1
|
Neuroprotective effects of pravastatin in cerebral venous infarction in a rat model. IBRO Neurosci Rep 2023; 14:202-209. [PMID: 36852215 PMCID: PMC9958423 DOI: 10.1016/j.ibneur.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Objectives Pravastatin sodium is reported to have multiple beneficial effects in cerebral atherosclerosis and neuronal injury; however, the preventive effects on cerebral venous ischemia are still unknown. Herein, we aimed to examine the neuroprotective effects of transoral prior administration of pravastatin sodium against cerebral cortical venous ischemia with suppression of apoptosis. Methods Thirty 8-week-old male Wistar rats were divided equally into two study groups (n = 15 vs. n = 15); the pravastatin group was fed 1% pravastatin sodium with their usual diet for 2 weeks, while the control group only received the usual diet. Two-vein occlusion (2VO) model was applied for this study, and two adjacent cortical veins in each animal were permanently occluded photochemically with rose bengal dye. During photo-thrombosis, regional changes of the cerebral blood flow (CBF) in area of the venous ischemia were recorded. At 48-h after 2VO, animals were euthanized using perfusion fixation, and we histologically measured ratios of infarcted area to contralateral hemisphere, and counted Bax- and Bcl-2-positive cells in the penumbra to investigate the implications for apoptosis. Results The ratio of infarcted area was significantly decreased in the pravastatin group compared to the control group (P < 0.01). The number of Bax-positive cells also decreased significantly in the pravastatin group (P < 0.01). In contrast, immunolabeling for Bcl-2 was essentially negative in all areas in both groups. There were also no significant differences in regional CBF changes after 2VO between the two groups (P = 0.13). Conclusions Pre-emptive administration of pravastatin sodium mixed in the food has neuroprotective effects against cerebral cortical venous ischemia with suppression of apoptosis associated with inhibition of Bax expression but has little influence on regional CBF.
Collapse
Key Words
- 2VO, two-vein occlusion
- Akt, protein kinase B
- BBB, blood-brain-barrier
- CAI, cerebral arterial ischemia
- CBF, cerebral blood flow
- CVI, cerebral venous ischemia
- Cerebral blood flow
- Cerebral cortex
- Cerebral ischemia
- HMG-CoA, 3-hydroxy 3-methylglutaryl coenzyme A
- HSP, heat shock protein
- IL-6, Interleukin-6
- JNK, Jun-NH2-terminal kinase
- LDL, low-density lipoprotein
- LDU, Laser Doppler-unit
- MAPK, mitogen-activated protein kinase
- MCAO, middle cerebral artery occlusion
- Neuronal apoptosis
- PI3K, phosphatidylinositol 3-OH kinase
- Pravastatin sodium
- TNFα, Tumor Necrosis Factor‐α
- Vein
Collapse
|
2
|
Ren Y, Li L, Wang MM, Cao LP, Sun ZR, Yang ZZ, Zhang W, Zhang P, Nie SN. Pravastatin attenuates sepsis-induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav-1/eNOS pathway. Int Immunopharmacol 2021; 100:108077. [PMID: 34464887 DOI: 10.1016/j.intimp.2021.108077] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Disruption of alveolar endothelial barrier caused by inflammation drives the progression of septic acute lung injury (ALI). Pravastatin, an inhibitor of HMG Co-A reductase, has potent anti-inflammatory effects. In the present study, we aim to explore the beneficial role of pravastatin in sepsis-induced ALI and its related mechanisms. METHODS A septic ALI model was established by cecal ligation and puncture (CLP) in mice. The pulmonary microvascular endothelial cells (PMVECs) were challenged with lipopolysaccharide (LPS). The pathological changes in lung tissues were examined by HE staining. The pulmonary microvascular permeability was determined by lung wet-to-dry (W/D) weight ratio and Evans blue staining. The total protein concentration in bronchoalveolar lavage fluid (BALF) was detected by BCA assay. The levels of TNF-α, IL-1β, and IL-6 were assessed by qRT-PCR and ELISA. Apoptosis was determined by flow cytometry and TUNEL. Western blotting was performed for detection of target protein levels. The expression of VE-Cadherin in lung tissues was evaluated by immunohistochemical staining. RESULTS Pravastatin improved survival rate, attenuated lung pathological changes and reduced pulmonary microvascular permeability in septic mice. In addition, pravastatin restrained sepsis-induced inflammatory response and apoptosis in the lung tissues and PMVECs. Moreover, pravastatin up-regulated the levels of junction proteins ZO-1, JAM-C, and VE-Cadherin. Finally, pravastatin suppressed inflammation, apoptosis and enhanced the expression of junction proteins via regulating Cav-1/eNOS signaling pathway in LPS-exposed PMVECs. CONCLUSION Pravastatin ameliorates sepsis-induced ALI through improving alveolar endothelial barrier disruption via modulating Cav-1/eNOS pathway, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Yi Ren
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Meng-Meng Wang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Li-Ping Cao
