1
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Costello A, Linning-Duffy K, Vandenbrook C, Donohue K, O'Hara BF, Kim A, Lonstein JS, Yan L. Effects of light therapy on sleep/wakefulness, daily rhythms, and the central orexin system in a diurnal rodent model of seasonal affective disorder. J Affect Disord 2023; 332:299-308. [PMID: 37060954 PMCID: PMC10161688 DOI: 10.1016/j.jad.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Bright light therapy (BLT) is the first-line treatment for seasonal affective disorder. However, the neural mechanisms underlying BLT are unclear. To begin filling this gap, the present study examined the impact of BLT on sleep/wakefulness, daily rhythms, and the wakefulness-promoting orexin/hypocretin system in a diurnal rodent, Nile grass rats (Arvicanthis niloticus). METHODS Male and female grass rats were housed under a 12:12 h light/dark cycle with dim light (50 lx) during the day. The experimental group received daily 1-h early morning BLT (full-spectrum white light, 10,000 lx), while the control group received narrowband red light for 4 weeks. Sleep/wakefulness and in-cage locomotor activity were monitored, followed by examination of hypothalamic prepro-orexin and orexin receptors OX1R and OX2R expression in corticolimbic brain regions. RESULTS The BLT group had higher wakefulness during light treatment, better nighttime sleep quality, and improved daily rhythm entrainment compared to controls. The impact of BLT on the orexin system was sex- and brain region-specific, with males showing higher OX1R and OX2R in the CA1, while females showed higher prepro-orexin but lower OX1R and OX2R in the BLA, compared to same-sex controls. LIMITATIONS The present study focused on the orexin system in a limited number of brain regions at a single time point. Sex wasn't a statistical factor, as male and female cohorts were run independently. CONCLUSIONS The diurnal grass rats show similar behavioral responses to BLT as humans, thus could be a good model for further elucidating the neural mechanisms underlying the therapeutic effects of BLT.
Collapse
Affiliation(s)
- Allison Costello
- Department of Psychology, Michigan State University, United States of America.
| | | | | | - Kevin Donohue
- Department of Electrical and Computer Engineering, Michigan State University, United States of America
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, United States of America
| | - Antony Kim
- Department of Architecture, UC Berkeley, United States of America
| | - Joseph S Lonstein
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| | - Lily Yan
- Department of Psychology, Michigan State University, United States of America; Neuroscience Program, Michigan State University, United States of America
| |
Collapse
|
4
|
Joye DAM, Rohr KE, Suenkens K, Wuorinen A, Inda T, Arzbecker M, Mueller E, Huber A, Pancholi H, Blackmore MG, Carmona-Alcocer V, Evans JA. Somatostatin regulates central clock function and circadian responses to light. Proc Natl Acad Sci U S A 2023; 120:e2216820120. [PMID: 37098068 PMCID: PMC10160998 DOI: 10.1073/pnas.2216820120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.
