1
|
Najafi S, Rahimpour A, Ahmadieh H, Rezaei Kanavi M, Maleki Tehrani M, Suri F, Ranjbari J. The effect of enhancers on the lentiviral transduction efficiency in the human RPE cells: Insights for advancing retinal gene therapies. Biochem Biophys Rep 2025; 42:102010. [PMID: 40275964 PMCID: PMC12018193 DOI: 10.1016/j.bbrep.2025.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Background Viral vectors including lentiviruses (LV), adenoviruses (AV) and adeno-associated viruses (AAV) have been used as common vehicles for gene transfer in gene therapy of various human diseases. The efficacy of gene transfer, however, still remains unsatisfying and thus, a number of biologic and chemical substances are used for enhancing the transduction efficiency. In this article, we aim to evaluate the cytotoxicity and impact of individual and combinational treatment of two polycationic agents hexadimethrine bromide (polybrene; Pb) and protamine sulfate (PS) on the transduction efficiency of lentiviral particles in the primary human retinal pigment epithelial (RPE) cells. Methods Cytotoxicity of Pb and PS at individual and combinational concentrations was evaluated using MTT cell viability assay in RPE cells. Lentiviral particles were produced using a set of second-generation vectors and different combinations of two enhancers, Pb and PS, were added to the transduction medium. The transduction efficiency of lentiviral particles in RPE cells was evaluated using flow cytometry and calculating the mean fluorescence intensity (MFI), as well as the percentage of green fluorescent protein (GFP)-positive cells. All the treatments were performed in three replicates. Results Cell viability assay revealed that individual treatment of Pb at all concentrations by up to 25 μg/ml was safe to RPE cells with no visible toxicity and its combination with PS did not significantly improve its effect on the cell viability. Interestingly, Pb at all concentrations significantly improved the transduction efficiency compared to control virus with the best MFI result seen at 10 μg/ml concentration. The mean population of GFP-positive cells was also most enhanced at that concentration (p-value: 0.006). At a combinational concentration of 10 μg/ml of Pb and 2 μg/ml of PS, the highest level of transduction efficiency was reported (MFI: 801, GFP+: 65.4 %); however, the value was not significant when compared to enhancers used in individual treatments or relative to other combinations. Conclusion Pb enhanced the transduction efficiency of lentiviral particles in RPE cells and in combination with PS achieved the highest level of MFI and GFP-positive percentage. Although, the efficiency of the combination was not significant compared to that of individual treatments, this study may suggest the potential of combinational enhancers for applications in gene therapy.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Maleki Tehrani
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dehghan F, Metanat Y, Askarizadeh M, Ahmadi E, Moradi V. Novel gene manipulation approaches to unlock the existing bottlenecks of CAR-NK cell therapy. Front Cell Dev Biol 2025; 12:1511931. [PMID: 40007761 PMCID: PMC11850336 DOI: 10.3389/fcell.2024.1511931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025] Open
Abstract
Currently, CAR-T cell therapy is known as an efficacious treatment for patients with relapsed/refractory hematologic malignancies. Nonetheless, this method faces several bottlenecks, including low efficacy for solid tumors, lethal adverse effects, high cost of autologous products, and the risk of GvHD in allogeneic settings. As a potential alternative, CAR-NK cell therapy can overcome most of the limitations of CAR-T cell therapy and provide an off-the-shelf, safer, and more affordable product. Although published results from preclinical and clinical studies with CAR-NK cells are promising, several bottlenecks must be unlocked to maximize the effectiveness of CAR-NK cell therapy. These bottlenecks include low in vivo persistence, low trafficking into tumor sites, modest efficacy in solid tumors, and sensitivity to immunosuppressive tumor microenvironment. In recent years, advances in gene manipulation tools and strategies have laid the groundwork to overcome the current bottlenecks of CAR-NK cell therapy. This review will introduce the existing gene manipulation tools and discuss their advantages and disadvantages. We will also explore how these tools can enhance CAR-NK cell therapy's safety and efficacy.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Department of Anatomy and Molecular Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan Province, Iran
| | - Mandana Askarizadeh
