1
|
Liu X, Deng C, Deng Y, Luo X, Zhang W. Molecule-rich solutions for achieving novel non-opioid analgesics. Drug Discov Today 2025; 30:104329. [PMID: 40081520 DOI: 10.1016/j.drudis.2025.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Despite their efficacy, opioids have long been associated with risks of addiction, tolerance, and dependence, leaving an unmet clinical need for pain treatment. Efforts have been devoted to developing novel classes of pain-relieving medication that outperform current options in terms of pain relief, side-effect profiles, and potential for abuse, but with limited success. Recent advances in the neurobiology of pain have shed light on the potential of targeting non-opioid receptors involved in pain processing. In this review, we identify avenues, ranging from molecular-based approaches to molecule-rich solutions, for effectively identifying non-opioid analgesics free from the side effects associated with opioids.
Collapse
Affiliation(s)
- Xingxing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Chaoyi Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Deng
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xudong Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Pharmacy, West China Tianfu Hospital, Sichuan University, Chengdu 610213, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Mert I, Cetinkaya A, Gurler M, Turel CA, Celik H, Torun IE, Turel I. Anti-inflammatory potential of liraglutide, a glucagon-like peptide-1 receptor agonist, in rats with peripheral acute inflammation. Inflammopharmacology 2022; 30:1093-1105. [PMID: 35412166 DOI: 10.1007/s10787-022-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The present study aimed to explore the possible anti-inflammatory actions of liraglutide (LRG), a glucagon-like peptide-1 (GLP-1) receptor agonist, and to compare with tramadol (TR) or LRG, and TR combination treatment by investigating the inflammatory signs such as pain hypersensitivity, edema, and fever in carrageenan (CG)-induced acute peripheral inflammation model in rats. The levels of several biomarkers for inflammatory status, angiogenesis, and oxidative stress were also measured in inflamed tissues. CG induced inflammation in the paws of rats identified by hypersensitivities, redness, edema and fever. LRG, significantly improved the hypersensitivity to mechanical (from 4 to 35.5 g) or cold (from 5 to 44.2 s) stimuli, reduced the edema (paw mass, from 2.54 to 1.85 g), and fever (paw temperature, from 33.6 to 27.3 °C). LRG dramatically suppressed the inflammatory signs when compared to those of TR. In addition, co-administration of TR and LRG resulted in further reduction of sensitivity to mechanical and cold stimuli. Anti-inflammatory potential of LRG altered depending on their inhibitory effects in the biomarkers of inflamed paws. Consequently, the suppressive actions of LRG in the inflammation induced hypersensitivities, edema, and fever, indicating that these drugs have significant anti-inflammatory potential with anti-hypersensitivities, anti-edema, and anti-pyretic effects. LRG with anti-inflammatory actions may be a highly promising therapeutic option for the management of inflammatory conditions or inflammatory-related various diseases.
Collapse
Affiliation(s)
- Irem Mert
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Ayhan Cetinkaya
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Mujgan Gurler
- Department of Internal Medicine, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Canan Akünal Turel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Humeyra Celik
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Idris Turel
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey
| |
Collapse
|
3
|
Inan S, Chen X, Eisenstein EM, Meissler JJ, Geller EB, Tallarida C, Watson M, Doura M, Barrett JE, Cowan A, Rawls SM, Adler MW, Eisenstein TK. Chemokine receptor antagonists enhance morphine's antinociceptive effect but not respiratory depression. Life Sci 2021; 285:120014. [PMID: 34619167 DOI: 10.1016/j.lfs.2021.120014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
AIMS We have shown that chemokines injected into the periaqueductal gray region of the brain blocks opioid-induced analgesia in the rat cold-water tail flick test (CWTF). The present experiments tested whether chemokine receptor antagonists (CRAs), in combination with sub-analgesic doses of morphine, would provide maximal analgesia in the CWTF test and the mouse formalin pain assay. The effect of CRAs on respiratory depression was also evaluated. MAIN METHODS One, two or four CRAs (AMD3100/CXCR4, maraviroc/CCR5, RS504393/CCR2 orAZD8797/CX3CR1) were used in combination with sub-analgesic doses of morphine, all given systemically. Pain was assessed using the rat CWTF test or formalin injection into the paw of mice scored by licking. Respiration and oxygen saturation were measured in rats using a MouseOX® Plus - pulse oximeter. KEY FINDINGS In the CWTF test, a sub-maximal dose of morphine in combination with maraviroc alone, maraviroc plus AMD3100, or with the four chemokine receptor antagonists, produced synergistic increases in antinociception. In the formalin test, the combination of four CRAs plus a sub-maximal dose of morphine resulted in increased antinociception in both male and female mice. AMD3100 had an additive effect with morphine in both sexes. Coadministration of CRAs with morphine did not potentiate the opioid respiratory depressive effect. SIGNIFICANCE These results support the conclusion that combinations of CRAs can increase the potency of sub-analgesic doses of morphine analgesia without increasing respiratory depression. The results support an "opioid sparing" strategy for alleviation of pain using reduced doses of opioids in combination with CRAs to achieve maximal analgesia.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiaohong Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Eric M Eisenstein
