1
|
Alzarea S, Rahman S. The Alpha-7 Nicotinic Receptor Positive Allosteric Modulator PNU120596 Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors and Cognitive Impairment by Regulating the PPAR-α Signaling Pathway in Mice. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:234-244. [PMID: 39350553 DOI: 10.2174/0118715273311527240916050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND AND OBJECTIVE The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice. MATERIALS AND METHODS Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test. RESULTS PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg). CONCLUSION These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.
Collapse
Affiliation(s)
- Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
2
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A. Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 2024; 14:47. [PMID: 38253622 PMCID: PMC10803733 DOI: 10.1038/s41398-024-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ketamine is clinically used fast-acting antidepressant. Its metabolite hydroxynorketamine (HNK) shows a robust antidepressant effect in animal studies. It is unclear, how these chemically distinct compounds converge on similar neuronal effects. While KET acts mostly as N-methyl-d-aspartate receptor (NMDAR) antagonist, the molecular target of HNK remains enigmatic. Here, we show that KET and HNK converge on rapid inhibition of glutamate release by reducing the release competence of synaptic vesicles and induce nuclear translocation of pCREB that controls expression of neuroplasticity genes connected to KET- and HNK-mediated antidepressant action. Ro25-6981, a selective antagonist of GluN2B, mimics effect of KET indicating that GluN2B-containing NMDAR might mediate the presynaptic effect of KET. Selective antagonist of α7 nicotinic acetylcholine receptors (α7nAChRs) or genetic deletion of Chrna7, its pore-forming subunit, fully abolishes HNK-induced synaptic and nuclear regulations, but leaves KET-dependent cellular effects unaffected. Thus, KET or HNK-induced modulation of synaptic transmission and nuclear translocation of pCREB can be mediated by selective signaling via NMDAR or α7nAChRs, respectively. Due to the rapid metabolism of KET to HNK, it is conceivable that subsequent modulation of glutamatergic and cholinergic neurotransmission affects circuits in a cell-type-specific manner and contributes to the therapeutic potency of KET. This finding promotes further exploration of new combined medications for mood disorders.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bartomeu Perelló-Amorós
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Jena, Jena, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
5
|
Targowska-Duda KM, Budzynska B, Michalak A, Wnorowski A, Loland CJ, Maj M, Manetti D, Romanelli MN, Jozwiak K, Biala G, Arias HR. Type I and type II positive allosteric modulators of α7 nicotinic acetylcholine receptors induce antidepressant-like activity in mice by a mechanism involving receptor potentiation but not neurotransmitter reuptake inhibition. Correlation with mTOR intracellular pathway activation. Eur Neuropsychopharmacol 2021; 52:31-47. [PMID: 34237657 DOI: 10.1016/j.euroneuro.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study is to determine whether type I and type II positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) induce antidepressant-like activity in mice after acute, subchronic, and chronic treatments, and to assess whether α7-PAMs inhibit neurotransmitter transporters and activate mTOR (mammalian target of rapamycin) and/or ERK (extracellular signal-regulated protein kinases) signaling. The forced swim (FST) and tail suspension (TST) test results indicated that NS-1738 (type I PAM), PNU-120596 and PAM-2 (type II PAMs) induce antidepressant-like activity after subchronic treatment, whereas PAM-2 was also active after chronic treatment. Methyllycaconitine (α7-antagonist) inhibited the observed effects, highlighting the involvement of α7 nAChRs in this process. Drug interaction studies showed synergism between PAM-2 and bupropion (antidepressant), but not between PAM-2 and DMXBA (α7-agonist). The studied PAMs showed no high affinity (< 1 µM) for the human dopamine, serotonin, and noradrenaline transporters, suggesting that transporter inhibition is not the underlying mechanism for the observed activity. To assess whether mTOR and ERK signaling pathways are involved in the activity of α7-PAMs, the phosphorylation status of key signaling nodes was determined in prefrontal cortex and hippocampus from mice chronically treated with PAM-2. In conclusion, the antidepressant-like activity of type I and type II PAMs is mediated by a mechanism involving α7 potentiation but not α7 desensitization or neurotransmitter transporter blockade, and is correlated with activation of both mTOR and ERK signaling pathways. These results support the view that α7-PAMs might be clinically used to ameliorate depression disorders .
