1
|
Liaqat F, Akgün İH, Khazi MI, Eltem R. Characterization of different chitosanases of Bacillus strains and their application in chitooligosaccharides production. J Basic Microbiol 2023; 63:404-416. [PMID: 35849112 DOI: 10.1002/jobm.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022]
Abstract
Chitosanases are potential candidates for chitooligosaccharides (COS) production-based industries, therefore, the discovery of chitosanases having commercial potential will remain a priority worldwide. This study aims to characterize different chitosanases of Bacillus strains for COS production. Six different indigenous Bacillus strains (B. cereus EGE-B-6.1m, B. cereus EGE-B-2.5m, B. cereus EGE-B-5.5m, B. cereus EGE-B-10.4i, B. thuringiensis EGE-B-3.5m, and B. mojavensis EGE-B-5.2i) were used to purify and characterize chitosanases. All purified chitosanases have a similar molecular weight (37 kDa) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, other characteristics such as optimum temperature and pH, kinetic parameters (Km and Vmax ), temperature, and pH stabilities were dissimilar among the strains of different Bacillus species and within the same species. Furthermore, chitosanases of all strains were able to successfully hydrolyze chitosan to COS and oligomers of the degree of polymerization 2-6 were detected with chitobiose and chitotriose as major hydrolysis products. The relative yields of COS were in a range of 19%-31% and chitosanase of B. thuringiensis EGE-B-3.5m turned out to be the best enzyme in terms of its characteristics and COS production potential with maximum relative yield (31%). Results revealed that Bacillus chitosanases could be used directly for efficient bioconversion of chitosan into COS and will be valuable for large-scale production of biologically active COS.
Collapse
Affiliation(s)
- Fakhra Liaqat
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - İsmail Hakki Akgün
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| | - Mahammed Ilyas Khazi
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkiye
| | - Rengin Eltem
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkiye
| |
Collapse
|
2
|
Wang B, Wang L, Qu Y, Lu J, Xia W. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food Funct 2022; 13:5838-5853. [PMID: 35545086 DOI: 10.1039/d1fo04374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is a threat to patients due to the inability to prevent or decelerate disease progression. Currently, most clinical drugs for the treatment of PD are synthetic drugs that always present undesirable adverse or toxic effects. Chitosan oligosaccharide (COS) is a natural oligosaccharide that has been considered relatively safe and studied in the therapeutic effects on different types of neuronal disorders. In this study, we separated four COS monomers (COSs) including chitobiose (COS2), chitotriose (COS3), chitotetraose (COS4) and chitopentaose (COS5) to explore their structure-activity relationship in PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Techniques including TLC, HPLC, MS, and NMR were applied to investigate the purity and structure of the COSs. After the oral administration of COSs, behavior indexes, pathological indexes, cytokines, and expression of proteins in the nigrostriatal pathway of the mice were analyzed. The results showed that the four COSs were fully deacetylated and the purity was >90%. Additionally, the neurobehavioral deficits of the PD mice were improved by treatment with COSs. The results further proved that COSs could protect the TH-labelled dopaminergic neurons via reducing the overexpression of α-synuclein, alleviating neuroinflammation, and activating the PI3K/Akt/Bcl-2 pathway to reduce apoptosis. COS3 exhibited a better effect on protecting dopaminergic neurons; however, COS2 provided a better effect on reducing the overexpression of α-synuclein. To conclude, the neuroprotective activity makes COSs a viable candidate as an ingredient for healthcare products.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ling Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jingyu Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
von Boxberg Y, Soares S, Giraudon C, David L, Viallon M, Montembault A, Nothias F. Macrophage polarization in vitro and in vivo modified by contact with fragmented chitosan hydrogel. J Biomed Mater Res A 2021; 110:773-787. [PMID: 34723433 DOI: 10.1002/jbm.a.37326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
Abstract
We have previously shown that implantation of a fragmented chitosan hydrogel suspension (chitosan-FPHS) into a traumatic spinal cord lesion in adult rats led to significant axon regrowth and functional recovery, which was associated to a modulation of inflammation. Using an in vitro culture system, we show here that polarization of bone marrow-derived macrophages is indeed modified by direct contact with chitosan-FPHS. Reducing the degree of acetylation (DA) and raising the concentration of chitosan (Cp, from 1.5% to 3%), favors macrophage polarization toward anti-inflammatory subtypes. These latter also migrate and adhere efficiently on low, but not high DA chitosan-FPHS, both in vitro and in vivo, while inflammatory macrophages rarely invade a chitosan-FPHS implant in vivo, no matter the DA. Our in vitro model setup should prove a valuable tool for screening diverse biomaterial formulations and combinations thereof for their inflammatory potential prior to implantation in vivo.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC Paris 06, UM 119, Institut de Biologie Paris Seine (IBPS), Paris, France.,CNRS UMR 8246, Neuroscience Paris Seine (NPS), Paris, France.,INSERM U 1130, Neuroscience Paris Seine (NPS), Paris, France
