1
|
Xu S, Li X, Li X, Ma R, Zhang H, Hu B, He X, Jin T. Impact of MIR137HG rs7554283 on susceptibility to high-altitude pulmonary edema in the Chinese population. Per Med 2024; 21:295-302. [PMID: 39439230 DOI: 10.1080/17410541.2024.2406738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Aim: MIR137 host gene (MIR137HG) variants were involved in a variety of diseases, but its role in high-altitude pulmonary edema (HAPE) has not been reported. The study aimed to study the association between MIR137HG single-nucleotide polymorphisms and HAPE risk in the Chinese population.Materials & methods: Based on the Plink software, odds ratio and 95% confidence interval were used for logistic regression analysis to evaluate the association between MIR137HG polymorphisms and the risk of HAPE.Results: We discovered that MIR137HG rs7554283 was associated with a reduced risk of HAPE. In both individuals older than 32 years and those younger than 32 years, we observed that rs7554283 was associated with a decreased risk of HAPE.Conclusion: In conclusion, MIR137HG rs7554283 may be related to a reduced susceptibility to HAPE in the Chinese population. These results provide a theoretical basis for the role of MIR137HG single-nucleotide polymorphisms in the occurrence of HAPE.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Clinical Laboratory, the Affiliated Hospital of Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Xuemei Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Xuguang Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Ruixiao Ma
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Hengxun Zhang
- Department of Healthcare, the Affiliated Hospital of Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Baoping Hu
- Department of Anesthesia, the Affiliated Hospital of Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| |
Collapse
|
2
|
Blokland G, Maleki N, Jovicich J, Mesholam-Gately R, DeLisi L, Turner J, Shenton M, Voineskos A, Kahn R, Roffman J, Holt D, Ehrlich S, Kikinis Z, Dazzan P, Murray R, Lee J, Sim K, Lam M, de Zwarte S, Walton E, Kelly S, Picchioni M, Bramon E, Makris N, David A, Mondelli V, Reinders A, Oykhman E, Morris D, Gill M, Corvin A, Cahn W, Ho N, Liu J, Gollub R, Manoach D, Calhoun V, Sponheim S, Buka S, Cherkerzian S, Thermenos H, Dickie E, Ciufolini S, Reis Marques T, Crossley N, Purcell S, Smoller J, van Haren N, Toulopoulou T, Donohoe G, Goldstein J, Keshavan M, Petryshen T, del Re E. MIR137 polygenic risk for schizophrenia and ephrin-regulated pathway: Role in lateral ventricles and corpus callosum volume. Int J Clin Health Psychol 2024; 24:100458. [PMID: 38623146 PMCID: PMC11017057 DOI: 10.1016/j.ijchp.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Background/Objective. Enlarged lateral ventricle (LV) volume and decreased volume in the corpus callosum (CC) are hallmarks of schizophrenia (SZ). We previously showed an inverse correlation between LV and CC volumes in SZ, with global functioning decreasing with increased LV volume. This study investigates the relationship between LV volume, CC abnormalities, and the microRNA MIR137 and its regulated genes in SZ, because of MIR137's essential role in neurodevelopment. Methods. Participants were 1224 SZ probands and 1466 unaffected controls from the GENUS Consortium. Brain MRI scans, genotype, and clinical data were harmonized across cohorts and employed in the analyses. Results. Increased LV volumes and decreased CC central, mid-anterior, and mid-posterior volumes were observed in SZ probands. The MIR137-regulated ephrin pathway was significantly associated with CC:LV ratio, explaining a significant proportion (3.42 %) of CC:LV variance, and more than for LV and CC separately. Other pathways explained variance in either CC or LV, but not both. CC:LV ratio was also positively correlated with Global Assessment of Functioning, supporting previous subsample findings. SNP-based heritability estimates were higher for CC central:LV ratio (0.79) compared to CC or LV separately. Discussion. Our results indicate that the CC:LV ratio is highly heritable, influenced in part by variation in the MIR137-regulated ephrin pathway. Findings suggest that the CC:LV ratio may be a risk indicator in SZ that correlates with global functioning.