Collapse
Affiliation(s)
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Poland
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Denmark
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Poland
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | | | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Poland
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma, USA.
| |
Collapse
|
6
|
Bagdas D, Sevdar G, Gul Z, Younis R, Cavun S, Tae HS, Ortells MO, Arias HR, Gurun MS. (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4) decreases nociception and emotional manifestations of neuropathic pain in mice by α7 nicotinic acetylcholine receptor potentiation. Neurol Res 2021; 43:1056-1068. [PMID: 34281483 DOI: 10.1080/01616412.2021.1949684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical intervention of pain is often accompanied by changes in affective behaviors, so both assays of affective and sensorial aspects of nociception play an important role in the development of novel analgesics. Although positive allosteric modulation (PAM) of α7 nicotinic acetylcholine receptors (nAChRs) has been recognized as a novel approach for the relief of sensorial aspects of pain, their effects on affective components of pain remain unclear. Therefore, we investigated whether PAM-4, a highly selective α7-nAChR PAM, attenuates inflammatory and neuropathic pain, as well as the concomitant depressive/anxiety comorbidities. The anti-nociceptive activity of PAM-4 was assessed in mice using the formalin test and chronic constriction injury (CCI)-induced neuropathic pain model. The anxiolytic- and antidepressant-like activity of PAM-4 was evaluated using the marble burying test and forced swimming test. Acute systemic administration of PAM-4 dose-dependently reversed formalin-induced paw licking behavior and CCI-induced mechanical allodynia without development of any motor impairment. PAM-4 reversed the decreased swimming time and number of buried marbles in CCI-treated mice, suggesting that this ligand attenuates chronic pain-induced depression-like behavior and anxiogenic-like effects. The effects of PAM-4 were inhibited by the α7-selective antagonist methyllycaconitine, indicating molecular mechanism mediated by α7-nAChRs. Indeed, electrophysiological recordings showed the PAM-4 enhances human α7 nAChRs with higher potency and efficacy compared to rat α7 nAChRs. These findings suggest that PAM-4 reduces both sensorial and affective behaviors induced by chronic pain in mice by α7-nAChR potentiation. PAM-4 deserves further investigations for the management of chronic painful conditions with comorbidities.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Gulce Sevdar
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Zulfiye Gul
- Department of Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Rabha Younis
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sinan Cavun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Moron, Argentina
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | - Mine Sibel Gurun
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
7
|
Arias HR, Ghelardini C, Lucarini E, Tae HS, Yousuf A, Marcovich I, Manetti D, Romanelli MN, Elgoyhen AB, Adams DJ, Di Cesare Mannelli L. ( E)-3-Furan-2-yl- N- p-tolyl-acrylamide and its Derivative DM489 Decrease Neuropathic Pain in Mice Predominantly by α7 Nicotinic Acetylcholine Receptor Potentiation. ACS Chem Neurosci 2020; 11:3603-3614. [PMID: 33073974 DOI: 10.1021/acschemneuro.0c00476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main objective of this study was to determine whether (E)-3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2) and its structural derivative DM489 produce anti-neuropathic pain activity using the streptozotocin (STZ)- and oxaliplatin-induced neuropathic pain animal models. To assess possible mechanisms of action, the pharmacological activity of these compounds was determined at α7 and α9α10 nicotinic acetylcholine receptors (nAChRs) and CaV2.2 channels expressed alone or coexpressed with G protein-coupled GABAB receptors. The animal results indicated that a single dose of 3 