1
|
Yamada M, Jacob J, Hesling J, Johnson T, Wittenberg G, Kantak S. Goal conceptualization has distinct effects on spatial and temporal bimanual coordination after left- and right- hemisphere stroke. Hum Mov Sci 2024; 94:103196. [PMID: 38402657 PMCID: PMC10939720 DOI: 10.1016/j.humov.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Perception of task goal influences motor performance and coordination. In bimanual actions, it is unclear how one's perception of task goals influences bimanual coordination and performance in individuals with unilateral stroke. We characterized inter-limb coordination differences in individuals with chronic right- and left-hemisphere damaged (RCVA: n = 24, LCVA: n = 24) stroke and age-matched neurotypical controls (n = 24) as they completed bimanual reaching tasks under distinct goal conditions. In the dual-goal condition, participants reached to move two virtual bricks (cursors) assigned to each hand toward independent targets. In the common-goal condition, they moved a central common virtual brick representing both hands to a single, central target. Spatial and temporal coordination (cross-correlation coefficients of hand velocity and their time-lag), the redundant axis deviations (the hand deviations in the axis orthogonal to the axis along the cursor-target direction), and the contribution ratio of the paretic hand were measured. Compared to the dual-goal condition, reaching actions to the common-goal demonstrated better spatial bimanual coordination in all three participant groups. Temporal coordination was better during common-goal than dual-goal actions only for the LCVA group. Additionally, and novel to this field, sex, as a biological variable, differently influenced movement time and redundant axis deviation in participants with stroke under the common-goal condition. Specifically, female stroke survivors showed larger movements in the redundant axes and, consequently, longer movement times, which was more prominent in the LCVA group. Our results indicate that perception of task goals influences bimanual coordination, with common goal improving spatial coordination in neurotypical individuals and individuals with unilateral stroke and providing additional advantage for temporal coordination in those with LCVA. Sex influences bimanual performance in stroke survivors and needs to be considered in future investigations.
Collapse
Affiliation(s)
- Masahiro Yamada
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Kinesiology, Whittier College, Science & Learning Center 304, Whittier, CA, United States of America
| | - Joshua Jacob
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America
| | - Jessica Hesling
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, United States of America
| | - George Wittenberg
- Department of Neurology, Physical Medicine & Rehabilitation, and Bioengineering, University of Pittsburgh, Geriatrics Research, Education and Clinical Center, Human Engineering Research Laboratory, VA Pittsburgh Healthcare System, United States of America
| | - Shailesh Kantak
- Neuroplasticity and Motor Behavior Lab, Moss Rehabilitation Research Institute, Elkins Park, PA, United States of America; Department of Physical Therapy, Arcadia University, Glenside, PA, United States of America.
| |
Collapse
|
2
|
Jeong T, Chung Y. The effects of visual information deprivation and feedback balance training on balance in patients with stroke. NeuroRehabilitation 2024; 54:435-448. [PMID: 38607770 DOI: 10.3233/nre-230358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND Patients with stroke depend on visual information due to balance deficits. Therefore, it is believed that appropriate visual deprivation training could have an impact on improving balance abilities. OBJECTIVE The purpose of this study was to compare the effects of balance training performed in visual deprivation and feedback conditions on balance in stroke survivors. METHODS The 39 participants were randomly assigned to either the Visual Deprivation Group (VDG; n = 13), the Visual Feedback Group (VFG; n = 13), or the Control Group (CG; n = 13). The training sessions were conducted five times a week for three weeks. Participants completed the Berg Balance Scale (BBS), Timed Up and Go test (TUG), Four Square Step Test (FSST), and Limit of Stability (LOS) assessments. RESULTS The VDG showed significant improvements in BBS, FSST, TUG, and LOS. In VFG, significant improvements were observed in BBS and TUG. There were statistically significant differences among the groups in all variables related to balance. CONCLUSION The results of this study suggest that balance training under visual deprivation is effective in improving static and dynamic balance and gait in patients with stroke. In other words, patients with stroke need to reduce their over-reliance on visual information.