- Departments of Statistical Science and Marketing, Fox School of Business at Temple University,1810 Liacouras Walk, Philadelphia, PA 19122, USA
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Christopher Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Mia Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Menahem Doura
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Alan Cowan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
4
|
Gao L, Fan F, Wang L, Tang B, Wen Z, Tang J, Dai T, Jin H. Polarization of macrophages in the trigeminal ganglion of rats with pulpitis. J Oral Rehabil 2021; 49:228-236. [PMID: 34398484 DOI: 10.1111/joor.13245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dental pulp tissues are rich in pain-related afferent nerve fibers, which originate from primary sensory neurons in the trigeminal ganglion (TG). The mechanisms of central nervous system (CNS) underlying ectopic pain following peripheral inflammation have been reported that the macrophages as inflammatory and immunologic mediators in the TG play an important role in the process of pulpitis and hyperalgesia. OBJECTIVE(S) To observe the polarization response and dynamic distribution of macrophages in the TG during the development of dental pulp inflammation. METHODS A rat model of pulpitis was established using complete Freund's adjuvant (CFA). Hematoxylin-eosin (HE), immunohistochemistry (IHC), immunofluorescence (IF), toluidine blue (TB) staining, and RT-qPCR were performed to observe the expression of macrophage-related factors in the TG. RESULTS The results of IHC staining showed that M2 macrophages labeled with CD206 were observed in the TG of both the control and CFA groups. The statistical analysis indicated that the number of CD206-positive macrophages in the TG increased significantly at 24 h after CFA-induced pulpitis, reached a peak at 2 weeks, and then returned to the normal level after 6 weeks. The ratio of M2/M1 in the CFA groups was significantly lower than that in the control group from 24 to 72 h, and this pattern was reversed at 2 weeks after CFA-induced pulpitis; then, the ratio increased significantly and was maintained at a high level for 4 weeks. RT-qPCR results showed that the expression of IL-10 in the TG increased significantly from 1 to 4 weeks after CFA-induced pulpitis. CONCLUSION The trend of M2 macrophages was opposite to that of M1 macrophages in the TG during the process of pulpitis induced by CFA, which is consistent with the expression of macrophage-related cytokines. Macrophage polarization in the TG may participate in the neuroinflammation response induced by dental pulpitis.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fan Fan
- School of Stomatology, Dalian Medical University, Dalian, China.,Department of Stomatology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Bohan Tang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jing Tang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Ting Dai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Haiwei Jin
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Pathan EMI, Inman RD. Pain in Axial Spondyloarthritis: Insights from Immunology and Brain Imaging. Rheum Dis Clin North Am 2021; 47:197-213. [PMID: 33781490 DOI: 10.1016/j.rdc.2020.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inflammatory back pain is characteristic of spondyloarthritis (SpA); however, this pain may not respond to treatment with NSAIDs or biologics. Pain is multifactorial and a combination of mechanical and inflammatory factors. A growing body of literature examines the impact of emotions on pain in SpA; many patients with this condition suffer from depression and fibromyalgia. Advanced imaging techniques can investigate the interplay of various brain networks in pain perception. Animal models have helped understand the interplay between the immune and nervous systems in pain generation and have highlighted differences in pain perception between the sexes.
Collapse
Affiliation(s)
- Ejaz M I Pathan
- Rheumatology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, UK.
| | - Robert D Inman
- Spondylitis Program, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada; Schroeder Arthritis Institute, University Health Network; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1293-1302. [PMID: 32361779 DOI: 10.1007/s00210-020-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
7
|
Dual dose-related effects evoked by CCL4 on thermal nociception after gene delivery or exogenous administration in mice. Biochem Pharmacol 2020; 175:113903. [DOI: 10.1016/j.bcp.2020.113903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
|
8
|