mg/kg PAM-2 or DM489 decreases STZ-induced neuropathic pain in mice, and chemotherapy-induced neuropathic pain is decreased by PAM-2 (3 mg/kg) and DM489 (10 mg/kg). The observed anti-neuropathic pain activity was inhibited by the α7-selective antagonist methyllycaconitine. The coadministration of oxaliplatin with an inactive dose (1 mg/kg) of PAM-2 decreased the development of neuropathic pain after 14, but not 7, days of cotreatment. The electrophysiological results indicated that PAM-2 potentiates human (h) and rat (r) α7 nAChRs with 2-7 times higher potency than that for hCaV2.2 channel inhibition and an even greater difference compared to that for rα9α10 nAChR inhibition. These results support the notion that α7 nAChR potentiation is likely the predominant molecular mechanism underlying the observed anti-nociceptive pain activity of these compounds.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, Oklahoma 74464, United States
| | | | | | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Arsalan Yousuf
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | | |
Collapse
|
8
|
Alzarea S, Rahman S. Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behav Brain Res 2019. [DOI: https://doi.org/10.1016/j.bbr.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behav Brain Res 2019; 366:19-28. [DOI: 10.1016/j.bbr.2019.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
|
10
|
Targowska-Duda KM, Budzynska B, Michalak A, Jozwiak K, Biala G, Arias HR. 3-Furan-2-yl-N-p-tolyl-acrylamide, a highly selective positive allosteric modulator of α7 nicotinic receptors, produces anxiolytic-like activity in mice. J Psychopharmacol 2019; 33:558-567. [PMID: 30644335 DOI: 10.1177/0269881118821100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Several lines of investigations support the idea that nicotinic acetylcholine receptors modulate neuronal pathways involved in anxiety and depression. AIMS The purpose of this study was to determine whether 3-furan-2-yl-N-p-tolyl-acrylamide, a highly selective positive allosteric modulator of α7 nicotinic acetylcholine receptors, influences anxiety-like behaviour in mice, and to determine the modulatory activity of 3-furan-2-yl-N-p-tolyl-acrylamide on mice pretreated with either nicotine or selective α7-agonists (i.e. PNU-282987 or (2.4)-dimethoxybenzylidene anabaseine dihydrochloride). METHODS The elevated plus maze and novelty suppressed feeding tests were selected to evaluate 3-furan-2-yl-N-p-tolyl-acrylamide and other nicotinic ligands on anxiety-like behaviour in mice. RESULTS The results indicated that: (a) 3-furan-2-yl-N-p-tolyl-acrylamide induces anxiolytic-like activity at 0.5 (elevated plus maze) and 1.0 (novelty suppressed feeding) mg/kg, respectively, after acute treatment, whereas its efficacy is increased after chronic treatments (i.e. active at 0.1 mg/kg; elevated plus maze). This is the first time showing anxiolytic-like activity elicited by 3-furan-2-yl-N-p-tolyl-acrylamide, contrary to the lack of activity for PNU-120596 (0.1 mg/kg); (b) the anxiolytic-like activity of 0.5 mg/kg 3-furan-2-yl-N-p-tolyl-acrylamide is inhibited by methyllycaconitine, a selective α7-antagonist, suggesting that α7 nicotinic acetylcholine receptors are involved in this process; (c) 0.5 mg/kg 3-furan-2-yl-N-p-tolyl-acrylamide reverses the anxiogenic effects induced by 0.1 mg/kg nicotine but not by 10.0 mg/kg PNU-282987; and (d) inactive doses of both 3-furan-2-yl-N-p-tolyl-acrylamide (0.1 mg/kg) and (2.4)-dimethoxybenzylidene anabaseine dihydrochloride (1.0 mg/kg) produce anxiolytic-like effects, suggesting drug interactions, probably synergistic. CONCLUSIONS Our findings indicated that anxiolytic-like activity is mediated by α7 nicotinic acetylcholine receptors, supporting the concept that these receptors modulate anxiety processes. The results indicating that the chronic treatment with 3-furan-2-yl-N-p-tolyl-acrylamide is more efficient than the acute treatment in eliciting anxiolytic-like activity, and that 3-furan-2-yl-N-p-tolyl-acrylamide reverses the anxiogenic effects induced by nicotine, might be of therapeutic importance during smoking cessation.