Collapse
Affiliation(s)
- G.A.M. Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Netherlands
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N. Maleki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - J. Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - R.I. Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - L.E. DeLisi
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, MA, United States
| | - J.A. Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States
| | - M.E. Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| | - A.N. Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - R.S. Kahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J.L. Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.J. Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - S. Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Z. Kikinis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - P. Dazzan
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - R.M. Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - J. Lee
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - K. Sim
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - M. Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Institute of Mental Health, Woodbridge Hospital, Singapore
- Analytical & Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - S.M.C. de Zwarte
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E. Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - S. Kelly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M.M. Picchioni
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Bramon
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Mental Health Neuroscience Research Department, UCL Division of Psychiatry, University College London, United Kingdom
| | - N. Makris
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - A.S. David
- Division of Psychiatry, University College London, London, United Kingdom
| | - V. Mondelli
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - A.A.T.S. Reinders
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - E. Oykhman
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - D.W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - M. Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - A.P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - W. Cahn
- Brain Centre Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - N. Ho
- Institute of Mental Health, Woodbridge Hospital, Singapore
| | - J. Liu
- Genome Institute, Singapore
| | - R.L. Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - D.S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - V.D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States
| | - S.R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - S.L. Buka
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - S. Cherkerzian
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - H.W. Thermenos
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - E.W. Dickie
- Kimel Family Translational Imaging Genetics Laboratory, Department of Psychiatry, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - S. Ciufolini
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - T. Reis Marques
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - N.A. Crossley
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - S.M. Purcell
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Psychiatric Genomics, Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - J.W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - N.E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - T. Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
- Department of Psychiatry, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G. Donohoe
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - J.M. Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - M.S. Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - T.L. Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - E.C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton, MA, United States
| |
Collapse
|
3
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Čelešnik H, Büdefeld T, Čizmarević B, Švagan M, Potočnik U. MIR137/MIR2682 locus is associated with perineural invasiveness in head and neck cancer. J Oral Pathol Med 2021; 50:874-881. [PMID: 33740841 DOI: 10.1111/jop.13174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Head and neck cancer (HNSCC) is one of the most lethal cancers characterized by high relapse and poor prognosis. Several miRNAs have been implicated in HNSCC, including the tumor suppressor miR-137. A large CpG island (CpG73) spans most of the miR-137 gene sequence and stretches 659-bp downstream, ending just upstream of miR-2682 in the same host gene. Here, we assessed the role of the MIR137/MIR2682 locus in HNSCC. METHODS MiRNA expression was analyzed in paired cancerous and normal tissues from 77 HNSCC patients by Quantitative Reverse-Transcription PCR. CpG73 methylation in paired tissues from 48 patients was determined by combined bisulfite restriction analysis. Associations between expression and methylation levels and patient clinicopathological parameters were investigated. RESULTS Decreased expression of miR-137 (P<0.01) and miR-2682 (P<0.01) precursors was observed in cancerous tissues, most significantly in oropharyngeal tumors. Lower miR-137 levels correlated with increased perineural invasiveness (P = 0.04). Predicted common miRNA targets MTDH and Notch1 were upregulated in tumor tissues. The CpG73 region between miR-137 and miR-2682 was hypermethylated in tumors. Methylation was observed in 60.4% of cancerous compared to 31.6% of normal tissues, and methylation levels were significantly higher (P<0.01) in tumors. Increased methylation correlated with decreased disease-free patient survival (P = 0.024). CONCLUSION The MIR137/MIR2682 locus correlated with HNSCC perineural invasiveness. This is the first report showing miR-2682 downregulation in head and neck cancer. Our results support the tumor suppressive role of miR-137 and miR-2682. The inverse correlation between CpG73 hypermethylation and disease-free survival suggests this epigenetic mark may have prognostic value in HNSCC.