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhao-Rui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhi-Zhou Yang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Peng Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Shi-Nan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Li P, Huang Y, Yang Y, Huang X. Methylphenidate exerts neuroprotective effects through the AMPK signaling pathway. Hum Exp Toxicol 2021; 40:1422-1433. [PMID: 33660552 DOI: 10.1177/0960327121996021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Cerebral ischemia is the main cause of permanent adult disabilities worldwide. This study investigated the reparative effects and potential mechanisms of methylphenidate (MPH), a medication for the treatment of attention-deficit/hyperactivity disorder. METHODS In vitro oxygen-glucose deprivation/reperfusion (OGD/R) and in vivo cerebral ischemia-reperfusion models were established. Sprague-Dawley (SD) rats were randomly divided into four groups (n = 20): Sham, Model, and MPH (0.5 and 1 mg/kg). Rats in MPH groups were treated with 0.5 or 1 mg/kg MPH via intraperitoneal injection for 7 days. Rats in the Sham and Model groups were treated with PBS during the same period. Cell viability was measured using MTT assay. Apoptosis was detected by Annexin V/PI staining. Protein expression was detected by Western blot. The volume of cerebral infarction was detected by triphenyltetrazolium chloride (TTC) staining. The DNA damage in ischemic brain tissues was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS MPH treatment significantly reduced OGD/R-induced cell damage, shown by the increased cell viability and decreased apoptotic rate. p-AMPK and p-ACC protein expression increased in the OGD/R model after MPH treatment. The addition of AMPK inhibitor largely abolished the neuroprotective effects of MPH, evidenced by the reduced cell viability, increased apoptotic rate, and decreased protein expression of p-AMPK as well as p-ACC. Moreover, MPH treatment significantly alleviated the cerebral ischemia-reperfusion injury and decreased apoptosis in brain tissues, which may be associated with the AMPK/ACC pathway. CONCLUSIONS MPH exerted protective activities against oxidative stress in the OGD/R model and ameliorated brain damage of rats in the middle cerebral artery occlusion model, at least in part, through activating the AMPK pathway. These data demonstrated neuroprotective properties of MPH and highlighted it as a potential therapeutic agent against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- P Li
- Department of Neurology, Hunan Provincial Brain Hospital, Changsha, China
| | - Y Huang
- Department of Neurology, Hunan Provincial Brain Hospital, Changsha, China
| | - Y Yang
- Department of Neurology, Hunan Provincial Brain Hospital, Changsha, China
| | - X Huang
- Department of Neurology, Hunan Provincial Brain Hospital, Changsha, China
| |
Collapse
|
4
|
Xing F, Liu Y, Dong R, Cheng Y. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim 2021; 70:126-136. [PMID: 33116025 PMCID: PMC7887619 DOI: 10.1538/expanim.20-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- Fangyuan Xing
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Yongrong Liu
- Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ye Cheng
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| |
Collapse
|
5
|
Chang LL, Li C, Li ZL, Wei ZL, Jia XB, Pang ST, An YQ, Gu JF, Feng L. Carthamus tinctorius L. Extract ameliorates cerebral ischemia-reperfusion injury in rats by regulating matrix metalloproteinases and apoptosis. Indian J Pharmacol 2020; 52:108-116. [PMID: 32565598 PMCID: PMC7282686 DOI: 10.4103/ijp.ijp_400_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/05/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
We investigate the protective effect of Carthamus tinctorius L. (CTL, also known as Honghua in China or Safflower) on cerebral ischemia-reperfusion and explored the possible mechanisms on regulating apoptosis and matrix metalloproteinases (MMPs). High-performance liquid chromatography method with diode array detection analysis was established to analyze the components of CTL. Middle cerebral artery occlusion rats model was established to evaluate Neurological Function Score and hematoxylin-eosin staining, as well as triphenyltetrazolium was used to examine the infarction area ratio. Transferase-mediated dUTP nick-end labeling was performed for the apoptosis. Apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bax and Caspase3, and MMPs-related MMP2, MMP9, tissue inhibitor of metalloproteinases 1 (TIMP1) in ischemic brain, were assayed by Western blot, reverse transcription polymerase chain reaction, and immunohistochemistry. The data showed that CTL (2, 4 g crude drug/kg/d) treatment could significantly reduce the ischemic damage in brain tissue and improve a significant neurological function score. In addition, CTL could also attenuate apoptosis degree of brain tissues and regulate Bcl-2, Bax, and Caspase 3 and also have a significant decrease on MMP-9 expression, followed by a significant increase of TIMP1 protein expression. These findings indicated that regulation of CTL on apoptosis and MMPs contributed to its protective effect on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Li-Li Chang
- School of Animal Engineering, Xuzhou Vocational College of Bioengineering, Xuzhou, China
| | - Chao Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,Jumpcan Pharmaceutical Co., Ltd, Jiangsu Taixing, Nanjing, China
| | - Zhi-Li Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,College of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zi-Lun Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiao-Bin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China
| | - Shi-Ting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China