Chen Y, Zhang Y, Sun K, Yan H. Higher TGF-β2 Level in the Aqueous Humor of the Second Eye Versus the First Eye in the Course of Sequential Cataract Surgery. Ocul Immunol Inflamm 2020; 28:439-445. [PMID: 30973281 DOI: 10.1080/09273948.2019.1578888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose: To assess the differences in cytokine levels in the aqueous humor (AH) of bilateral eyes receiving sequential phacoemulsification and intraocular lens implantation.Methods: The levels of 33 cytokines in AH samples collected from separate single-eye operations of 26 age-related cataract patients who experiencing sequential cataract surgery were compared between the first-eye and second-eye groups.Results: The AH level of transforming growth factor beta 2 (TGF-β2), an immunosuppression regulator, in the second-eye group was significantly higher than that in the first-eye group (p = 0.002). No differences in the concentrations or detection rates of other cytokines were observed between the first- and second-eye groups.Conclusion: During bilateral sequential cataract surgery, the AH of the second eye had a higher level of TGF-β2 but not of proinflammatory cytokines or chemokines compared with those in the first eye, implying a protective mechanism preventing the sympathetic immune reaction induced by the first-eye cataract surgery.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yu Zhang
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Kexin Sun
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Hong Yan
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Department of Ophthalmology, Xi'an No. 4 Hospital, Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
9
|
Eisenstein TK, Chen X, Inan S, Meissler JJ, Tallarida CS, Geller EB, Rawls SM, Cowan A, Adler MW. Chemokine Receptor Antagonists in Combination with Morphine as a Novel Strategy for Opioid Dose Reduction in Pain Management. Mil Med 2020; 185:130-135. [PMID: 32074321 PMCID: PMC7353838 DOI: 10.1093/milmed/usz320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Although opioids are widely prescribed for pain, in many circumstances, they have only modest efficacy. Preclinical studies have shown that chemokines, immune mediators released during tissue injury and inflammation, can desensitize opioid receptors and block opioid analgesia by a process termed "heterologous desensitization." The present studies tested the hypothesis that in evoked pain, certain chemokine receptor antagonists (CRAs), given with a submaximal dose of morphine, would result in enhanced morphine potency. METHODS Three rodent pain assays were used: incisional pain in rats, the cold-water tail flick test in rats, and the formalin test in mice. The FDA-approved, commercially available CRAs, maraviroc and AMD3100, were used. They block the chemokine receptors and ligands, CCR5/CCL5 (RANTES) and CXCR4/CXCL4 (SDF-1α), respectively. RESULTS In the incisional pain assay, it was found that the combination of a single CRA, or of both CRAs, with morphine significantly shifted the morphine dose-response curve to the left, as much as 3.3-fold. In the cold-water tail flick and formalin tests, significant increases of the antinociceptive effects of morphine were also observed when combined with CRAs. CONCLUSIONS These results support the potential of a new "opioid-sparing" approach for pain treatment, which combines CRAs with reduced doses of morphine.
Collapse
Affiliation(s)
- Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Xiaohong Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Christopher S Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Alan Cowan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad St., Philadelphia, PA 19140
| |
Collapse
|
10
|
Vitoux MA, Kessal K, Melik Parsadaniantz S, Claret M, Guerin C, Baudouin C, Brignole-Baudouin F, Réaux-Le Goazigo A. Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: proinflammatory and apoptotic responses in vitro. Toxicol Lett 2019; 319:74-84. [PMID: 31707104 DOI: 10.1016/j.toxlet.2019.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022]
Abstract
Benzalkonium chloride (BAK), a quaternary ammonium compound widely used as disinfecting agent as well as preservative in eye drops is known to induce toxic effects on the ocular surface with inflammation and corneal nerve damage leading to dry eye disease (DED) in the medium-to-long term. The aim of this study was to evaluate in vitro the toxicity of a conditioned medium produced by corneal epithelial cells previously exposed to BAK (BAK-CM) on trigeminal neuronal cells. A human corneal epithelial (HCE) cell line was exposed to 5.10-3% BAK (i.e. 0.005% BAK) for 15 min and let recover for 5 h to prepare a BAK-CM. This BAK concentration is the lowest one found in eye drops. After this recovery period, BAK effect on HCE cells displayed cytotoxicity, morphological alteration, apoptosis, oxidative stress, ATP release, CCL2 and IL6 gene induction, as well as an increase in CCL2, IL-6 and MIF release. Next, a mouse trigeminal ganglion primary culture was exposed to the BAK-CM for 2 h, 4 h or 24 h. Whereas BAK-CM did not alter neuronal cell morphology, or induced neuronal cytotoxicity or oxidative stress, BAK-CM induced gene expression of Fos (neuronal activation marker), Atf3 (neuronal injury marker), Ccl2 and Il6 (inflammatory markers). Two and 4 h BAK-CM exposure promoted a neuronal damage (ATF-3, phospho-p38 increases; phospho-Stat3 decreases) while 24 h-BAK-CM exposure initiated a prosurvival pathway activation (phospho-p44/42, phospho-Akt increases; ATF-3, GADD153, active Caspase-3 decreases). In conclusion, this in vitro model, simulating paracrine mechanisms, represents an interesting tool to highlight the indirect toxic effects of BAK or any other xenobiotic on corneal trigeminal neurons and may help to better understand the cellular mechanisms that occur during DED pathophysiology.