Collapse
Affiliation(s)
- Deborah A. M. Joye
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Kayla E. Rohr
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Kimberlee Suenkens
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Alissa Wuorinen
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Thomas Inda
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Madeline Arzbecker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Emma Mueller
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Alec Huber
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | - Harshida Pancholi
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| | | | | | - Jennifer A. Evans
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI53233
| |
Collapse
|
5
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
6
|
Bilu C, Kronfeld-Schor N, Zimmet P, Einat H. Sex differences in the response to circadian disruption in diurnal sand rats. Chronobiol Int 2021; 39:169-185. [PMID: 34711113 DOI: 10.1080/07420528.2021.1989448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most animal model studies on physiological functions and pathologies are conducted in males. However, diseases such as depression, type 2 diabetes (T2DM) and cardiovascular disease, all show different prevalence and characteristics in females and males. Moreover, most mammal studies are conducted in nocturnal mice and rats, while modelling diurnal humans. We therefore used male and female fat sand rats (Psammomys obesus), which are diurnal in the wild, as an animal model for T2DM, to explore the effects of mild circadian disruption on behavior, glucose tolerance, cholesterol and heart weight. We found significant differences between the sexes: on average, in response to short photoperiods (SP) acclimation, males showed higher levels of depression-like behavior, lower glucose tolerance, and increased plasma cholesterol levels compared with females, with no effect on heart/body weight ratio. Females, however did show an increase in heart/body weight ratio in response to SP acclimation. We also found that regardless of sex, arrhythmic animals showed higher blood glucose levels, cholesterol levels, heart/body weight ratio, and depressive-like behavior compared with rhythmic animals. Hence, we suggest that the expression of the Circadian Syndrome could be different between males and females. Additional work with females is required to clearly delineate the specific effects in both sexes, and promote sex-based health care, prevention measures and therapies.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | - Noga Kronfeld-Schor
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, Australia
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| |
Collapse
|
7
|
Soler JE, Xiong H, Samad F, Manfredsson FP, Robison AJ, Núñez AA, Yan L. Orexin (hypocretin) mediates light-dependent fluctuation of hippocampal function in a diurnal rodent. Hippocampus 2021; 31:1104-1114. [PMID: 34263969 DOI: 10.1002/hipo.23376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Environmental lighting conditions play a central role in cognitive function, but the underlying mechanisms remain unclear. Utilizing a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), we previously found that daytime light intensity affects hippocampal function in this species in a manner similar to its effects in humans. Compared to animals housed in a 12:12 h bright light-dark (brLD) cycle, grass rats kept in a 12:12 h dim light-dark (dimLD) cycle showed impaired spatial memory in the Morris water maze (MWM) and reduced CA1 apical dendritic spine density. The present study explored the neural substrates mediating the effects of daylight intensity on hippocampal function focusing on the hypothalamic orexin (hypocretin) system. First, animals housed in dimLD were treated with daily intranasal administration of orexin A peptide over five training days of the MWM task. Compared to vehicle controls, this treatment led to superior spatial memory accompanied by increased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II α and glutamate receptor 1 within the CA1. To assess the role of hippocampal orexinergic signaling, an adeno-associated viral vector (AAV) expressing an orexin receptor 1 (OX1R) shRNA was injected into the dorsal hippocampus targeting the CA1 of animals housed in brLD. AAV-mediated knockdown of OX1R within the hippocampus resulted in deficits in MWM performance and reduced CA1 apical dendritic spine density. These results are consistent with the view that the hypothalamic orexinergic system underlies the modulatory role of daytime illumination on hippocampal function in diurnal mammals.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Hang Xiong
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Faiez Samad
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Alfred J Robison
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Tonon AC, Pilz LK, Markus RP, Hidalgo MP, Elisabetsky E. Melatonin and Depression: A Translational Perspective From Animal Models to Clinical Studies. Front Psychiatry 2021; 12:638981. [PMID: 33897495 PMCID: PMC8060443 DOI: 10.3389/fpsyt.2021.638981] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Daily rhythm of melatonin synchronizes the body to the light/dark environmental cycle. Several hypotheses have been raised to understand the intersections between melatonin and depression, in which changes in rest-activity and sleep patterns are prominent. This review describes key experimental and clinical evidence that link melatonin with the etiopathology and symptomatology of depressive states, its role in the follow up of therapeutic response to antidepressants, as well as the clinical evidence of melatonin as MDD treatment. Melatonin, as an internal temporal cue contributing to circadian organization and best studied in the context of circadian misalignment, is also implicated in neuroplasticity. The monoaminergic systems that underly MDD and melatonin production overlap. In addition, the urinary metabolite 6-sulfatoxymelatonin (aMT6) has been proposed as biomarker for antidepressant responders, by revealing whether the blockage of noradrenaline uptake has taken place within 24 h from the first antidepressant dose. Even though animal models show benefits from melatonin supplementation on depressive-like behavior, clinical evidence is inconsistent vis-à-vis prophylactic or therapeutic benefits of melatonin or melatonin agonists in depression. We argue that the study of melatonin in MDD or other psychiatric disorders must take into account the specificities of melatonin as an integrating molecule, inextricably linked to entrainment, metabolism, immunity, neurotransmission, and cell homeostasis.