Collapse
Affiliation(s)
| | - Barbara Budzynska
- 2 Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Michalak
- 2 Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jozwiak
- 1 Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Grazyna Biala
- 2 Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Hugo R Arias
- 3 Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA
| |
Collapse
|
11
|
Rahman S, Alzarea S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:159-178. [DOI: 10.1016/bs.pmbts.2019.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Alzarea S, Rahman S. Effects of alpha-7 nicotinic allosteric modulator PNU 120596 on depressive-like behavior after lipopolysaccharide administration in mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:218-228. [PMID: 29800595 DOI: 10.1016/j.pnpbp.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
Abstract
Evidence suggests that α7 nicotinic acetylcholine receptor (α7 nAChR) in the central nervous system has a critical role in the regulation of microglial function and neuroinflammation associated with the pathophysiology of major depressive disorder. The objectives of the present study were to determine the effects of PNU 120596, an α7 nAChR positive allosteric modulator (PAM), on depressive-like behavior and expression of ionized calcium binding adaptor molecule 1 (Iba-1), a microglial marker, in male C57BL/6J mice following lipopolysaccharide (LPS) administration, an animal model for depressive-like behavior. Forced swim test (FST), tail suspension test (TST), and sucrose preference test were used to determine the effects of PNU 120596 on depressive-like behavior, measured by increased immobility time or decreased sucrose preference. We also examined the effects of PNU 120596 on Iba-1 expression by using Western blot analysis and immunofluorescence staining in the hippocampus and prefrontal cortex, the brain regions implicated in major depressive disorder. Administration of LPS (1 mg/kg, i.p.) significantly increased immobility time during FST and TST and decreased sucrose preference. The PNU 120596 (1 or 4 mg/kg, i.p.) dose-dependently prevented LPS-induced depressive-like behavior during FST, TST, and sucrose preference test. The PNU 120596 (1 or 4 mg/kg) alone did not show any significant alteration on immobility time and sucrose preference. Pretreatment of methyllycaconitine (3 mg/kg, i.p.), an α7 nAChR antagonist, significantly prevented the antidepressant-like effects of PNU (4 mg/kg). Similarly, the PNU 120596 (4 mg/kg, i.p.) significantly reduced LPS-induced increased expression of Iba-1 in the hippocampus or prefrontal cortex. Overall, these results suggest that PNU 120596 reduces LPS-induced depressive-like behavior and microglial activation in the hippocampus and prefrontal cortex in mice. Therefore, α7 nAChR PAMs could be developed as potential therapeutic utility for the treatment of major depressive disorder in humans.
Collapse
Affiliation(s)
- Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
13
|
Targowska-Duda KM, Kaczor AA, Jozwiak K, Arias HR. Molecular interactions of type I and type II positive allosteric modulators with the human α7 nicotinic acetylcholine receptor: an in silico study. J Biomol Struct Dyn 2018; 37:411-439. [PMID: 29363414 DOI: 10.1080/07391102.2018.1427634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The binding site locations and structural components for type I and type II positive allosteric modulators (PAMs) of the α7 nicotinic acetylcholine receptor (nAChR) have not been fully characterized yet. In this regard, homology models of the human α7 nAChR and hα7/m5-HT3A chimera, built using the crystal structure of the serotonin type 3A receptor (5-ΗΤ3ΑR), were used for molecular docking and molecular dynamics simulations to study the molecular interactions of selected type I (5-hydroxyindol, NS-1738, and LY-2087101) and type II (PNU-120596, PAM-2, and TBS-516) PAMs. The docking results indicate: (1) a site located in the extracellular domain (ECD) for type I PAMs such as NS-1738 and LY-2087101, but not for 5-HI; (2) an overlapping site in the ECD-transmembrane domain (TMD) junction for all studied PAMs. Additional docking results on the hα7/m5-HT3A chimera supported experimental results indicating that the ECD site might be relevant for type I PAM activity; and (3) two TMD sites, an intrasubunit site that recognizes type II PAMs, and an intersubunit pocket with high specificity for 5-HI (type I PAM). The in silico α7TSLMF mutant results support the view that M1-Ser223 and M3-Ile281 are key residues for the interaction of PAM-2 and PNU-120596 with the intrasubunit cavity. Our in silico results are in agreement with experimental data showing that the intrasubunit cavity is relevant for the activity of type II PAMs, and suggest that the ECD-TMD junction and intersubunit sites could be significant for the activity of type I PAMs.