Collapse
Affiliation(s)
- Taewoong Jeong
- Department of Physical Therapy, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Yijung Chung
- Department of Physical Therapy, College of Health and Welfare, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Huang Q, Lin D, Huang S, Cao Y, Jin Y, Wu B, Fan L, Tu W, Huang L, Jiang S. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol 2022; 13:780966. [PMID: 35309550 PMCID: PMC8927543 DOI: 10.3389/fneur.2022.780966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Stroke is a chief cause of sudden brain damage that severely disrupts the whole-brain network. However, the potential mechanisms of motor recovery after stroke are uncertain and the prognosis of poststroke upper extremity recovery is still a challenge. This study investigated the global and local topological properties of the brain functional connectome in patients with subacute ischemic stroke and their associations with the clinical measurements. A total of 57 patients, consisting of 29 left-sided and 28 right-sided stroke patients, and 32 age- and gender-matched healthy controls (HCs) were recruited to undergo a resting-state functional magnetic resonance imaging (rs-fMRI) study; patients were also clinically evaluated with the Upper Extremity Fugl-Meyer Assessment (FMA_UE). The assessment was repeated at 15 weeks to assess upper extremity functional recovery for the patient remaining in the study (12 left- 20 right-sided stroke patients). Global graph topological disruption indices of stroke patients were significantly decreased compared with HCs but these indices were not significantly associated with FMA_UE. In addition, local brain network structure of stroke patients was altered, and the altered regions were dependent on the stroke site. Significant associations between local degree and motor performance and its recovery were observed in the right lateral occipital cortex (R LOC) in the right-sided stroke patients. Our findings suggested that brain functional topologies alterations in R LOC are promising as prognostic biomarkers for right-sided subacute stroke. This cortical area might be a potential target to be further validated for non-invasive brain stimulation treatment to improve poststroke upper extremity recovery.
Collapse
Affiliation(s)
- Qianqian Huang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Dinghong Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Shishi Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun Jin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Bo Wu
- Department of Information, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linyu Fan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lejian Huang
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
- Songhe Jiang
| |
Collapse
|
4
|
Jandaghi S, Tahan N, Akbarzadeh Baghban A, Zoghi M. Stroke Patients Showed Improvements in Balance in Response to Visual Restriction Exercise. Phys Ther Res 2022; 24:211-217. [PMID: 35036254 DOI: 10.1298/ptr.e10081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Several strategies have been designed to improve balance after stroke. Although recent studies have suggested that the balance training in stroke should include exercises that are performed in different sensory conflict conditions, little attention has been paid to manipulation of visual input. This study aimed to compare effects of balance training on an unstable surface with balance training under visual deprivation conditions in persons with stroke. METHOD Forty-five stroke patients were randomized into three groups: the visual deprivation- stable based training (VD-SBT); unstable based training (UBT); and control (C) groups. Subjects of the VD-SBT group performed balance training on a stable surface with closed eyes. The UBT group performed balance training on an unstable surface with open eyes. Patients were assessed before and after interventions for Timed Up and Go (TUG), Four Square Step (FSS) and Five Times Sit to Stand (FTSS) tests. RESULT There was a significant difference in pre- post intervention time of TUG, FSS and FTSS tests in all three groups. In a comparison of three groups, the UBT and VD-SBT groups had a significant improvement in time of all tests but significant improvement in time of all tests was observed in the VD-SBT group in comparison with the UBT group. In the field of balance training, the manipulation of visual input was more effective than the manipulation of standing surface to reweighting the sensory information. CONCLUSION We recommended balance rehabilitation programs after stroke performed under conditions to stimulate the use of underused sensory input.
Collapse
Affiliation(s)
- Shima Jandaghi
- Faculty of Sport Injury and Corrective Exercises, Karaj Branch, Islamic Azad University, Iran
| | - Nahid Tahan
- Department of Physiotherapy, Loghman Hakim Hospital, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Iran
| | - Alireza Akbarzadeh Baghban
- Proteomics Research Center, Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Iran
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Australia
| |
Collapse
|
5
|
Akremi H, Higgins J, Aissaoui R, Nadeau S. Bilateral motor coordination during upper limb symmetric pushing movements at two levels of force resistance in healthy and post-stroke individuals. Hum Mov Sci 2021; 81:102913. [PMID: 34952321 DOI: 10.1016/j.humov.2021.102913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Impairments of the upper limb (UL) are common after a stroke and may affect bilateral coordination. A better understanding of UL bilateral coordination is required for designing innovative rehabilitation strategies. OBJECTIVE To assess bilateral coordination after stroke using time-distance, velocity and force parameters during an UL bilateral task performed by simultaneously pushing handles on a bilateral exerciser at two levels of force. METHODS Two groups were included to assess bilateral coordination on a newly designed bimanual exerciser- One group of individuals at least 3 months post-stroke (n = 19) with moderate impairment and one group of healthy individuals (n = 20). Participants performed linear movements by pushing simultaneously with both hands on instrumented handles. The task consisted of two one-minute trials performed in sitting at two levels of participants' maximum force (MF): 30% and 15%, with visual feedback. Time-distance parameters, spatial, velocity and force profiles were compared between groups, between levels of resistance and the first part (0-50%) and entire duration of the pushing cycles (0-100%). RESULTS The mean pushing time was longer at 30% MF compared to 15% MF in the stroke group. Spatial profiles, represented by hand positions on the rail, revealed that the paretic hand lagged slightly behind throughout the cycle. For velocity, both groups displayed good coordination. It was less coupled at 30% than 15% MF and a trend was observed toward more lag occurrence in the stroke group. Except for lower forces on the paretic side in the stroke group, the shape of the force profiles was similar between groups, sides and levels of resistance. For all parameters, the coordination was good up to 75% of the pushing cycle and decreased toward the end of the cycle. CONCLUSIONS Individuals after stroke presented with overall spatial and temporal coupling of the UL during bilateral pushing movements. The relay of information at different levels of the nervous system might explain the coordinated pushing movements and might be interesting for training UL coordination.
