1
|
Hamnett R, Bendrick JL, Saha Z, Robertson K, Lewis CM, Marciano JH, Zhao ET, Kaltschmidt JA. Enteric glutamatergic interneurons regulate intestinal motility. Neuron 2025; 113:1019-1035.e6. [PMID: 39983724 PMCID: PMC11968238 DOI: 10.1016/j.neuron.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
The enteric nervous system (ENS) controls digestion autonomously via a complex neural network within the gut wall. Enteric neurons expressing glutamate have been identified by transcriptomic studies as a distinct subpopulation, and glutamate can affect intestinal motility by modulating enteric neuron activity. However, the nature of glutamatergic neurons, their position within the ENS circuit, and their function in regulating gut motility are unknown. We identify glutamatergic neurons as longitudinally projecting descending interneurons in the small intestine and colon and as a novel class of circumferential neurons only in the colon. Both populations make synaptic contact with diverse neuronal subtypes and signal with multiple neurotransmitters and neuropeptides in addition to glutamate, including acetylcholine and enkephalin. Knocking out the glutamate transporter VGLUT2 from enkephalin neurons disrupts gastrointestinal transit, while ex vivo optogenetic stimulation of glutamatergic neurons initiates colonic propulsive motility. Our results posit glutamatergic neurons as key interneurons that regulate intestinal motility.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| | - Jacqueline L Bendrick
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Zinnia Saha
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Cheyanne M Lewis
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Jack H Marciano
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Zhang MM, Feng YP, Qiu XT, Chen T, Bai Y, Feng JM, Wang JD, Chen Y, Zhang MZ, Duan HK, Zhao M, Teng YH, Cao J, Zang WD, Yang K, Li YQ. Neurotensin Attenuates Nociception by Facilitating Inhibitory Synaptic Transmission in the Mouse Spinal Cord. Front Neural Circuits 2022; 15:775215. [PMID: 35002634 PMCID: PMC8740200 DOI: 10.3389/fncir.2021.775215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Neurotensin (NT) is an endogenous tridecapeptide in the central nervous system. NT-containing neurons and NT receptors are widely distributed in the spinal dorsal horn (SDH), indicating their possible modulatory roles in nociception processing. However, the exact distribution and function of NT, as well as NT receptors (NTRs) expression in the SDH, have not been well documented. Among the four NTR subtypes, NTR2 is predominantly involved in central analgesia according to previous reports. However, the expression and function of NTR2 in the SDH has not yet been directly elucidated. Specifically, it remains unclear how NT-NTR2 interactions contribute to NT-mediated analgesia. In the present study, by using immunofluorescent histochemical staining and immunohistochemical staining with in situ hybridization histochemical staining, we found that dense NT- immunoreactivity (NT-ir) and moderate NTR2-ir neuronal cell bodies and fibers were localized throughout the superficial laminae (laminae I-II) of the SDH at the light microscopic level. In addition, γ-aminobutyric acid (GABA) and NTR2 mRNA were colocalized in some neuronal cell bodies, predominantly in lamina II. Using confocal and electron microscopy, we also observed that NT-ir terminals made both close contacts and asymmetrical synapses with the local GABA-ir neurons. Second, electrophysiological recordings showed that NT facilitated inhibitory synaptic transmission but not glutamatergic excitatory synaptic transmission. Inactivation of NTR2 abolished the NT actions on both GABAergic and glycinergic synaptic release. Moreover, a behavioral study revealed that intrathecal injection of NT attenuated thermal pain, mechanical pain, and formalin induced acute inflammatory pain primarily by activating NTR2. Taken together, the present results provide direct evidence that NT-containing terminals and fibers, as well as NTR2-expressing neurons are widely distributed in the spinal dorsal horn, GABA-containing neurons express NTR2 mainly in lamina II, GABA coexists with NTR2 mainly in lamina II, and NT may directly increase the activity of local inhibitory neurons through NTR2 and induce analgesic effects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yu-Peng Feng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jia-Ming Feng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jun-Da Wang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Yan Chen
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ming-Zhe Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hao-Kai Duan
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Mingwei Zhao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi-Hui Teng
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Wei-Dong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Kun Yang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
3
|
Palus K, Bulc M, Czajkowska M, Miciński B, Całka J. Neurochemical characteristics of calbindin-like immunoreactive coeliac-cranial mesenteric ganglion complex (CCMG) neurons supplying the pre-pyloric region of the porcine stomach. Tissue Cell 2018; 50:8-14. [DOI: 10.1016/j.tice.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/29/2023]
|
4
|
François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron 2017; 93:822-839.e6. [PMID: 28162807 DOI: 10.1016/j.neuron.2017.01.008] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth I Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Amelia J Christensen
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin T Beier
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kimberly D Ritola
- Virus Services, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, H3G0B1 QC, Canada
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Scott L Delp
- Department of Bioengineering, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|