Collapse
Affiliation(s)
- Michael-Adrien Vitoux
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de la Vision, F-75012 Paris, France; HORUS PHARMA, F-06700 Saint-Laurent-du-Var, France
| | - Karima Kessal
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de la Vision, F-75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU Foresight, F-75012 Paris, France
| | | | | | | | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de la Vision, F-75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU Foresight, F-75012 Paris, France; Université Versailles-Saint-Quentin-en-Yvelines, Hôpital Ambroise Paré, APHP, F-92100 Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de la Vision, F-75012 Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU Foresight, F-75012 Paris, France; Université de Paris, Faculté de Pharmacie de Paris, F-75006 Paris, France
| | | |
Collapse
|
11
|
Anti-inflammatory properties of Liposome-encapsulated clodronate or Anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model. Inflammopharmacology 2019; 27:603-612. [DOI: 10.1007/s10787-019-00563-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/13/2023]
|
12
|
Low back pain and disc degeneration are decreased following chronic toll-like receptor 4 inhibition in a mouse model. Osteoarthritis Cartilage 2018; 26:1236-1246. [PMID: 29908959 DOI: 10.1016/j.joca.2018.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration is a leading cause of chronic low back pain (LBP) but current treatment is limited. Toll-like receptors (TLRs) on disc cells are activated by endogenous extracellular matrix (ECM) fragments and modulate degeneration in vitro. This study investigated whether inhibiting TLR4 slows disc degeneration and reduces behavioral signs of LBP in vivo. DESIGN 7-9-month old wild-type and secreted protein acidic and rich in cysteine (SPARC)-null (a model of disc degeneration and LBP) male mice were treated with TAK-242 (TLR4 inhibitor) once, and following a 10-day washout, mice were treated 3 times/week for 8 weeks. Behavioral signs of axial discomfort and radiating leg pain were assessed weekly with the grip force assay and acetone test, respectively. Following treatment, pain-related spinal cord changes were evaluated and lumbar discs were excised and cultured. Cytokine secretion from discs was evaluated with protein arrays. RESULTS SPARC-null mice displayed elevated signs of axial and radiating pain at baseline compared to wild-type. Chronic, but not acute, TLR4 inhibition reduced behavioral signs of pain compared to vehicle. SPARC-null mice have increased calcitonin gene-related peptide (CGRP)- and glial fibrillary acidic protein (GFAP)-immunoreactivity (astrocyte marker) in the dorsal horn compared to wild-type, which is reduced by chronic TLR4 inhibition. Ex vivo degenerating discs from SPARC-null mice secrete increased levels of many pro-inflammatory cytokines, which chronic TLR4 inhibition reduced. CONCLUSION Chronic TLR4 inhibition decreased behavioral signs of LBP, pain-related neuroplasticity and disc inflammation in SPARC-null mice. TAK-242 inhibits TLR4 activation within discs, as evidenced by decreases in cytokine release. Therefore, TLRs are potential therapeutic targets to slow disc degeneration and reduce pain.
Collapse
|
13
|
García-Domínguez M, Lastra A, Folgueras AR, Cernuda-Cernuda R, Fernández-García MT, Hidalgo A, Menéndez L, Baamonde A. The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4 + Lymphocytes and Met-Enkephalin. Mol Neurobiol 2018; 56:1578-1595. [PMID: 29907903 DOI: 10.1007/s12035-018-1176-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
In the present study, we characterize the antinociceptive effects produced by the chemokine CCL4 in mice. The intraplantar administration of very low doses of CCL4 (0.1-3 pg) produced bilateral antinociception assessed by the unilateral hot-plate test (UHP) without evoking chemotactic responses at the injection site. Moreover, the subcutaneous administration of CCL4 (3-100 pg/kg) also yielded bilateral antinociception in the UHP and the paw pressure test and reduced the number of spinal neurons that express Fos protein in response to noxious stimulation. The implication of peripheral CCR5 but not CCR1 in CCL4-evoked antinociception was deduced from the inhibition produced by systemic but not intrathecal, administration of the CCR5 antagonist DAPTA, and the inefficacy of the CCR1 antagonist J113863. Besides, the inhibition observed after subcutaneous but not intrathecal administration of naloxone demonstrated the involvement of peripheral opioids and the efficacy of naltrindole but not cyprodime or nor-binaltorphimine supported the participation of δ-opioid receptors. In accordance, plasma levels of met-enkephalin, but not β-endorphin, were augmented in response to CCL4. Likewise, CCL4-evoked antinociception was blocked by the administration of an anti-met-enk antibody. Leukocyte depletion experiments performed with cyclophosphamide, anti-Ly6G, or anti-CD3 antibodies indicated that the antinociceptive effect evoked by CCL4 depends on circulating T lymphocytes. Double immunofluorescence experiments showed a four times more frequent expression of met-enk in CD4+ than in CD8+ T lymphocytes. CCL4-induced antinociception almost disappeared upon CD4+, but not CD8+, lymphocyte depletion with selective antibodies, thus supporting that the release of met-enk from CD4+ lymphocytes underlies the opioid antinociceptive response evoked by CCL4.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Rafael Cernuda-Cernuda
- Área de Biología Celular, Departamento de Morfología y Biología Celular, INEUROPA (Instituto de Neurociencias del Principado de Asturias), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - María Teresa Fernández-García