Collapse
Affiliation(s)
- Haifa Akremi
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P.6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Laboratoire de pathokinésiologie, Institut universitaire sur la réadaptation en déficience physique de Montréal-Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Canada
| | - Johanne Higgins
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P.6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Laboratoire de pathokinésiologie, Institut universitaire sur la réadaptation en déficience physique de Montréal-Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Canada
| | - Rachid Aissaoui
- Laboratoire de pathokinésiologie, Institut universitaire sur la réadaptation en déficience physique de Montréal-Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Canada; École de Technologie Supérieure (ETS) and Imaging and Orthopaedics Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sylvie Nadeau
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P.6128 Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Laboratoire de pathokinésiologie, Institut universitaire sur la réadaptation en déficience physique de Montréal-Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montreal, Canada.
| |
Collapse
|
6
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
7
|
Lee JH, Kang N. Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLoS One 2020; 15:e0238367. [PMID: 32941453 PMCID: PMC7498075 DOI: 10.1371/journal.pone.0238367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to examine how different threshold ranges of online-bandwidth visual feedback influence unilateral force control capabilities in healthy young women. Methods Twenty-five right-handed young women (mean±standard deviation age = 23.6±1.5 years) participated in this study. Participants unilaterally executed hand-grip force control tasks with their dominant and non-dominant hands, respectively. Each participant completed four experimental blocks in a different order of block presentation for each hand condition: (a) 10% of maximum voluntary contraction (MVC) with ±5% bandwidth threshold range (BTR), (b) 10% of MVC with ±10% BTR, (c) 40% of MVC with ±5% BTR, and (d) 40% of MVC with ±10% BTR. Outcome measures on force control capabilities included: (a) force accuracy, (b) force variability, (c) force regularity, and (d) the number of times and duration out of BTR. Results The non-dominant hand showed significant improvements in force control capabilities, as indicated by higher force accuracy, less force variability, and decreased force regularity from ±10% BTR to ±5% BTR during higher targeted force level task. For both hands, the number of times and duration out of BTR increased from ±10% BTR to ±5% BTR. Conclusions The current findings suggested that the narrow threshold range of online-bandwidth visual feedback effectively revealed transient improvements in unilateral isometric force control capabilities during higher targeted force level tasks.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea
- * E-mail:
| |
Collapse
|
8
|
Carnavale BF, Fiogbé E, Farche ACS, Catai AM, Porta A, Takahashi ACDM. Complexity of knee extensor torque in patients with frailty syndrome: a cross-sectional study. Braz J Phys Ther 2020; 24:30-38. [PMID: 30587398 PMCID: PMC6994311 DOI: 10.1016/j.bjpt.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Frailty syndrome is characterized by a marked reduction in physiological reserves and a clinical state of vulnerability to stress. Torque complexity analysis could reveal changes in the musculoskeletal systems that are the result of having the syndrome. OBJECTIVE The aim of this study was to evaluate the complexity of submaximal isometric knee extensor torque in frail, pre-frail, and non-frail older adults. A secondary aim was to analyze the torque complexity behavior in different force levels in each group. METHODS A cross-sectional study was conducted. Forty-two older adults were divided into three groups: non-frail (n=15), pre-frail (n=15), and frail (n=12). The data collected included body composition, five times sit-to-stand test, walking speed, and isometric knee extensor torque at 15, 30, and 40% of maximal voluntary contraction. The knee extensor torque variability was evaluated by coefficient of variation, and the torque complexity was evaluated by approximate entropy and sample entropy. RESULTS The frail group presented a reduction in body mass and peak torque value compared to the non-frail group. Also, the frail group showed worse physical performance (on the five times sit-to-stand test and walking speed) compared to the pre-frail and non-frail groups. In addition, the frail older adults showed reduced torque complexity compared to the non-frail group. Finally, the association between torque complexity and force levels remained similar in all groups. CONCLUSION Torque complexity is reduced in the presence of frailty syndrome.