| | - Yi-Qiang An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Fei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,Jumpcan Pharmaceutical Co., Ltd, Jiangsu Taixing, Nanjing, China.,College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Jiang R, Liao J, Yang MC, Deng J, Hu YX, Li P, Li MT. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:548. [PMID: 32411771 PMCID: PMC7214891 DOI: 10.21037/atm-20-3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Lidocaine is a commonly used local anesthetic, and low-dose lidocaine has neuroprotective effects on cerebral ischemia/reperfusion (CI/R) injury; the mechanism for this, however, is still unclear. The aim of this study was to investigate the role and the possible mechanisms of lidocaine on CI/R injury in rats. Methods We constructed a rat (male Sprague-Dawley rats, 6–8 weeks old) model of CI/R injury induced by middle cerebral artery occlusion (MCAO). Histopathology, neuronal apoptosis, oxidative stress, and inflammatory response were evaluated using hematoxylin and eosin (HE) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. In addition, brain water content, infarct volume, neurological deficit score each evaluated. Results The findings showed that lidocaine improved spatial learning and memory impairment, protected I/R-induced brain injury and attenuated neuronal death and apoptosis. Furthermore, lidocaine also regulated the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), IL-6, IL-10, iNOS, and IL-4.Notably, lidocaine markedly inhibited the expression of p65 and p38. Conclusions The results indicate that lidocaine protects against cerebral injury induced by I/R in rats via the nuclear factor kappa-B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, it provided a candidate for the treatment of CI/R-induced injury.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Juan Liao
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Meng-Chang Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yun-Xia Hu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Mei-Ting Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
7
|
Karimipour M, Shojaei Zarghani S, Mohajer Milani M, Soraya H. Pre-Treatment with Metformin in Comparison with Post-Treatment Reduces Cerebral Ischemia Reperfusion Induced Injuries in Rats. Bull Emerg Trauma 2018; 6:115-121. [PMID: 29719841 DOI: 10.29252/beat-060205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective To explore the effects of pre versus post ischemic treatment with metformin after global cerebral ischemia in rats. Methods Male Wister rats underwent forebrain ischemia by bilateral common carotid artery occlusion for 17 min. Metformin (200 mg/kg) or vehicle was given orally by gavage for 7-14 days. Rats were divided into: control, metformin pre-treatment, metformin post-treatment and metformin pre and post continuous treatment groups. Cerebral infarct size, histopathology, myeloperoxidase and serum malondialdehyde were measured 7 days after ischemia. Results Histopathological analysis showed that metformin pre-treatment significantly decreased leukocyte infiltration, myeloperoxidase activity and also malondialdehyde level. Metformin pre-treatment and metformin post-treatment reduced infarct size compared with the control group, but it was not significant in the pre and post continuous treatment group. Conclusion Our findings suggest that pre-treatment with metformin in comparison with post-treatment in experimental stroke can reduce the extent of brain damage and is more neuroprotective at least in part by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mojtaba Karimipour
- Neurophysiology Research Center, Department of Anatomy, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Shojaei Zarghani
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Hamid Soraya
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Sohn HM, Hwang JY, Ryu JH, Kim J, Park S, Park JW, Han SH. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions. J Orthop Surg Res 2017; 12:36. [PMID: 28241838 PMCID: PMC5330028 DOI: 10.1186/s13018-017-0536-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
Background Ischemia and the following reperfusion damage are critical mechanisms of spinal cord injury. Statins have been reported to decrease ischemia–reperfusion injury in many organs including the spinal cord. Anti-oxidative effect is one of the main protective mechanisms of statin against neuronal death and cytotoxicity. We hypothesized that statins’ anti-oxidative property would yield neuroprotective effects on spinal cord ischemia–reperfusion injury Methods Primary cultured spinal cord motor neurons were isolated from Sprague–Dawley rat fetuses. Ischemia–reperfusion injury model was induced by 60 min of oxygen and glucose deprivation (OGD) and 24 h of reoxygenation. Healthy and OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 24 h. Cell viability was assessed using water-soluble tetrazolium salt (WST)-8, cytotoxicity with LDH, and production of free radicals with DCFDA (2′,7′-dichlorofluorescein diacetate). Results OGD reduced neuronal viability compared to normoxic control by 35.3%; however, 0.1–10 μM of simvastatin treatment following OGD improved cell survival. OGD increased LDH release up to 214%; however, simvastatin treatment attenuated its cytotoxicity at concentrations of 0.1–10 μM (p < 0.001 and p = 0.001). Simvastatin also reduced deteriorated morphological changes of motor neurons following OGD. Oxidative stress was reduced by simvastatin (0.1–10 μM) compared to untreated cells exposed to OGD (p < 0.001). Conclusions Simvastatin effectively reduced spinal cord neuronal death and cytotoxicity against ischemia–reperfusion injury, probably via modification of oxidative stress.
Collapse
Affiliation(s)
- Hye-Min Sohn
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jinhee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Seongjoo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Woo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Sung-Hee Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
9
|
Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull 2016; 39:336-42. [DOI: 10.1248/bpb.b15-00699] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kang Li
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Dun Ding
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Ming Zhang
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|