1
|
She W, Wang H, Linardi D, Chik SY, Lan Y, Chen F, Cheng A, Qian PY. Mode of action of antifouling compound albofungin in inhibiting barnacle larval settlement. iScience 2023; 26:106981. [PMID: 37534162 PMCID: PMC10391604 DOI: 10.1016/j.isci.2023.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Marine biofouling causes huge economic losses to the marine industry every year. Albofungin is a potential antifoulant showing strong anti-macrofouling activities against larval settlement of major fouling organisms. In the present study, directed RNA-seq and proteomic analyses were used to investigate changes in the transcriptome and proteome of a major fouling barnacle Amphibalanus amphitrite cyprids in response to albofungin treatment. Results showed that albofungin treatment remarkably upregulated the metabolism of xenobiotics by the cytochrome P450 pathway to discharge the compound and downregulated energy metabolic processes. Intriguingly, immunostaining and whole-mount in situ hybridization (WISH) revealed the spatial expression patterns of selected differentially expressed genes (glutathione S-transferase [GST], nitric oxide synthase [NOS], and calmodulin [CaM]) distributed in the thorax and antennule of A. amphitrite. Our study provides new insights into the mechanism of albofungin in interrupting the larval settlement of A. amphitrite and suggests its potential application as an antifouling agent in marine environments.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Darwin Linardi
- Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sin Yu Chik
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Thompson SEM, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. BIOFOULING 2017; 33:410-432. [PMID: 28508711 DOI: 10.1080/08927014.2017.1319473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.
Collapse
Affiliation(s)
| | - Juliet C Coates
- a School of Biosciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
3
|
Uzdensky A, Berezhnaya E, Khaitin A, Kovaleva V, Komandirov M, Neginskaya M, Rudkovskii M, Sharifulina S. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Mol Neurobiol 2016; 52:811-25. [PMID: 26063591 DOI: 10.1007/s12035-015-9237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang G, He LS, Him Wong Y, Xu Y, Zhang Y, Qian PY. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids. Sci Rep 2015; 5:14767. [PMID: 26434953 PMCID: PMC4593178 DOI: 10.1038/srep14767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/07/2015] [Indexed: 02/03/2023] Open
Abstract
The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Li-Sheng He
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Science, No. 62, Fenghuang Road, Sanya, Hainan, P. R. China, 572000
| | - Yue Him Wong
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China, 518060
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China, 518060
| | - Pei-Yuan Qian
- Environmental Science Programs and Division of Life Science, School of Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
5
|
Zhang G, Wong YH, Zhang Y, He LS, Xu Y, Qian PY. Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting. Proteomics 2015; 15:3854-64. [PMID: 26316090 DOI: 10.1002/pmic.201500112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is a universal signaling molecule and plays a negative role in the metamorphosis of many biphasic organisms. Recently, the NO/cGMP (cyclic guanosine monophosphate) signaling pathway was reported to repress larval settlement in the barnacle Amphibalanus amphitrite. To understand the underlying molecular mechanism, we analyzed changes in the proteome of A. amphitrite cyprids in response to different concentrations of the NO donor sodium nitroprusside (SNP; 62.5, 250, and 1000 μM) using a label-free proteomics method. Compared with the control, the expression of 106 proteins differed in all three treatments. These differentially expressed proteins were assigned to 13 pathways based on KEGG pathway enrichment analysis. SNP treatment stimulated the expression of heat shock proteins and arginine kinase, which are functionally related to NO synthases, increased the expression levels of glutathione transferases for detoxification, and activated the iron-mediated fatty acid degradation pathway and the citrate cycle through ferritin. Moreover, NO repressed the level of myosins and cuticular proteins, which indicated that NO might inhibit larval settlement in A. amphitrite by modulating the process of muscle locomotion and molting.
Collapse
Affiliation(s)
- Gen Zhang
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, P. R. China.,KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yue-Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China
| | - Li-Sheng He
- Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Science, Sanya City, Hainan Province, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, P. R. China
| | - Pei-Yuan Qian
- Environmental Science Programs, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, P. R. China.,KAUST Global Collaborative Research Program, Division of Life Science, School of Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|