Collapse
Affiliation(s)
- Bianca Ferdin Carnavale
- Department of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Elie Fiogbé
- Department of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ana Claudia Silva Farche
- Department of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Aparecida Maria Catai
- Department of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | | |
Collapse
|
9
|
Kim RK, Kang N. Bimanual Coordination Functions between Paretic and Nonparetic Arms: A Systematic Review and Meta-analysis. J Stroke Cerebrovasc Dis 2019; 29:104544. [PMID: 31818684 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bimanual coordination is essential for performing many everyday interlimb actions that require successful spatiotemporal interactions between the 2 arms. This systematic review and meta-analysis investigates bimanual coordination function of the upper extremities in patients with stroke. METHODS Seventeen studies that compared bimanual coordination functions in patients with stroke and age-matched healthy controls qualified for this meta-analysis. We categorized 25 comparisons from the 17 qualified studies into 6 types of bimanual actions based on 3 task constraints: (1), symmetry versus asymmetry movements, (2) parallel versus cooperative movements, and (3) independent goals versus a common goal. RESULTS Random effects meta-analysis revealed that patients with stroke had impaired kinematic (Hedges's g = -1.232 and P < .0001) and kinetic (Hedges's g = -.712 and P = .001) control of bimanual coordination as compared with the age-matched healthy controls. The moderator variable analysis on the 6 types of bimanual actions showed that bimanual coordination impairments after stroke appeared while performing both asymmetrical bimanual movements and symmetrical bimanual movements to achieve a common goal. Moreover, we observed a potential relationship between greater time since stroke onset and increased interlimb coordination impairments for chronic patients. CONCLUSIONS These findings suggest that restoring interlimb coordination functions after stroke may be a crucial rehabilitation goal for facilitating progress toward stroke motor recovery.
Collapse
Affiliation(s)
- Rye Kyeong Kim
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
10
|
Kang N, Roberts LM, Aziz C, Cauraugh JH. Age-related deficits in bilateral motor synergies and force coordination. BMC Geriatr 2019; 19:287. [PMID: 31651243 PMCID: PMC6814115 DOI: 10.1186/s12877-019-1285-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Background Ageing may cause impairments in executing bilateral movement control. This study investigated age-related changes in interlimb force coordination across multiple trials by quantifying bilateral motor synergies based on the uncontrolled manifold hypothesis. Participants completed the trials with and without visual feedback. Methods Twenty healthy individuals (10 older adults and 10 young adults) performed 12 isometric force control trials for the two vision conditions at 5% of maximal voluntary contraction. All dependent variables were analyzed in two-way mixed model (Group × Vision Condition; 2 × 2) ANOVAs with repeated measures on the last factor. Results The analyses revealed that older adults had greater mean force produced by two hands in both vision conditions (i.e., yes and no visual feedback). Across both vision conditions, the older adult group showed greater asymmetrical force variability (i.e., standard deviation of non-dominant hand > standard deviation of dominant hand) and revealed more positive correlation coefficients between forces produced by two hands as compared with the young adult group. Finally, an index of bilateral motor synergies was significantly greater in young adults than older adults when visual feedback was available. Conclusion The current findings indicate that deficits in interlimb force coordination across multiple trials appeared in older adults.