- Unidad de Histopatología Molecular en Modelos Animales de Cáncer, IUOPA, Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
14
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 2018; 15:96. [PMID: 29587798 PMCID: PMC5872578 DOI: 10.1186/s12974-018-1133-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neuro–immune interaction underlies chronic neuroinflammation and aberrant sensory processing resulting in neuropathic pain. Despite the pathological significance of both neuroinflammation-driven peripheral sensitization and spinal sensitization, the functional relationship between these two distinct events has not been understood. Methods In this study, we determined whether inhibition of inflammatory macrophages by administration of α4β2 nicotinic acetylcholine receptor (nAChR) agonists improves neuropathic pain and affects microglial activation in the spinal dorsal horn (SDH) in mice following partial sciatic nerve ligation (PSL). Expression levels of neuroinflammatory molecules were evaluated by RT-qPCR and immunohistochemistry, and PSL-induced mechanical allodynia was defined by the von Frey test. Results Flow cytometry revealed that CD11b+ F4/80+ macrophages were accumulated in the injured sciatic nerve (SCN) after PSL. TC-2559, a full agonist for α4β2 nAChR, suppressed the upregulation of interleukin-1β (IL-1β) in the injured SCN after PSL and attenuated lipopolysaccharide-induced upregulation of IL-1β in cultured macrophages. Systemic (subcutaneous, s.c.) administration of TC-2559 during either the early (days 0–3) or middle/late (days 7–10) phase of PSL improved mechanical allodynia. Moreover, local (perineural, p.n.) administration of TC-2559 and sazetidine A, a partial agonist for α4β2 nAChR, during either the early or middle phase of PSL improved mechanical allodynia. However, p.n. administration of sazetidine A during the late (days 21–24) phase did not show the attenuating effect, whereas p.n. administration of TC-2559 during this phase relieved mechanical allodynia. Most importantly, p.n. administration of TC-2559 significantly suppressed morphological activation of Iba1+ microglia and decreased the upregulation of inflammatory microglia-dominant molecules, such as CD68, interferon regulatory factor 5, and IL-1β in the SDH after PSL. Conclusion These findings support the notion that pharmacological inhibition of inflammatory macrophages using an α4β2 nAChR agonist exhibit a wide therapeutic window on neuropathic pain after nerve injury, and it could be nominated as a novel pharmacotherapy to relieve intractable pain. Electronic supplementary material The online version of this article (10.1186/s12974-018-1133-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| |
Collapse
|
15
|
Andersen HH, Lo Vecchio S, Elberling J, Yosipovitch G, Arendt-Nielsen L. UVB- and NGF-induced cutaneous sensitization in humans selectively augments cowhage- and histamine-induced pain and evokes mechanical hyperknesis. Exp Dermatol 2018; 27:258-267. [DOI: 10.1111/exd.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hjalte H. Andersen
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Silvia Lo Vecchio
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| | - Jesper Elberling
- The Allergy Clinic, Department of Dermato-Allergology; Copenhagen University Hospital; Gentofte, Copenhagen Denmark
| | - Gil Yosipovitch
- Department of Dermatology and Itch Center; University of Miami School of Medicine, Florida; Miami FL USA
| | - Lars Arendt-Nielsen
- Laboratory for Experimental Cutaneous Pain and Itch Research, SMI; Department of Health Science and Technology; Faculty of Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
16
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
17
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
18
|
|
19
|
Wang J, Ma SH, Tao R, Xia LJ, Liu L, Jiang YH. Gene expression profile changes in rat dorsal horn after sciatic nerve injury. Neurol Res 2016; 39:176-182. [PMID: 28033741 DOI: 10.1080/01616412.2016.1273590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study aims to investigate gene expression changes in rat dorsal horns after sciatic nerve injury (SNI). METHODS The GSE18803 microarray data collected from young and adult rats were downloaded from GEO. After preprocessing, differentially expressed genes (DEGs) between SNI and sham-operated groups were selected using Limma package, in young and adult group, respectively, followed by Venn analysis. Then, enrichment analyses were performed for these DEGs using DAVID. The STRING database was used to identify protein-protein interactions (PPIs) among these DEGs, and the module network was further extracted using plugin ClusterONE. Finally, protein domain enrichment analysis of DEGs in each module was performed using InterPro database. RESULTS Totally, 210 and 50 DEGs were identified in adult and young group, respectively. Among them, 160 were specific in adult group (e.g. CCL2, NF-κB1 and RAC2); 9 were specific in young group (e.g. ILF3 and LYVE1); and 41 were common in both two groups (e.g. FCER1G, C1QA, C1QB and C1QC). The up-regulated DEGs were mostly enriched in immune response-related biological processes, as well as 15 immune- and inflammation-related pathways. Then, two modules were identified in PPI network. CCL2 and NF-κB1 had high connectivity degrees in module 1, and RAC2, FCER1G and CD68 in module 2. CONCLUSION CCL2, NF-κB1, RAC2, FCER1G and C1Q may contribute to the generation of neuropathic pain after SNI via immune and defense pathways. Among the five genes, the first three are specific in adult population, while the latter two are age-independent. They all might function through involvement of these immune or inflammatory pathways.