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Ehsan Ahmadi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Moradi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wu X, Elsaid S, Levet F, Li W, Tee SS. Establishing Immortalized Brown and White Preadipocyte Cell Lines from Young and Aged Mice. Curr Protoc 2024; 4:e70072. [PMID: 39670655 DOI: 10.1002/cpz1.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Studying adipogenesis and adipocyte biology requires the isolation of primary preadipocytes from adipose tissues. However, primary preadipocytes have a limited lifespan, can only undergo a finite number of divisions, and often lose their original biological characteristics before becoming senescent. The repeated isolation of fresh preadipocytes, particularly from young pups or aged animals, is costly and time consuming. Immortalization of these cells offers a solution by overcoming cellular senescence and maintaining proliferative capacity, allowing for long-term studies without the continuous need to isolate new cells from animals. Immortalized cell lines thus provide a consistent and reproducible experimental model, significantly reducing variability across different animals. However, successfully establishing immortalized preadipocyte cell lines presents challenges, including selecting appropriate adipose tissue depots, isolating primary preadipocytes, and choosing an effective immortalization strategy. In this article, we present optimized protocols and share first-hand experiences establishing immortalized brown and white preadipocyte cell lines from young and aging mice. These protocols offer a valuable resource for researchers studying adipogenesis and metabolism. © 2024 Wiley Periodicals LLC. Support Protocol 1: Retrovirus production Basic Protocol 1: Isolation and culture of primary brown and white preadipocytes from mouse interscapular brown adipose tissue (iBAT) and subcutaneous white adipose tissue (sWAT) in the same region Basic Protocol 2: Immortalization of mouse brown and white preadipocytes Basic Protocol 3: Selection of immortalized preadipocytes Basic Protocol 4: Selection of single-cell clones of immortalized mouse preadipocytes Basic Protocol 5: Single-cell sorting in a 96-well plate using a flow cytometer for the selection of single-cell clones of immortalized preadipocytes Support Protocol 2: Cryopreservation of immortalized mouse preadipocytes Support Protocol 3: Thawing and culture of cryopreserved immortalized mouse preadipocytes Support Protocol 4: Subculture and expansion of immortalized mouse preadipocytes Basic Protocol 6: Differentiation of immortalized mouse brown and white preadipocytes Support Protocol 5: Identification of differentiated white and brown adipocytes.
Collapse
Affiliation(s)
- Xiangdong Wu
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Salaheldeen Elsaid
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Winson Li
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sui Seng Tee
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Zhang Y, Wu B, Liu D, Chen Y, Xu Y, Fu L, Lin Z, Wu G, Huang F. Targeting HIF-1α with Specific DNA Yokes for Effective Anticancer Therapy. Adv Healthc Mater 2024; 13:e2401087. [PMID: 38696899 DOI: 10.1002/adhm.202401087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Hypoxia, a ubiquitous hallmark in cancer, underscores the significance of targeting HIF-1α, the principal transcriptional factor of hypoxic responses, for effective cancer therapy. Herein, DNA yokes, a novel class of DNA nanomaterials harboring specific HIF-1α binding sequences (hypoxia response elements, HREs), are introduced as nanopharmaceuticals for cancer treatment. Comprising a basal tetrahedral DNA nanostructure and four HRE-bearing overhanging chains, DNA yokes exhibit exceptional stability and prolonged intracellular retention. The investigation reveals their capacity to bind HIF-1α, thereby disrupting its interaction with the downstream genomic DNAs and impeding transcriptional activity. Moreover, DNA yokes facilitate HIF-1α degradation via the ubiquitination pathway, thereby sequestering it from downstream targets and ultimately promoting its degradation. In addition, DNA yokes attenuate cancer cell proliferation, migration, and invasion under hypoxic conditions, while also displaying preferential accumulation within tumors, thereby inhibiting tumor growth and metastasis in vivo. This study pioneers a novel approach to cancer therapy through the development of DNA-based drugs characterized by high stability and low toxicity to normal cells, positioning DNA yokes as promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Bing Wu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Danqing Liu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yue Chen
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yanfang Xu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Lengxi Fu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Gui Wu
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Fei Huang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| |
Collapse
|
5
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Nie L, Liu W, Chen J, Zhou S, Liu C, Li W, Ran Z, Liu Y, Hu J, Zhang Y, Zheng L, Ji P, Zhang H. A Novel Bioimplant Comprising Ad-BMP9-Transfected BMSCs and GelMA Microspheres Produced from Microfluidic Devices for Bone Tissue Engineering. J Tissue Eng Regen Med 2023; 2023:2981936. [PMID: 40226408 PMCID: PMC11918572 DOI: 10.1155/2023/2981936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 04/15/2025]
Abstract