Collapse
Affiliation(s)
- Nyeonju Kang
- Division of Sport Science and Sport Science Institute, Incheon, South Korea.,Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - Lisa M Roberts
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clara Aziz
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.
| |
Collapse
|
11
|
Patel P, Lodha N. Dynamic bimanual force control in chronic stroke: contribution of non-paretic and paretic hands. Exp Brain Res 2019; 237:2123-2133. [PMID: 31197412 DOI: 10.1007/s00221-019-05580-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022]
Abstract
Dynamic force modulation is critical for performing skilled bimanual tasks. Unilateral motor impairments after stroke contribute to asymmetric hand function. Here, we investigate the impact of stroke on dynamic bimanual force control and compare the contribution of each hand to a bimanual task. Thirteen chronic stroke and thirteen healthy control participants performed bimanual, isometric finger flexion during visually guided, force tracking of a trapezoidal trajectory with force increment and decrement phases. We quantified the accuracy and variability of total force from both hands. Individual hand contribution was quantified with the proportion of force contributed to total force and force variability of each hand. The total force output was 53.10% less accurate and 56% more variable in the stroke compared with the control group. The variability of total force was 91.10% greater in force decrement than increment phase. In stroke group, the proportion of force and force variability contributed by each hand differed across the two phases. During force decrement, the proportion of force contributed by the non-paretic hand reduced and force variability of the non-paretic hand increased, compared with the increment phase. The control group showed no differences in each hand's contribution across the two force phases. In conclusion, dynamic bimanual force modulation is impaired after stroke, with greater deficits in force decrement than force increment. The non-paretic and paretic hands adapt differentially to dynamic bimanual task constraints. During force decrement, the non-paretic hand preferentially assumes force modulation, while the paretic hand produces steady force to meet the force requirements.
Collapse
Affiliation(s)
- Prakruti Patel
- Movement Neuroscience and Rehabilitation Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Neha Lodha
- Movement Neuroscience and Rehabilitation Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
12
|
Zhu P, Wu Y, Liang J, Ye Y, Liu H, Yan T, Song R. Characterization of the Stroke-Induced Changes in the Variability and Complexity of Handgrip Force. ENTROPY 2018; 20:e20050377. [PMID: 33265466 PMCID: PMC7512896 DOI: 10.3390/e20050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022]
Abstract
Introduction: The variability and complexity of handgrip forces in various modulations were investigated to identify post-stroke changes in force modulation, and extend our understanding of stroke-induced deficits. Methods: Eleven post-stroke subjects and ten age-matched controls performed voluntary grip force control tasks (power-grip tasks) at three contraction levels, and stationary dynamometer holding tasks (stationary holding tasks). Variability and complexity were described with root mean square jerk (RMS-jerk) and fuzzy approximate entropy (fApEn), respectively. Force magnitude, Fugl-Meyer upper extremity assessment and Wolf motor function test were also evaluated. Results: Comparing the affected side with the controls, fApEn was significantly decreased and RMS-jerk increased across the three levels in power-grip tasks, and fApEn was significantly decreased in stationary holding tasks. There were significant strong correlations between RMS-jerk and clinical scales in power-grip tasks. Discussion: Abnormal neuromuscular control, altered mechanical properties, and atrophic motoneurons could be the main causes of the differences in complexity and variability in post-stroke subjects.
Collapse
Affiliation(s)
- Pengzhi Zhu
- School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Medical Devices Quality Surveillance and Test Institute, Guangzhou 510275, China
| | - Yuanyu Wu
- School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingtao Liang
- School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Ye
- School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huihua Liu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Song
- School of Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: ; Tel.: +86-20-3933-2148
| |
Collapse
|
13
|
Archer DB, Kang N, Misra G, Marble S, Patten C, Coombes SA. Visual feedback alters force control and functional activity in the visuomotor network after stroke. NEUROIMAGE-CLINICAL 2017; 17:505-517. [PMID: 29201639 PMCID: PMC5700823 DOI: 10.1016/j.nicl.2017.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Nyeonju Kang
- Division of Sport Science, Incheon National University, Incheon, South Korea
| | - Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Marble
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Carolynn Patten
- Neural Control of Movement Lab, Department of Physical Therapy, University of Florida and Malcolm-Randall VA Medical Center, Gainesville, FL, United States
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
14
|
Chow JW, Stokic DS. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke. J Appl Physiol (1985) 2017; 124:592-603. [PMID: 29097632 DOI: 10.1152/japplphysiol.00717.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| |
Collapse
|
15
|
Allgöwer K, Hermsdörfer J. Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke. Clin Neurophysiol 2017; 128:1858-1871. [DOI: 10.1016/j.clinph.2017.07.408] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/02/2017] [Accepted: 07/23/2017] [Indexed: 12/01/2022]
|
16
|
Martin E, Blais M, Albaret JM, Pariente J, Tallet J. Alteration of rhythmic unimanual tapping and anti-phase bimanual coordination in Alzheimer’s disease: A sign of inter-hemispheric disconnection? Hum Mov Sci 2017; 55:43-53. [DOI: 10.1016/j.humov.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
|
17
|
Brock O, Valero-Cuevas F. Transferring synergies from neuroscience to robotics: Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by M. Santello et al. Phys Life Rev 2016; 17:27-32. [PMID: 27212396 DOI: 10.1016/j.plrev.2016.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Oliver Brock
- Robotics and Biology Laboratory, Technische Universität Berlin, 10587 Berlin, Germany.