Collapse
Affiliation(s)
- Jing Wang
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Song-He Ma
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Rong Tao
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Ling-Jie Xia
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Lin Liu
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying-Hai Jiang
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
20
|
Jensen B. Chronic pain assessment from bench to bedside: lessons along the translation continuum. Transl Behav Med 2016; 6:596-604. [PMID: 27848210 PMCID: PMC5110487 DOI: 10.1007/s13142-015-0370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The first step to providing effective healthcare is accurate assessment and diagnosis. The importance of accurate assessment is particularly important for chronic pain, given its subjective and multidimensional nature. The purpose of the current review is to discuss the dilemma of chronic pain assessment within a translational framework. First, assessment issues specific to chronic pain will be introduced along the entire continuum of translational activities. Important barriers along the continuum include inconsistent measurement of pain, possibly inaccurate preclinical models, and other practical limitations such as time, cost, and training. Second, the review will highlight promising areas worth further consideration in research and practice to bridge some of the gaps that currently impede effective chronic pain assessment and care. Specifically, consideration will be given to observational, biological, and technology-driven measures of chronic pain.
Collapse
Affiliation(s)
- Bryan Jensen
- Department of Psychology, Virginia Commonwealth University, PO Box 842018, Richmond, VA, 23284-2018, USA.
| |
Collapse
|
21
|
|
22
|
Llorián-Salvador M, González-Rodríguez S, Lastra A, Fernández-García MT, Hidalgo A, Menéndez L, Baamonde A. Involvement of CC Chemokine Receptor 1 and CCL3 in Acute and Chronic Inflammatory Pain in Mice. Basic Clin Pharmacol Toxicol 2016; 119:32-40. [DOI: 10.1111/bcpt.12543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022]
Affiliation(s)
- María Llorián-Salvador
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| | - Sara González-Rodríguez
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| | - Ana Lastra
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| | | | - Agustín Hidalgo
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| | - Luis Menéndez
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| | - Ana Baamonde
- Laboratory of Pharmacology; School of Medicine; University Institute of Oncology of Asturias (IUOPA); University of Oviedo; Asturias Spain
| |
Collapse
|
23
|
Kress HG, Baltov A, Basiński A, Berghea F, Castellsague J, Codreanu C, Copaciu E, Giamberardino MA, Hakl M, Hrazdira L, Kokavec M, Lejčko J, Nachtnebl L, Stančík R, Švec A, Tóth T, Vlaskovska MV, Woroń J. Acute pain: a multifaceted challenge - the role of nimesulide. Curr Med Res Opin 2016; 32:23-36. [PMID: 26414386 DOI: 10.1185/03007995.2015.1100986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND This article summarizes the outcome from an international consensus meeting, which took place in Vienna on 4 November 2014. SCOPE The aim of the meeting was to provide the state of the art on the pathophysiology and treatment of acute pain with special emphasis on nimesulide, a non-steroidal anti-inflammatory drug (NSAID) indicated for the treatment of acute pain and primary dysmenorrhea. Besides the data on the mechanisms of acute inflammatory pain and on the efficacy and safety of nimesulide in patients affected by different forms of acute pain, the clinical experience of attending experts was discussed based on selected case reports. RESULTS The members of this consensus group recognized that nimesulide is a NSAID highly effective in the treatment of several painful situations with an acute inflammatory component including primary dysmenorrhea. Although safety concerns regarding nimesulide have emerged in recent years, both robust new epidemiological data and clinical experience confirm a positive benefit/risk profile of nimesulide in the treatment of several forms of acute pain. CONCLUSIONS The members of this international consensus group concluded that nimesulide, when used appropriately, remains a particularly valuable and safe option for the treatment of several conditions characterized by the presence of acute inflammatory pain because of the rapid onset of the analgesic action, and the positive evidence-based benefit/risk profile.
Collapse
Affiliation(s)
- H G Kress
- a a Medical University/AKH Vienna - Dept. of Special Anaesthesia and Pain Therapy , Vienna , Austria
| | - A Baltov
- b b Emergency Trauma Hospital 'N.I. Pirogov' -Department of Trauma Surgery , Sofia , Bulgaria
| | - A Basiński
- c c Medical University of Gdańsk, Clinical Emergency Department of the University Clinical Center , Gdańsk , Poland
| | - F Berghea
- d d Clinical Hospital Saint Maria, Carol Davila University of Medicine, Department of Rheumatology , Bucharest , Romania
| | - J Castellsague
- e e RTI Health Solutions International , Barcelona , Spain
| | - C Codreanu
- f f Center of Rheumatic Disease 'Dr. Ion Stoia', Carol Davila University of Medicine, Rheumatology Department , Bucharest , Romania
| | - E Copaciu
- g g University Emergency Hospital, Carol Davila University of Medicine - Anesthesia and Intensive Care Department , Bucharest , Romania