Collapse
Affiliation(s)
- André C. Tonon
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luísa K. Pilz
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Regina P. Markus
- Laboratório de Cronofarmacologia, Departamento de Fisiologia, Instituto de Biociência, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
10
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
12
|
A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int J Mol Sci 2019; 20:ijms20092363. [PMID: 31086044 PMCID: PMC6540063 DOI: 10.3390/ijms20092363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.
Collapse
|
13
|
Bilu C, Einat H, Tal-Krivisky K, Mizrahi J, Vishnevskia-Dai V, Agam G, Kronfeld-Schor N. Red white and blue - bright light effects in a diurnal rodent model for seasonal affective disorder. Chronobiol Int 2019; 36:919-926. [PMID: 30983429 DOI: 10.1080/07420528.2019.1595638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite the common use of bright light exposure for treatment of seasonal affective disorder (SAD), the underlying biology of the therapeutic effect is not clear. Moreover, there is a debate regarding the most efficacious wavelength of light for treatment. Whereas according to the traditional approach full-spectrum light is used, recent studies suggest that the critical wavelengths are within the range of blue light (460 and 484 nm). Our previous work shows that when diurnal rodents are maintained under short photoperiod they develop depression- and anxiety-like behavioral phenotype that is ameliorated by treatment with wide-spectrum bright light exposure (2500 lux at the cage, 5000 K). Our current study compares the effect of bright wide-spectrum (3,000 lux, wavelength 420- 780 nm, 5487 K), blue (1,300 lux, wavelength 420-530 nm) and red light (1,300 lux, wavelength range 600-780 nm) exposure in the fat sand rat (Psammomys Obesus) model of SAD. We report results of experiments with six groups of sand rats that were kept under various photoperiods and light treatments, and subjected to behavioral tests related to emotions: forced swim test, elevated plus maze and social interactions. Exposure to either intense wide-spectrum white light or to blue light equally ameliorated depression-like behavior whereas red light had no effect. Bright wide-spectrum white light treatment had no effect on animals maintained under neutral photoperiod, meaning that light exposure was only effective in the pathological-like state. The resemblance between the effects of bright white light and blue light suggests that intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in the underlying biology of SAD and light therapy.
Collapse
Affiliation(s)
- Carmel Bilu
- a School of Zoology , Tel-Aviv University , Tel Aviv , Israel.,b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | - Haim Einat
- c School of Behavioral Sciences , Tel Aviv-Yaffo Academic College , Tel-Aviv , Israel
| | | | - Joseph Mizrahi
- d Department of Medicine , Stony Brook University Hospital , Stony Brook , NY , USA
| | - Vicktoria Vishnevskia-Dai
- e Ocular Oncology and Autoimmune service, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine , Tel-Aviv University , Tel Aviv , Israel
| | - Galila Agam
- b Department of Clinical Biochemistry and Pharmacology , Ben-Gurion University of the Negev , Beer Sheva , Israel
| | | |
Collapse
|
14
|
Lonstein JS, Linning-Duffy K, Yan L. Low Daytime Light Intensity Disrupts Male Copulatory Behavior, and Upregulates Medial Preoptic Area Steroid Hormone and Dopamine Receptor Expression, in a Diurnal Rodent Model of Seasonal Affective Disorder. Front Behav Neurosci 2019; 13:72. [PMID: 31031606 PMCID: PMC6473160 DOI: 10.3389/fnbeh.2019.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
Seasonal affective disorder (SAD) involves a number of psychological and behavioral impairments that emerge during the low daytime light intensity associated with winter, but which remit during the high daytime light intensity associated with summer. One symptom frequently reported by SAD patients is reduced sexual interest and activity, but the endocrine and neural bases of this particular impairment during low daylight intensity is unknown. Using a diurnal laboratory rodent, the Nile grass rat (Arvicanthis niloticus), we determined how chronic housing under a 12:12 h day/night cycle involving dim low-intensity daylight (50 lux) or bright high-intensity daylight (1,000 lux) affects males’ copulatory behavior, reproductive organ weight, and circulating testosterone. We also examined the expression of mRNAs for the aromatase enzyme, estrogen receptor 1 (ESR1), and androgen receptor (AR) in the medial preoptic area (mPOA; brain site involved in the sensory and hormonal control of copulation), and mRNAs for the dopamine (DA) D1 and D2 receptors