Oral and maxillofacial bone defect repair in patients remains challenging in clinical treatment due to the different morphologies of bone defects. An injectable hydrogel of microspheres with sustained bone morphogenetic protein 9 (BMP9) expression for oral and maxillofacial bone defect repair has been developed. This study is bioinspired by the substantial osteogenesis property of recombinant adenoviruses expressing bone morphogenetic protein 9 (Ad-BMP9) and minimally invasive treatment by injection. A novel scaffold encompassing bone mesenchymal stem cells (BMSCs) transfected with Ad-BMP9 was produced and cocultured on a superficial surface of monodisperse photocrosslinked methacrylate gelatin hydrogel microspheres (GelMA/MS, produced with microfluidic technology). The biological tests including live/dead cell staining, phalloidin staining, cell counting kit-8 (CCK-8) assay, alkaline phosphatase (ALP) activity and staining, alizarin red S staining, and quantitative real-time polymerase chain reaction (RT-qPCR), revealed that the hydrogel microspheres exhibited good biocompatibility and remarkably promoted the osteogenic differentiation of BMSCs in vitro. In addition, a small needle was injected the innovative scaffold beneath the nude mice's skin. The micro-CT and histological staining assay results demonstrated that the new implant, with high blood vessel formation markers (CD31-positive cells) expression over four and eight weeks, achieved significant vascularized bone-like tissue formation. Consequently, the injectable hydrogel microspheres, cocultured with BMSC transfected with Ad-BMP9, enhanced vascularized bone regeneration, therefore representing a facile and promising technique for the minimally invasive treatment of oral and maxillofacial bone defects.
Collapse
Affiliation(s)
- Li Nie
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Wei Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jiajun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Siqi Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Chang Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Wenhui Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Zhiyue Ran
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yaxian Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jing Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
7
|
Wang X, Yang X, Yuan X, Wang W, Wang Y. Chimeric antigen receptor-engineered NK cells: new weapons of cancer immunotherapy with great potential. Exp Hematol Oncol 2022; 11:85. [PMID: 36324149 PMCID: PMC9628181 DOI: 10.1186/s40164-022-00341-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cells have obtained prominent achievement in the clinical immunotherapy of hematological malignant tumors, leading to a rapid development of cellular immunotherapy in cancer treatment. Scientists are also aware of the prospective advantages of CAR engineering in cellular immunotherapy. Due to various limitations such as the serious side effects of CAR-T therapy, researchers began to investigate other immune cells for CAR modification. Natural killer (NK) cells are critical innate immune cells with the characteristic of non-specifically recognizing target cells and with the potential to become "off-the-shelf" products. In recent years, many preclinical studies on CAR-engineered NK (CAR-NK) cells have shown their remarkable efficacy in cancer therapy and their superiority over autologous CAR-T cells. In this review, we summarize the generation, mechanisms of anti-tumor activity and unique advantages of CAR-NK cells, and then analyze some challenges and recent clinical trials about CAR-NK cells therapy. We believe that CAR-NK therapy is a promising prospect for cancer immunotherapy in the future.
Collapse
Affiliation(s)
- Xiao Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuejiao Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiang Yuan
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wenbo Wang
- grid.24516.340000000123704535Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yueying Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
8
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
9
|
Büning H, Schambach A, Morgan M, Rossi A, Wichova H, Staecker H, Warnecke A, Lenarz T. Challenges and advances in translating gene therapy for hearing disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1707077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, USA
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Dombrowski T, Rankovic V, Moser T. Toward the Optical Cochlear Implant. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033225. [PMID: 30323016 DOI: 10.1101/cshperspect.a033225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When hearing fails, cochlear implants (CIs) provide open speech perception to most of the currently half a million CI users. CIs bypass the defective sensory organ and stimulate the auditory nerve electrically. The major bottleneck of current CIs is the poor coding of spectral information, which results from wide current spread from each electrode contact. As light can be more conveniently confined, optical stimulation of the auditory nerve presents a promising perspective for a fundamental advance of CIs. Moreover, given the improved frequency resolution of optical excitation and its versatility for arbitrary stimulation patterns the approach also bears potential for auditory research. Here, we review the current state of the art focusing on the emerging concept of optogenetic stimulation of the auditory pathway. Developing optogenetic stimulation for auditory research and future CIs requires efforts toward viral gene transfer to the neurons, design and characterization of appropriate optogenetic actuators, as well as engineering of multichannel optical implants.