| | - M A Giamberardino
- h h 'G. d'Annunzio' University of Chieti-Pescara - Department of Medicine and Science of Aging , Chieti , Italy
| | - M Hakl
- i i Masaryk University St. Ann's University Hospital - Department of Anesthesiology and Intensive Care Medicine , Brno , Czech Republic
| | - L Hrazdira
- j j Faculty of Sports Studies Masaryk University - Department of Health Support , Brno , Czech Republic
| | - M Kokavec
- k k Orthopedic Department, Children's Faculty Hospital , Bratislava , Slovak Republic
| | - J Lejčko
- l l University Hospital Pilsen - Department of Anaesthesiology and Intensive Care , Plzeň , Czech Republic
| | - L Nachtnebl
- m m Masaryk University St. Anne's University Hospital - 1st Orthopaedics Department , Brno , Czech Republic
| | - R Stančík
- n n Research Institute of Rheumatic Diseases in Piešťany -National Institute of Rheumatic Diseases , Piešťany , Slovak Republic
| | - A Švec
- o o University Hospital Bratislava - First Department of Orthopaedics and Trauma Surgery , Bratislava , Slovak Republic
| | - T Tóth
- p p MÁV PolyClinic - Department of Rheumatology , Debrecen , Hungary
| | - M V Vlaskovska
- q q Medical University of Sofia - Department of Pharmacology and Toxicology , Sofia , Bulgaria
| | - J Woroń
- r r Jagellonian University College of Medicine - Department of Clinical Pharmacology and Department of Pain Treatment and Palliative Care , Kraków , Poland
| |
Collapse
|
24
|
Shabes P, Schloss N, Magerl W, Schmahl C, Treede RD, Baumgärtner U. A novel human surrogate model of noninjurious sharp mechanical pain. Pain 2016; 157:214-224. [DOI: 10.1097/j.pain.0000000000000352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Stettner M, Hinrichs L, Guthoff R, Bairov S, Petropoulos IN, Warnke C, Hartung HP, Malik RA, Kieseier BC. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol 2015; 3:88-100. [PMID: 26900579 PMCID: PMC4748316 DOI: 10.1002/acn3.275] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/07/2015] [Accepted: 11/15/2015] [Indexed: 12/15/2022] Open
Abstract
Objective There is an unmet need for better diagnostic tools to further delineate clinical subsets of heterogeneous chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and multifocal motor neuropathy (MMN) to facilitate treatment decisions. Corneal confocal microscopy (CCM) is a noninvasive and reproducible nerve imaging technique. This study evaluates the potential of CCM as a diagnostic surrogate in CIDP and MMN. Methods In a cross‐sectional prospective approach, 182 patients and healthy controls were studied using CCM to quantify corneal nerve damage and immune cell infiltration. Results Patients with CIDP and MMN had a reduction in corneal nerve fiber (CNF) measures and an increase in corneal immune cell infiltrates. In CIDP, CNF parameters decreased with increasing duration of disease. The number of dendritic cells in proximity to CNFs was increased in patients with early disease and correlated with the degree of motor affection. A further reduction in CNF parameters and an increase in nondendritic cells were observed in patients with painful neuropathy. In CIDP patients with antineuronal antibodies the number of nondendritic cells was increased. Interpretation Our findings suggest that CNF loss may reflect severity of neuropathy and quantification of distinct cells around the CNF plexus may help in stratifying CIDP subtypes, clinical course, and disease activity. However, further longitudinal studies are required before CCM can be considered as a valid surrogate endpoint for patients with CIDP and MMN.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich-Heine University Dusseldorf Germany
| | - Lena Hinrichs
- Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich-Heine University Dusseldorf Germany
| | - Rainer Guthoff
- Department of Ophthalmology Medical Faculty Heinrich-Heine University Dusseldorf Germany
| | - Silja Bairov
- Department of Ophthalmology Medical Faculty Heinrich-Heine University Dusseldorf Germany
| | - Ioannis N Petropoulos
- Centre for Endocrinology and Diabetes Institute of Human Development Faculty of Medical and Human Sciences CMFT and University of Manchester United Kingdom; Weill Cornell Medicine-Qatar Education City Doha Qatar
| | - Clemens Warnke
- Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich-Heine University Dusseldorf Germany
| | - Hans-Peter Hartung
- Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich-Heine University Dusseldorf Germany
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes Institute of Human Development Faculty of Medical and Human Sciences CMFT and University of Manchester United Kingdom; Weill Cornell Medicine-Qatar Education City Doha Qatar
| | - Bernd C Kieseier
- Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich-Heine University Dusseldorf Germany
| |
Collapse
|
26
|
Chen EI, Crew KD, Trivedi M, Awad D, Maurer M, Kalinsky K, Koller A, Patel P, Kim Kim J, Hershman DL. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology. PLoS One 2015; 10:e0145816. [PMID: 26710119 PMCID: PMC4692419 DOI: 10.1371/journal.pone.0145816] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022] Open
Abstract
Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity-associated biomarkers can be further validated in larger retrospective cohorts for their utility in identifying patients at high risk for CIPN.