in both the mPOA and nucleus accumbens (NAC; brain site involved in stimulus salience and motivation to respond to reward). Compared to male grass rats housed in high-intensity daylight, males in low-intensity daylight displayed fewer mounts and intromissions when interacting with females, but the groups did not differ in their testes or seminal vesicle weights, or in their circulating levels of testosterone. Males in low-intensity daylight unexpectedly had higher ESR1, AR and D1 receptor mRNA in the mPOA, but did not differ from high-intensity daylight males in D1 or D2 mRNA expression in the NAC. Reminiscent of humans with SAD, dim winter-like daylight intensity impairs aspects of sexual behavior in a male diurnal rodent. This effect is not due to reduced circulating testosterone and is associated with upregulation of mPOA steroid and DA receptors that may help maintain some sexual motivation and behavior under winter-like lighting conditions.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Katrina Linning-Duffy
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Lily Yan
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Díaz MM, Schlichting M, Abruzzi KC, Long X, Rosbash M. Allatostatin-C/AstC-R2 Is a Novel Pathway to Modulate the Circadian Activity Pattern in Drosophila. Curr Biol 2018; 29:13-22.e3. [PMID: 30554904 PMCID: PMC6325008 DOI: 10.1016/j.cub.2018.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
Abstract
Seven neuropeptides are expressed within the Drosophila brain circadian network. Our previous mRNA profiling suggested that Allatostatin-C (AstC) is an eighth neuropeptide and specifically expressed in dorsal clock neurons (DN1s). Our results here show that AstC is, indeed, expressed in DN1s, where it oscillates. AstC is also expressed in two less well-characterized circadian neuronal clusters, the DN3s and lateral-posterior neurons (LPNs). Behavioral experiments indicate that clock-neuron-derived AstC is required to mediate evening locomotor activity under short (winter-like) and long (summer-like) photoperiods. The AstC-Receptor 2 (AstC-R2) is expressed in LNds, the clock neurons that drive evening locomotor activity, and AstC-R2 is required in these neurons to modulate the same short photoperiod evening phenotype. Ex vivo calcium imaging indicates that AstC directly inhibits a single LNd. The results suggest that a novel AstC/AstC-R2 signaling pathway, from dorsal circadian neurons to an LNd, regulates the evening phase in Drosophila.
Collapse
Affiliation(s)
- Madelen M Díaz
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Matthias Schlichting
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Xi Long
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
16
|
Ikeno T, Yan L. A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats (Arvicanthis niloticus) and nocturnal mice (Mus musculus). Brain Res 2018; 1690:89-95. [PMID: 29630859 PMCID: PMC5944353 DOI: 10.1016/j.brainres.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022]
Abstract
The neuropeptide orexin/hypocretin regulates a wide range of behaviors and physiology through its receptors OX1R and OX2R, or HCRTR-1 and HCRTR-2. Although the distributions of these receptors have been established in nocturnal rodents, their distributions in the brain of diurnal species have not been studied. In the present study, we examined spatial patterns of OX1R and OX2R mRNA expression in diurnal Nile grass rats (Arvicanthis niloticus) by in situ hybridization and compared them with those in nocturnal mice (Mus musculus). Both receptors showed similar spatial patterns between species in most brain regions. However, species-specific expression was found in several regions that are mainly implicated in regulation of sleep/wakefulness, emotion and cognition. OX1R expression was detected in the caudate putamen and ventral tuberomammillary nucleus only in grass rats, while it was detected in the bed nucleus of the stria terminalis, medial division, posteromedial part only in mice. The distribution of OX2R mRNA was mostly consistent between the two species, although it was more widely expressed in the ventral tuberomammillary nucleus in grass rats compared to mice. These results suggest that neuronal pathways of the orexin system differ between chronotypes, and these differences could underlie the distinct profiles in behaviors and physiology between diurnal and nocturnal species.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Itzhacki J, Clesse D, Goumon Y, Van Someren EJ, Mendoza J. Light rescues circadian behavior and brain dopamine abnormalities in diurnal rodents exposed to a winter-like photoperiod. Brain Struct Funct 2018; 223:2641-2652. [PMID: 29560509 DOI: 10.1007/s00429-018-1655-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/18/2018] [Indexed: 12/17/2022]