| | - Sylvia Soares
- Sorbonne Universités, UPMC Paris 06, UM 119, Institut de Biologie Paris Seine (IBPS), Paris, France.,CNRS UMR 8246, Neuroscience Paris Seine (NPS), Paris, France.,INSERM U 1130, Neuroscience Paris Seine (NPS), Paris, France
| | - Camille Giraudon
- Sorbonne Universités, UPMC Paris 06, UM 119, Institut de Biologie Paris Seine (IBPS), Paris, France.,CNRS UMR 8246, Neuroscience Paris Seine (NPS), Paris, France.,INSERM U 1130, Neuroscience Paris Seine (NPS), Paris, France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon-1, Villeurbanne, France.,CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), Villeurbanne, France
| | - Maud Viallon
- Université de Lyon, Université Claude Bernard Lyon-1, Villeurbanne, France.,CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), Villeurbanne, France
| | - Alexandra Montembault
- Université de Lyon, Université Claude Bernard Lyon-1, Villeurbanne, France.,CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), Villeurbanne, France
| | - Fatiha Nothias
- Sorbonne Universités, UPMC Paris 06, UM 119, Institut de Biologie Paris Seine (IBPS), Paris, France.,CNRS UMR 8246, Neuroscience Paris Seine (NPS), Paris, France.,INSERM U 1130, Neuroscience Paris Seine (NPS), Paris, France
| |
Collapse
|
4
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
5
|
Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.
Collapse
|
6
|
Kidibule PE, Costa J, Atrei A, Plou FJ, Fernandez-Lobato M, Pogni R. Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 2021; 11:5529-5536. [PMID: 35423100 PMCID: PMC8694723 DOI: 10.1039/d0ra10409d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal exo-chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers. The immobilized enzyme gained operational stability with increasing temperature and acidic pH values, especially when using chitosan beads-genipin that retained more than 80% activity at pH 3. Biocatalysts generated COS from colloidal chitin and different chitosan types. The immobilized enzyme showed higher hydrolytic activity than free enzyme on chitosan, and produced COS mixtures with higher variability of size and acetylation degree. In addition, biocatalysts were reusable, easy to handle and to separate from the reaction mixture.
Collapse
Affiliation(s)
- Peter E Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC Marie Curie, 2. Cantoblanco 28049 Madrid Spain
| | - Maria Fernandez-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid Nicolás Cabrera, 1. Cantoblanco 28049 Madrid Spain
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, Università di Siena Via A. Moro 2 53100 Siena Italy
| |
Collapse
|
7
|
Xu L, Xia D, Zhang W, Guo Z, Jin G, Zhao Y, Zhang J. Large scale preparation of single chitin oligomers by the combination of homogeneous acid hydrolysis and reversed phase preparative chromatography. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Mar Drugs 2020; 18:E93. [PMID: 32019265 PMCID: PMC7073968 DOI: 10.3390/md18020093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
9
|
Roman DL, Roman M, Som C, Schmutz M, Hernandez E, Wick P, Casalini T, Perale G, Ostafe V, Isvoran A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front Bioeng Biotechnol 2019; 7:214. [PMID: 31552240 PMCID: PMC6743017 DOI: 10.3389/fbioe.2019.00214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a natural polymer revealing an increased potential to be used in different biomedical applications, including drug delivery systems, and tissue engineering. It implies the evaluation of the organism response to the biomaterial implantation. Low-molecular degradation products, the chito-oligomers, are resulting mainly from the influence of enzymes, which are found in the organism fluids. Within this study, we have performed the computational assessment of pharmacological profiles and toxicological effects on human health of small chito-oligomers with distinct molecular weights, deacetylation degrees, and acetylation patterns. Our approach is based on the fact that regulatory agencies and researchers in the drug development field rely on the use of modeling to predict biological effects and to guide decision making. To be considered as valid for regulatory purposes, every model that is used for predictions should be associated with a defined toxicological endpoint and has appropriate robustness and predictivity. Within this context, we have used FAF-Drugs4, SwissADME, and PreADMET tools to predict the oral bioavailability of chito-oligomers and SwissADME, PreADMET, and admetSAR2.0 tools to predict their pharmacokinetic profiles. The organs and genomic toxicities have been assessed using admetSAR2.0 and PreADMET tools but specific computational facilities have been also used for predicting different toxicological endpoints: Pred-Skin for skin sensitization, CarcinoPred-EL for carcinogenicity, Pred-hERG for cardiotoxicity, ENDOCRINE DISRUPTOME for endocrine disruption potential and Toxtree for carcinogenicity and mutagenicity. Our computational assessment showed that investigated chito-oligomers reflect promising pharmacological profiles and limited toxicological effects on humans, regardless of molecular weight, deacetylation degree, and acetylation pattern. According to our results, there is a possible inhibition of the organic anion transporting peptides OATP1B1 and/or OATP1B3, a weak potential of cardiotoxicity, a minor probability of affecting the androgen receptor, and phospholipidosis. Consequently, these results may be used to guide or to complement the existing in vitro and in vivo toxicity tests, to optimize biomaterials properties and to contribute to the selection of prototypes for nanocarriers.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Marin Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Claudia Som