| | - Francisco Valero-Cuevas
- Department of Biomedical Engineering & Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Task-Dependent Bimanual Coordination After Stroke: Relationship With Sensorimotor Impairments. Arch Phys Med Rehabil 2016; 97:798-806. [PMID: 26874232 DOI: 10.1016/j.apmr.2016.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To determine (1) bimanual coordination deficits in patients with stroke using 3-dimensional kinematic analyses as they perform naturalistic tasks requiring collaborative interaction of the 2 arms; and (2) whether bimanual coordination deficits are related to clinical measures of sensorimotor impairments and unimanual performance of the paretic arm. DESIGN Case-control study. SETTING Rehabilitation hospital research institute. PARTICIPANTS Participants (N=24) were patients with unilateral chronic stroke (n=14) and age-matched controls (n=10). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Temporal coordination between the 2 hands as participants performed (1) a symmetric task: reach to pick up a box using both hands; and (2) an asymmetric task: open a drawer with 1 hand to press a button inside with the other hand. RESULTS During the symmetric task, patients and controls showed preserved temporal coupling while transporting the hands to the box. However, on reaching the box, patients demonstrated an impaired ability to cooperatively interact their 2 arms for an efficient pickup. This led to significantly longer pickup times compared with controls. Pickup time positively correlated with proprioceptive deficits of the paretic arm. During the asymmetric task, patients had a longer time delay between drawer opening and button pressing movements than controls. The deficits in asymmetric coordination did not significantly correlate with sensorimotor impairments or unimanual paretic arm performance. CONCLUSIONS Bimanual coordination was impaired in patients poststroke during symmetric and asymmetric bimanual tasks that required cooperative interaction between the 2 arms. While the proprioceptive system contributes to symmetric cooperative coordination, commonly tested measures of paretic arm impairment or performance, or both, do not strongly predict deficits in bimanual coordination.
Collapse
|
19
|
|
20
|
Lin CH, Chou LW, Luo HJ, Tsai PY, Lieu FK, Chiang SL, Sung WH. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial. PLoS One 2015; 10:e0131048. [PMID: 26193492 PMCID: PMC4507879 DOI: 10.1371/journal.pone.0131048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/27/2015] [Indexed: 11/26/2022] Open
Abstract
Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674.
Collapse
Affiliation(s)
- Chueh-Ho Lin
- School of Gerontology Health Management & Master Program in Long-Term Care, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
| | - Hong-Ji Luo
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
| | - Po-Yi Tsai
- Physical Medicine and Rehabilitation Department, Taipei Veterans General Hospital, Taipei, Taiwan (R.O.C.)
| | | | - Shang-Lin Chiang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei, Taiwan (R.O.C.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Defense Medical Center, Taipei, Taiwan (R.O.C.)
| | - Wen-Hsu Sung
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
- * E-mail:
| |
Collapse
|
21
|
Force control in chronic stroke. Neurosci Biobehav Rev 2015; 52:38-48. [PMID: 25704075 DOI: 10.1016/j.neubiorev.2015.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Force control deficits are common dysfunctions after a stroke. This review concentrates on various force control variables associated with motor impairments and suggests new approaches to quantifying force control production and modulation. Moreover, related neurophysiological mechanisms were addressed to determine variables that affect force control capabilities. Typically, post stroke force control impairments include: (a) decreased force magnitude and asymmetrical forces between hands, (b) higher task error, (c) greater force variability, (d) increased force regularity, and (e) greater time-lag between muscular forces. Recent advances in force control analyses post stroke indicated less bimanual motor synergies and impaired low-force frequency structure. Brain imaging studies demonstrate possible neurophysiological mechanisms underlying force control impairments: (a) decreased activation in motor areas of the ipsilesional hemisphere, (b) increased activation in secondary motor areas between hemispheres, (c) cerebellum involvement, and (d) relatively greater interhemispheric inhibition from the contralesional hemisphere. Consistent with identifying neurophysiological mechanisms, analyzing bimanual motor synergies as well as low-force frequency structure will advance our understanding of post stroke force control.
Collapse
|