Collapse
Affiliation(s)
- Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr University Bochum, St. Elisabeth Hospital, 44787 Bochum, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany.,Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
11
|
Griukova A, Deryabin P, Sirotkina M, Shatrova A, Nikolsky N, Borodkina A. P38 MAPK inhibition prevents polybrene-induced senescence of human mesenchymal stem cells during viral transduction. PLoS One 2018; 13:e0209606. [PMID: 30586456 PMCID: PMC6306270 DOI: 10.1371/journal.pone.0209606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022] Open
Abstract
The unique capacity of mesenchymal stem cells (MSCs) to migrate to the sites of damage, following intravenous transplantation, along with their proliferation and differentiation abilities make them promising candidates for MSC-based gene therapy. This therapeutic approach requires high efficacy delivery of stable transgenes to ensure their adequate expression in MSCs. One of the methods to deliver transgenes is via the viral transduction of MSCs. However, due to low transduction efficiency of MSCs, various polications are used to promote the association of viral particles with membranes of target cells. Among these polications polybrene is the most widely used one. Unfortunately, viral infection in presence of polybrene was shown to negatively affect proliferation rate of stem cells. The molecular mechanism underlying this effect is not yet uncovered. Therefore, the present study aimed to elucidate the mechanism of this phenomenon as well as to develop an effective approach to overcome the negative impact of polybrene on the properties of human endometrium-derived mesenchymal stem cells (hMESCs) during lentiviral infection. We found that the negative effect on proliferation observed during the viral infection in presence of polybrene is mediated by the polycation itself. Furthermore, we revealed that the treatment with polybrene alone led to the p38 MAPK-dependent premature senescence of hMESCs. These findings allowed us to develop an effective strategy to attenuate the negative polybrene impact on the hMESCs properties during lentiviral infection by inhibiting the activity of p38 MAPK. Importantly, the proposed approach did not attenuate the transduction efficiency of hMESCs, yet prevented polybrene-induced senescence and thereby restored the proliferation of the infected cells. These results provide the plausible means to reduce side effects of polybrene during the viral infection of primary cells, particularly MSCs.
Collapse
Affiliation(s)
- Anastasiia Griukova
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Pavel Deryabin
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Maria Sirotkina
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Alla Shatrova
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Nikolay Nikolsky
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| | - Aleksandra Borodkina
- Laboratory of Intracellular Signaling, Institute of Cytology, Russian Academy of Sciences, Saint- Petersburg, Russia
| |
Collapse
|
12
|
Cole MD, Sheri M, Bielicki C, Emrick T. Perylene Diimide-Based Ionene and Zwitterionic Polymers: Synthesis and Solution Photophysical Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Marcus D. Cole
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Madhu Sheri
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Chelsea Bielicki
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Department of Polymer Science
and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Lee JY, Lee HH. A new chemical complex can rapidly concentrate lentivirus and significantly enhance gene transduction. Cytotechnology 2017; 70:193-201. [PMID: 28884364 DOI: 10.1007/s10616-017-0133-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 08/05/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, we developed a new purification method using chondroitin sulfate C (CSC) and protamine sulfate (PS) to concentrate lentivirus. To evaluate the efficiency of this new method, we compared it with several previously described purification protocols, including virus concentrated by ultracentrifugation (Ultra), precipitated by polyethylene glycol (PEG), and sedimented by CSC combined with polybrene (PB). After using the different methods to purify and concentrate equivalent amounts of lentivirus supernatant, the virus pellets precipitated by the different methods were resuspended using the equivalent volumes of DMEM. Subsequently, 10 μl of each lentivirus stock carrying EGFP gene was used to transduce two types of cells, human embryonic kidney 293T (HEK293T) cells and mouse mesenchymal stem cells (mMSC). It was obvious that HEK293T and mMSC appeared much intensiver green fluorescence through virus transduction from PS method than from other methods. To quantitate the transduction efficiency of the viruses, we examined virus titer in the cells after transduction using a real-time PCR-based analysis. Accordingly, we verified that PS precipitation could generate virus with a higher titer (4.39 × 108 IU/ml) than PB (2.43 × 108 IU/ml), Ultra (1.16 × 108 IU/ml), and PEG (0.56 × 108 IU/ml) in HEK293T cells. As for HEK293T cells in mMSC, the PS method also generated virus with a higher titer (4.66 × 108 IU/ml) than the Ultra method (2.36 × 108 IU/ml), and a much higher titer than those of the other chemical-based precipitation methods using PB (4.82 × 106 IU/ml) and PEG (8.98 × 104 IU/ml). Furthermore, the HEK293T cells and mMSC transduced by PS(1X)-virus appeared to have higher cell growth ratios, respectively, than the HEK293T cells and mMSC transduced by lentivirus using the other methods. We conclude that our new method for purifying lentivirus is cost-effective, time-saving, and highly efficient, and that lentivirus purification by this means could possibly be used to transduce a variety of cells, including stem cells.
