of response accuracy. Formalin produced a transient decrease in accuracy while also increasing both response latency and omissions. CFA failed to alter VSDT performance. Although VSDT effects were transient for formalin and absent for CFA, both treatments produced mechanical allodynia and paw edema for up to 7 days. These results support the potential for noxious stimuli to produce a pain-related disruption of attention in rats. However, relatively strong noxious stimulation appears necessary to disrupt performance in this version of the VSDT.
Collapse
Affiliation(s)
- Kelen C Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd M Hillhouse
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Leitl
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Steve S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Borsook D, Hargreaves R, Bountra C, Porreca F. Lost but making progress--Where will new analgesic drugs come from? Sci Transl Med 2015; 6:249sr3. [PMID: 25122640 DOI: 10.1126/scitranslmed.3008320] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a critical need for effective new pharmacotherapies for pain. The paucity of new drugs successfully reaching the clinic calls for a reassessment of current analgesic drug discovery approaches. Many points early in the discovery process present significant hurdles, making it critical to exploit advances in pain neurobiology to increase the probability of success. In this review, we highlight approaches that are being pursued vigorously by the pain community for drug discovery, including innovative preclinical pain models, insights from genetics, mechanistic phenotyping of pain patients, development of biomarkers, and emerging insights into chronic pain as a disorder of both the periphery and the brain. Collaborative efforts between pharmaceutical, academic, and public entities to advance research in these areas promise to de-risk potential targets, stimulate investment, and speed evaluation and development of better pain therapies.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Hargreaves
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chas Bountra
- Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Frank Porreca
- Center for Pain and the Brain and Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
40
|
Leitl MD, Potter DN, Cheng K, Rice KC, Carlezon WA, Negus SS. Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund's adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats. Mol Pain 2014; 10:62. [PMID: 25245060 PMCID: PMC4180532 DOI: 10.1186/1744-8069-10-62] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Intraplantar administration of complete Freund's adjuvant (CFA) and formalin are two noxious stimuli commonly used to produce sustained pain-related behaviors in rodents for research on neurobiology and treatment of pain. One clinically relevant manifestation of pain is depression of behavior and mood. This study compared effects of intraplantar CFA and formalin on depression of positively reinforced operant behavior in an assay of intracranial self-stimulation (ICSS) in rats. Effects of CFA and formalin on other physiological and behavioral measures, and opioid effects on formalin-induced depression of ICSS, were also examined. RESULTS There were four main findings. First, consistent with previous studies, both CFA and formalin produced similar paw swelling and mechanical hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. Third, formalin-induced depression of ICSS was reversed by morphine doses that did not significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be interpreted as an example of pain-related and analgesic-reversible depression of behavior. Finally, formalin-induced depression of ICSS was not associated with changes in central biomarkers for activation of endogenous kappa opioid systems, which have been implicated in depressive-like states in rodents, nor was it blocked by the kappa antagonist norbinaltorphimine. CONCLUSIONS These results suggest differential efficacy of sustained pain stimuli to depress brain reward function in rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage brain kappa opioid systems.
Collapse
Affiliation(s)
- Michael D Leitl
- />Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th St., PO Box 980613, Richmond, VA USA
| | - David N Potter
- />Behavioral Genetics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA USA
| | - Kejun Cheng
- />Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Kenner C Rice
- />Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - William A Carlezon
- />Behavioral Genetics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA USA
| | - S Stevens Negus
- />Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th St., PO Box 980613, Richmond, VA USA
| |
Collapse
|