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Mélanie Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Edgar Hernandez
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, St. Gallen, Switzerland
| | - Tommaso Casalini
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Giuseppe Perale
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
10
|
Tailored Enzymatic Synthesis of Chitooligosaccharides with Different Deacetylation Degrees and Their Anti-Inflammatory Activity. Catalysts 2019. [DOI: 10.3390/catal9050405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By controlled hydrolysis of chitosan or chitin with different enzymes, three types of chitooligosaccharides (COS) with MW between 0.2 and 1.2 kDa were obtained: fully deacetylated (fdCOS), partially acetylated (paCOS), and fully acetylated (faCOS). The chemical composition of the samples was analyzed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry. The synthesized fdCOS was basically formed by GlcN, (GlcN)2, (GlcN)3, and (GlcN)4. On the contrary, faCOS contained mostly GlcNAc, (GlcNAc)2 and (GlcNAc)3, while paCOS corresponded to a mixture of at least 11 oligosaccharides with different proportions of GlcNAc and GlcN. The anti-inflammatory activity of the three COS mixtures was studied by measuring their ability to reduce the level of TNF-α (tumor necrosis factor) in murine macrophages (RAW 264.7) after stimulation with a mixture of lipopolysaccharides (LPS). Only fdCOS and faCOS were able to significantly reduce the production of tumor necrosis factor (TNF)-α at 6 h after stimulation with lipopolysaccharides.
Collapse
|
11
|
New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2-6. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:33-40. [DOI: 10.1016/j.jchromb.2018.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/14/2022]
|
12
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
13
|
Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta FN, Ballesteros AO, Morales JC, Kidibule P, Fernandez-Lobato M, Plou FJ. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1295231] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | - M. Mengibar
- InFiQuS S.L, paseo Juan XXIII no. 1, Madrid, Spain,
| | - E. Belmonte-Reche
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - P. Peñalver
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - F. N. Acosta
- Instituto de Estudios Biofuncionales, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain, and
| | | | - J. C. Morales
- Instituto de Parasitología y Biomedicina “Lopez-Neyra”, CSIC, Armilla Granada, Spain,
| | - P. Kidibule
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Fernandez-Lobato
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - F. J. Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain,
| |
Collapse
|
14
|
Xue C, Ren H, Zhu H, Gu X, Guo Q, Zhou Y, Huang J, Wang S, Zha G, Gu J, Yang Y, Gu Y, Gu X. Bone marrow mesenchymal stem cell-derived acellular matrix-coated chitosan/silk scaffolds for neural tissue regeneration. J Mater Chem B 2017; 5:1246-1257. [DOI: 10.1039/c6tb02959k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel tissue engineered nerve graft (TENG) was used for the first time to bridge a 60 mm long nerve gap in a dog sciatic nerve and achieved satisfactory results.
Collapse
|
15
|
Santos-Moriano P, Woodley JM, Plou FJ. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Cao L, Wu J, Li X, Zheng L, Wu M, Liu P, Huang Q. Validated HPAEC-PAD Method for the Determination of Fully Deacetylated Chitooligosaccharides. Int J Mol Sci 2016; 17:ijms17101699. [PMID: 27735860 PMCID: PMC5085731 DOI: 10.3390/ijms17101699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was established for the simultaneous separation and determination of glucosamine (GlcN)₁ and chitooligosaccharides (COS) ranging from (GlcN)₂ to (GlcN)₆ without prior derivatization. Detection limits were 0.003 to 0.016 mg/L (corresponding to 0.4-0.6 pmol), and the linear range was 0.2 to 10 mg/L. The optimized analysis was carried out on a CarboPac-PA100 analytical column (4 × 250 mm) using isocratic elution with 0.2 M aqueous sodium hydroxide-water mixture (10:90, v/v) as the mobile phase at a 0.4 mL/min flow rate. Regression equations revealed a good linear relationship (R² = 0.9979-0.9995, n = 7) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of (GlcN)1-6 in a commercial COS technical concentrate. The established method was also used to monitor the acid hydrolysis of a COS technical concentrate to ensure optimization of reaction conditions and minimization of (GlcN)₁ degradation.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jinlong Wu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Xiuhuan Li
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Li Zheng
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Miaomiao Wu
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Pingping Liu
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
17
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|