Collapse
Affiliation(s)
- Jing-Yu Lee
- Department of Bioagricultural Sciences, National Chiayi University, No. 300 Syuefu Rd, Chiayi, 60004, Taiwan, ROC
| | - Hu-Hui Lee
- Department of Bioagricultural Sciences, National Chiayi University, No. 300 Syuefu Rd, Chiayi, 60004, Taiwan, ROC.
| |
Collapse
|
14
|
Nie L, Yang X, Duan L, Huang E, Pengfei Z, Luo W, Zhang Y, Zeng X, Qiu Y, Cai T, Li C. The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds. Sci Rep 2017; 7:6373. [PMID: 28743897 PMCID: PMC5527078 DOI: 10.1038/s41598-017-06548-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
Cells, scaffolds, and growth factors play important roles in bone regeneration. Bone morphogenetic protein 9 (BMP9), a member of BMP family, could facilitate osteogenesis by regulating growth factors and promoting angiogenesis. Similar to other stem cells, rat dental follicle stem cells (rDFCs), the precursor cells of cementoblasts, osteoblasts and periodontal ligament cells, can self-renew and exhibit multipotential capacity. Coralline hydroxyapatite (CHA) has good biocompatibility and conductivity required for bone tissue engineering. Here, we reported that BMP9 could enhance the osteogenic differentiation of rDFCs in cell culture. Moreover, our results suggested that BMP9 acted through the Smad1/5/8 signaling pathway. We also produced a novel scaffold that encompasses bio-degradable CHA seeded with recombinant adenoviruses expressing BMP9-transfected rDFCs (Ad-BMP9-transfected rDFCs). With this implant, we achieved more alveolar bone regeneration in the alveolar bone defect compared to blank group, CHA group and rDFCs group. Our results provided a novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds and its mechanism is regarding the activation of Smad1/5/8 signaling pathway in BMP9-induced rDFCs osteogenesis.
Collapse
Affiliation(s)
- Li Nie
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xia Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Liang Duan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Enyi Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Zhou Pengfei
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yan Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xingqi Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ye Qiu
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ting Cai
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Conghua Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key, Chongqing, 401147, China.
- Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
15
|
Palesch D, Boldt F, Müller JA, Eisele K, Stürzel CM, Wu Y, Münch J, Weil T. PEGylated Cationic Serum Albumin for Boosting Retroviral Gene Transfer. Chembiochem 2016; 17:1504-8. [PMID: 27239020 DOI: 10.1002/cbic.201600193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/28/2023]
Abstract
Retroviral vectors are common tools for introducing genes into the genome of a cell. However, low transduction rates are a major limitation in retroviral gene transfer, especially in clinical applications. We generated cationic human serum albumin (cHSA) protected by a shell of poly(ethylene glycol) (PEG); this significantly enhanced retroviral gene transduction with potentially attractive pharmacokinetics and low immunogenicity. By screening a panel of chemically optimized HSA compounds, we identified a very potent enhancer that boosted the transduction rates of viral vectors. Confocal microscopy revealed a drastically increased number of viral particles attached to the surfaces of target cells. In accordance with the positive net charge of cationic and PEGylated HSA, this suggests a mechanism of action in which the repulsion of the negatively charged cellular and viral vector membranes is neutralized, thereby promoting attachment and ultimately transduction. Importantly, the transduction-enhancing PEGylated HSA derivative evaded recognition by HSA-specific antibodies and macrophage activation. Our findings hold great promise for facilitating improved retroviral gene transfer.
Collapse
Affiliation(s)
- David Palesch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Felix Boldt
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Klaus Eisele
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany.
| | - Tanja Weil
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|