Collapse
Affiliation(s)
| | - Agnieszka A Kaczor
- b Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab , Medical University of Lublin , Lublin , Poland.,c School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Krzysztof Jozwiak
- a Department of Biopharmacy , Medical University of Lublin , Lublin , Poland
| | - Hugo R Arias
- d Department of Basic Sciences , California Northstate University College of Medicine , Elk Grove , CA , USA
| |
Collapse
|
14
|
Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018; 10:433-459. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinic receptors are membrane proteins involved in several physiological processes. They are considered suitable drug targets for various CNS disorders or conditions, as shown by the large number of compounds which have entered clinical trials. In recent years, nonconventional agonists have been discovered: positive allosteric modulators, allosteric agonists, site-specific agonists and silent desensitizers are compounds able to modulate the receptor interacting at sites different from the orthodox one, or to desensitize the receptor without prior opening. While these new findings can further complicate the pharmacology of these proteins and the design and optimization of ligands, they undoubtedly offer new opportunities to find drugs for the many therapeutic indications involving nicotinic receptors.
Collapse
|
15
|
Potasiewicz A, Hołuj M, Kos T, Popik P, Arias HR, Nikiforuk A. 3-Furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic receptor, reverses schizophrenia-like cognitive and social deficits in rats. Neuropharmacology 2017; 113:188-197. [DOI: 10.1016/j.neuropharm.2016.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/20/2016] [Accepted: 10/01/2016] [Indexed: 12/19/2022]
|
16
|
Marcus MM, Björkholm C, Malmerfelt A, Möller A, Påhlsson N, Konradsson-Geuken Å, Feltmann K, Jardemark K, Schilström B, Svensson TH. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study. Eur Neuropsychopharmacol 2016; 26:1401-1411. [PMID: 27474687 DOI: 10.1016/j.euroneuro.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.
Collapse
Affiliation(s)
- Monica M Marcus
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Carl Björkholm
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Anna Malmerfelt
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Annie Möller
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ninni Påhlsson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kristin Feltmann
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Björn Schilström
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Torgny H Svensson
- Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
17
|
Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content. Int J Biochem Cell Biol 2016; 76:19-30. [PMID: 27129924 DOI: 10.1016/j.biocel.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
Abstract
The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.
Collapse
|
18
|
Targowska-Duda KM, Wnorowski A, Budzynska B, Jozwiak K, Biala G, Arias HR. The positive allosteric modulator of α7 nicotinic acetylcholine receptors, 3-furan-2-yl-N-p-tolyl-acrylamide, enhances memory processes and stimulates ERK1/2 phosphorylation in mice. Behav Brain Res 2016; 302:142-51. [DOI: 10.1016/j.bbr.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
|
19
|
Andersen ND, Nielsen BE, Corradi J, Tolosa MF, Feuerbach D, Arias HR, Bouzat C. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective. Neuropharmacology 2016; 107:189-200. [PMID: 26926428 DOI: 10.1016/j.neuropharm.2016.02.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 12/30/2022]
Abstract
Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds.
Collapse
Affiliation(s)
- Natalia D Andersen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Beatriz E Nielsen
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Jeremías Corradi
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - María F Tolosa
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Cecilia Bouzat
- Universidad Nacional del Sur/CONICET, Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca 8000, Argentina.
| |
Collapse
|
20
|
Bagdas D, Targowska-Duda KM, López JJ, Perez EG, Arias HR, Damaj MI. The Antinociceptive and Antiinflammatory Properties of 3-furan-2-yl-N-p-tolyl-acrylamide, a Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptors in Mice. Anesth Analg 2016; 121:1369-77. [PMID: 26280585 DOI: 10.1213/ane.0000000000000902] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant-induced inflammatory pain, and the chronic constriction injury-induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid-induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid-induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain.