Collapse
Affiliation(s)
- Emily I. Chen
- Department of Pharmacology, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Katherine D. Crew
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Department of Epidemiology, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Meghna Trivedi
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Danielle Awad
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Mathew Maurer
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Kevin Kalinsky
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Antonius Koller
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Purvi Patel
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Jenny Kim Kim
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
| | - Dawn L. Hershman
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Department of Epidemiology, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Proteomics Shared Resource, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
McMahon SB, Russa FL, Bennett DLH. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat Rev Neurosci 2015; 16:389-402. [DOI: 10.1038/nrn3946] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
|
29
|
Moss PJ, Huang W, Dawes J, Okuse K, McMahon SB, Rice ASC. Macrophage-sensory neuronal interaction in HIV-1 gp120-induced neurotoxicity‡. Br J Anaesth 2014; 114:499-508. [PMID: 25227937 PMCID: PMC4332570 DOI: 10.1093/bja/aeu311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Human immunodeficiency virus (HIV)-associated sensory neuropathy (SN) is the most frequent neurological complication of HIV disease. Among the probable mechanisms underlying HIV-SN are neurotoxicity induced by the HIV glycoprotein gp120 and antiretroviral therapies (ART). Since HIV-SN prevalence remains high in patients who have not been exposed to toxic ART drugs, here we focused on gp120-mediated mechanisms underlying HIV-SN. Methods We hypothesized that a direct gp120–sensory neurone interaction is not the cause of neurite degeneration; rather, an indirect interaction of gp120 with sensory neurones involving macrophages underlies axonal degeneration. Rat dorsal root ganglion (DRG) cultures were used to assess gp120 neurotoxicity. Rat bone marrow-derived macrophage (BMDM) cultures and qPCR array were used to assess gp120-associated gene expression changes. Results gp120 induced significant, but latent onset, neurite degeneration until 24 h after application. gp120–neurone interaction occurred within 1 h of application in <10% of DRG neurones, despite neurite degeneration having a global effect. Application of culture media from gp120-exposed BMDMs induced a significant reduction in DRG neurite outgrowth. Furthermore, gp120 significantly increased the expression of 25 cytokine-related genes in primary BMDMs, some of which have been implicated in other painful polyneuropathies. The C–C chemokine receptor type 5 (CCR5) antagonist, maraviroc, concentration-dependently inhibited gp120-induced tumour necrosis factor-α gene expression, indicating that these effects occurred via gp120 activation of CCR5. Conclusions Our findings highlight macrophages in the pathogenesis of HIV-SN and upstream modulation of macrophage response as a promising therapeutic strategy.
Collapse
Affiliation(s)
- P J Moss
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine and
| | - W Huang
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine and Current address: Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - J Dawes
- Wolfson Centre for Age Related Disease, King's College London, London, UK Current address: The Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - K Okuse
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - S B McMahon
- Wolfson Centre for Age Related Disease, King's College London, London, UK
| | - A S C Rice
- Pain Research Group, Department of Surgery and Cancer, Faculty of Medicine and Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine 2014; 70:185-93. [PMID: 25066335 DOI: 10.1016/j.cyto.2014.06.019] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 02/09/2023]
Abstract
Osteoarthritis is a chronic and painful disease of synovial joints. Chondrocytes, synovial cells and other cells in the joint can express and respond to cytokines and chemokines, and all of these molecules can also be detected in synovial fluid of patients with osteoarthritis. The presence of inflammatory cytokines in the osteoarthritic joint raises the question whether they may directly participate in pain generation by acting on innervating joint nociceptors. Here, we first provide a systematic discussion of the known proalgesic effects of cytokines and chemokines that have been detected in osteoarthritic joints, including TNF-α, IL-1, IL-6, IL-15, IL-10, and the chemokines, MCP-1 and fractalkine. Subsequently, we discuss what is known about their contribution to joint pain based on studies in animal models. Finally, we briefly discuss limited data available from clinical studies in human osteoarthritis.
Collapse
Affiliation(s)
- Rachel E Miller
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | - Anne-Marie Malfait
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
31
|
Dawes JM, Antunes-Martins A, Perkins JR, Paterson KJ, Sisignano M, Schmid R, Rust W, Hildebrandt T, Geisslinger G, Orengo C, Bennett DL, McMahon SB. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation. PLoS One 2014; 9:e93338. [PMID: 24732968 PMCID: PMC3986071 DOI: 10.1371/journal.pone.0093338] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/metabolism
- Chemokine CCL2/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Ganglia, Spinal/radiation effects
- Gene Expression Profiling
- Gene Expression Regulation/radiation effects
- Genome/genetics
- Humans
- Inflammation/genetics
- Inflammation/pathology
- Lectins, C-Type/metabolism
- Male
- Models, Biological
- Pancreatitis-Associated Proteins
- Rats, Wistar
- Reference Standards
- Reproducibility of Results
- Sequence Analysis, RNA
- Skin/metabolism
- Skin/pathology
- Skin/radiation effects
- Transcription, Genetic/radiation effects
- Ultraviolet Rays
- Up-Regulation/genetics
- Up-Regulation/radiation effects
Collapse
Affiliation(s)
- John M. Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ana Antunes-Martins
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | - James R. Perkins
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Kathryn J. Paterson
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/Zentrum fuer Arzneimittelforschung, -Entwicklung und -Sicherheit (ZAFES), University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research Germany, Biberach an der Riß, Germany
| | - Werner Rust
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research Germany, Biberach an der Riß, Germany
| | - Tobias Hildebrandt
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research Germany, Biberach an der Riß, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/Zentrum fuer Arzneimittelforschung, -Entwicklung und -Sicherheit (ZAFES), University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stephen B. McMahon
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|