Abstract
Seasonal affective disorder (SAD), beyond mood changes, is characterized by alterations in daily rhythms of behavior and physiology. The pathophysiological conditions of SAD involve changes in day length and its first-line treatment is bright light therapy. Animal models using nocturnal rodents have been studied to elucidate the neurobiological mechanisms of depression, but might be ill suited to study the therapeutic effects of light in SAD since they exhibit light-aversive responses. Here Arvicanthis ansorgei, a diurnal rodent, was used to determine behavioral, molecular and brain dopamine changes in response to exposure to a winter-like photoperiod consisting of a light-dark cycle with 8 h of light, under diminished light intensity, and 16 h of darkness. Furthermore, we evaluated whether timed-daily bright light exposure has an effect on behavior and brain physiology of winter-like exposed animals. Arvicanthis under a winter-like condition showed alterations in the synchronization of the locomotor activity rhythm to the light-dark cycle. Moreover, alterations in day-night activity of dopaminergic neurotransmission were revealed in the nucleus accumbens and the dorsal striatum, and in the day-night clock gene expression in the suprachiasmatic nucleus. Interestingly, whereas dopamine disturbances were reversed in animals exposed to daily light at early or late day, altered phase of the daily rhythm of locomotion was reverted only in animals exposed to light at the late day. Moreover, Per2 gene expression in the SCN was also affected by light exposure at late day in winter-like exposed animals. These findings suggest that light induces effects on behavior by mechanisms that rely on both circadian and rhythm-independent pathways influencing the dopaminergic circuitry. This last point might be crucial for understanding the mechanisms of non-pharmacological treatment in SAD.
Collapse
Affiliation(s)
- Jacob Itzhacki
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.,Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Daniel Clesse
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS, UMR 7364 and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France
| | - Eus J Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology and Psychiatry inGeest, Vrije Universiteit University and Medical Center, Neuroscience Campus, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS-UPR3212, 5 rue Blaise Pascal, 67084, Strasbourg Cedex, France.
| |
Collapse
|
18
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
Folic acid exerts antidepressant effects by upregulating brain-derived neurotrophic factor and glutamate receptor 1 expression in brain. Neuroreport 2017; 28:1078-1084. [DOI: 10.1097/wnr.0000000000000887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Cawley E, Tippler M, Coupland NJ, Benkelfat C, Boivin DB, Aan Het Rot M, Leyton M. Dopamine and light: effects on facial emotion recognition. J Psychopharmacol 2017. [PMID: 28633582 DOI: 10.1177/0269881117711707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bright light can affect mood states and social behaviours. Here, we tested potential interacting effects of light and dopamine on facial emotion recognition. Participants were 32 women with subsyndromal seasonal affective disorder tested in either a bright (3000 lux) or dim light (10 lux) environment. Each participant completed two test days, one following the ingestion of a phenylalanine/tyrosine-deficient mixture and one with a nutritionally balanced control mixture, both administered double blind in a randomised order. Approximately four hours post-ingestion participants completed a self-report measure of mood followed by a facial emotion recognition task. All testing took place between November and March when seasonal symptoms would be present. Following acute phenylalanine/tyrosine depletion (APTD), compared to the nutritionally balanced control mixture, participants in the dim light condition were more accurate at recognising sad faces, less likely to misclassify them, and faster at responding to them, effects that were independent of changes in mood. Effects of APTD on responses to sad faces in the bright light group were less consistent. There were no APTD effects on responses to other emotions, with one exception: a significant light × mixture interaction was seen for the reaction time to fear, but the pattern of effect was not predicted a priori or seen on other measures. Together, the results suggest that the processing of sad emotional stimuli might be greater when dopamine transmission is low. Bright light exposure, used for the treatment of both seasonal and non-seasonal mood disorders, might produce some of its benefits by preventing this effect.