Collapse
Affiliation(s)
- Deniz Bagdas
- From the *Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; †Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey; ‡Department of Biopharmacy, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland; §Faculty of Chemistry, Department of Organic Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile; and ‖Department of Medical Education, California Northstate University College of Medicine, Elk Grove, California
| | | | | | | | | | | |
Collapse
|
21
|
Sałat K, Siwek A, Starowicz G, Librowski T, Nowak G, Drabik U, Gajdosz R, Popik P. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor. Neuropharmacology 2015; 99:301-7. [DOI: 10.1016/j.neuropharm.2015.07.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/07/2015] [Accepted: 07/29/2015] [Indexed: 01/15/2023]
|
22
|
Potasiewicz A, Kos T, Ravazzini F, Puia G, Arias HR, Popik P, Nikiforuk A. Pro-cognitive activity in rats of 3-furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Br J Pharmacol 2015; 172:5123-35. [PMID: 26276349 DOI: 10.1111/bph.13277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE α7 nicotinic acetylcholine receptors (α7 nAChRs) may represent useful targets for cognitive improvement. The aim of this study is to compare the pro-cognitive activity of selective α7-nAChR ligands, including the partial agonists, DMXBA and A-582941, as well as the positive allosteric modulator, 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2). EXPERIMENTAL APPROACH The attentional set-shifting task (ASST) and the novel object recognition task (NORT) in rats, were used to evaluate the pro-cognitive activity of each ligand [i.e., PAM-2 (0.5, 1.0, and 2.0 mg·kg(-1) ), DMXBA and A-582941 (0.3 and 1.0 mg·kg(-1) )], in the absence and presence of methyllycaconitine (MLA), a selective competitive antagonist. To determine potential drug interactions, an inactive dose of PAM-2 (0.5 mg·kg(-1) ) was co-injected with inactive doses of either agonist - DMXBA: 0.1 (NORT); 0.3 mg·kg(-1) (ASST) or A-582941: 0.1 mg·kg(-1) . KEY RESULTS PAM-2, DMXBA, and A-582941 improved cognition in a MLA-dependent manner, indicating that the observed activities are mediated by α7 nAChRs. Interestingly, the co-injection of inactive doses of PAM-2 and DMXBA or A-582941 also improved cognition, suggesting drug interactions. Moreover, PAM-2 reversed the scopolamine-induced NORT deficit. The electrophysiological results also support the view that PAM-2 potentiates the α7 nAChR currents elicited by a fixed concentration (3 μM) of DMXBA with apparent EC50 = 34 ± 3 μM and Emax = 225 ± 5 %. CONCLUSIONS AND IMPLICATIONS Our results support the view that α7 nAChRs are involved in cognition processes and that PAM-2 is a novel promising candidate for the treatment of cognitive disorders.
Collapse
Affiliation(s)
- A Potasiewicz
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - T Kos
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - F Ravazzini
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - G Puia
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - H R Arias
- Department of Medical Education, California Northstate University College of Medicine, CA, 95757, USA
| | - P Popik
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | - A Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| |
Collapse
|
23
|
Arias HR, Targowska-Duda KM, Feuerbach D, Jozwiak K. The antidepressant-like activity of nicotine, but not of 3-furan-2-yl- N - p -tolyl-acrylamide, is regulated by the nicotinic receptor β4 subunit. Neurochem Int 2015; 87:110-6. [DOI: 10.1016/j.neuint.2015.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/19/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023]
|
24
|
Chatzidaki A, D'Oyley JM, Gill-Thind JK, Sheppard TD, Millar NS. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors. Neuropharmacology 2015; 97:75-85. [PMID: 25998276 PMCID: PMC4548482 DOI: 10.1016/j.neuropharm.2015.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022]
Abstract
Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9′ position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22′ position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties. A series of novel positive allosteric modulators (PAMs) is described. The series of PAMs display differing effects on α7 nAChR desensitisation. Transmembrane mutations influencing PAM activity are examined. Transmembrane mutations can convert PAMs into agonists. Identification of a mutation with differing effects on type I and type II PAMs.
Collapse
Affiliation(s)
- Anna Chatzidaki
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Jarryl M D'Oyley
- Department of Chemistry, University College London, London, United Kingdom
| | - JasKiran K Gill-Thind
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Tom D Sheppard
- Department of Chemistry, University College London, London, United Kingdom
| | - Neil S Millar
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| |
Collapse
|
25
|
Akai S, Egi M. Transition Metal-Catalyzed Intramolecular Cyclization of Propargyl Alcohols and Their Derivatives for the Synthesis of Highly Substituted Five-Membered Oxygen Heterocycles. HETEROCYCLES 2015. [DOI: 10.3987/rev-15-818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|