Collapse
Affiliation(s)
- Elizabeth Cawley
- 1 Department of Psychiatry, McGill University, Montreal, Canada.,2 Association of Atlantic Universities, Halifax Nova Scotia, Canada
| | - Maria Tippler
- 1 Department of Psychiatry, McGill University, Montreal, Canada
| | | | | | - Diane B Boivin
- 1 Department of Psychiatry, McGill University, Montreal, Canada
| | - Marije Aan Het Rot
- 4 Department of Psychology and School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Marco Leyton
- 1 Department of Psychiatry, McGill University, Montreal, Canada.,5 Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| |
Collapse
|
21
|
Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci 2017; 40:539-556. [PMID: 28525301 DOI: 10.1146/annurev-neuro-072116-031324] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.
Collapse
Affiliation(s)
- Lorenzo Lazzerini Ospri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Glen Prusky
- Department of Physiology and Biophysics, Cornell University, Ithaca, New York 10065
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
22
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
23
|
Aumann TD, Raabus M, Tomas D, Prijanto A, Churilov L, Spitzer NC, Horne MK. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans. PLoS One 2016; 11:e0158847. [PMID: 27428306 PMCID: PMC4948786 DOI: 10.1371/journal.pone.0158847] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association.
Collapse
Affiliation(s)
- Tim D. Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
- * E-mail:
| | - Mai Raabus
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Doris Tomas
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Agustinus Prijanto
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nicholas C. Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, California, 92093–0357, United States of America
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California, 92093–0357, United States of America
| | - Malcolm K. Horne
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
24
|
Flôres DEFL, Bettilyon CN, Jia L, Yamazaki S. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study. Front Behav Neurosci 2016; 10:143. [PMID: 27458354 PMCID: PMC4932273 DOI: 10.3389/fnbeh.2016.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.
Collapse
Affiliation(s)
- Danilo E F L Flôres
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Institute of Biosciences, University of São PauloSão Paulo, Brazil
| | - Crystal N Bettilyon
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Lori Jia
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Hockaday SchoolDallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
25
|
Sun J, Wang F, Hong G, Pang M, Xu H, Li H, Tian F, Fang R, Yao Y, Liu J. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 2016; 618:159-166. [PMID: 26957230 DOI: 10.1016/j.neulet.2016.03.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/24/2022]
Abstract
Sodium butyrate (NaB) has exhibited neuroprotective activity. This study aimed to explore that NaB exerts beneficial effects on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors and its possible mechanisms. The behavioral tests including sucrose preference test (SPT), open field test (OFT), tail suspension test (TST) and forced swimming test (FST) were to evaluate the antidepressant effects of NaB. Then changes of Nissl's body in the hippocampus, brain serotonin (5-HT) concentration, brain-derived neurotrophic factor (BDNF) and tight junctions (TJs) proteins level were assessed to explore the antidepressant mechanisms. Our results showed that CUMS caused significant depression-like behaviors, neuropathological changes, and decreased brain 5-HT concentration, TJs protein levels and BDNF expression in the hippocampus. However, NaB treatment significantly ameliorated behavioral deficits of the CUMS-induced mice, increased 5-HT concentration, increased BDNF expression, and up-regulated Occludin and zonula occludens-1(ZO-1) protein levels in the hippocampus, which demonstrated that NaB could partially restore CUMS-induced blood-brain barrier (BBB) impairments. Besides, the pathologic changes were alleviated. In conclusion, these results demonstrated that NaB significantly improved depression-like behaviors in CUMS-induced mice and its antidepressant actions might be related with, at least in part, the increasing brain 5-HT concentration and BDNF expression and restoring BBB impairments.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, the Second Affiliated Hospital of Wenzhou Medical University, 109 College West Road, Wenzhou, Zhejiang 325027, China
| | - Fangyan Wang
- Departments of Pathophysiology, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Guangliang Hong
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqi Pang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Hailing Xu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Haixiao Li
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Feng Tian
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Renchi Fang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ye Yao
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jiaming Liu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|