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.,Faculty of Medicine, Center for Human Molecular Genetics & Pharmacogenomics, University of Maribor, Maribor, Slovenia
| | - Tomaž Büdefeld
- Faculty of Medicine, Center for Human Molecular Genetics & Pharmacogenomics, University of Maribor, Maribor, Slovenia
| | - Bogdan Čizmarević
- Department of Otorhinolaryngology, Cervical and Maxillofacial Surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Matija Švagan
- Department of Otorhinolaryngology, Cervical and Maxillofacial Surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.,Faculty of Medicine, Center for Human Molecular Genetics & Pharmacogenomics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
7
|
Howell KR, Law AJ. Neurodevelopmental concepts of schizophrenia in the genome-wide association era: AKT/mTOR signaling as a pathological mediator of genetic and environmental programming during development. Schizophr Res 2020; 217:95-104. [PMID: 31522868 PMCID: PMC7065975 DOI: 10.1016/j.schres.2019.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
Normative brain development is contingent on the complex interplay between genes and environment. Schizophrenia (SCZ) is considered a highly polygenic, neurodevelopmental disorder associated with impaired neural circuit development, neurocognitive function and variations in neurotransmitter signaling systems, including dopamine. Significant evidence, accumulated over the last 30 years indicates a role for the in utero environment in SCZ pathophysiology. Emerging data suggests that changes in placental programming and function may mediate the link between genetic risk, early life complications (ELC) and adverse neurodevelopmental outcomes, with risk highlighted in key developmental drivers that converge on AKT/mTOR signaling. In this article we overview select risk genes identified through recent genome-wide association studies of SCZ including AKT3, miR-137, DRD2, and AKT1 itself. We propose that through convergence on AKT/mTOR signaling, these genes are critical factors directing both placentation and neurodevelopment, influencing risk for SCZ through dysregulation of placental function, metabolism and early brain development. We discuss association of risk genes in the context of their known roles in neurodevelopment, placental expression and their possible mechanistic links to SCZ in the broad context of the 'developmental origins of adult disease' construct. Understanding how common genetic variation impacts early fetal programming may advance our knowledge of disease etiology and identify early critical developmental windows for prevention and intervention.
Collapse
Affiliation(s)
| | - Amanda J. Law
- Corresponding Author: Amanda J. Law, PhD, Professor of Psychiatry, Medicine and Cell and Developmental Biology, Nancy L. Gary Endowed Chair in Children’s Mental Disorders Research, University of Colorado, School of Medicine, , Phone: 303-724-4418, Fax: 303-724-4425, 12700 E. 19th Ave., MS 8619, Aurora, CO 80045
| |
Collapse
|
8
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Abstract
In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).
Collapse
|
10
|
Vogel BO, Lett TA, Erk S, Mohnke S, Wackerhagen C, Brandl EJ, Romanczuk-Seiferth N, Otto K, Schweiger JI, Tost H, Nöthen MM, Rietschel M, Degenhardt F, Witt SH, Meyer-Lindenberg A, Heinz A, Walter H. The influence of MIR137 on white matter fractional anisotropy and cortical surface area in individuals with familial risk for psychosis. Schizophr Res 2018; 195:190-196. [PMID: 28958479 DOI: 10.1016/j.schres.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
The rs1625579 variant near the microRNA-137 (MIR137) gene is one of the best-supported schizophrenia variants in genome-wide association studies (GWAS), and microRNA-137 functionally regulates other GWAS identified schizophrenia risk variants. Schizophrenia patients with the MIR137 rs1625579 risk genotype (homozygous for the schizophrenia risk variant) also have aberrant brain structure. It is unclear if the effect of MIR137 among schizophrenia patients is due to potential epistasis with genetic risk for schizophrenia or other factors of the disorder. Here, we investigated the effect of MIR137 genotype on white matter fractional anisotropy (FA), cortical thickness (CT), and surface area (SA) in a sample comprising healthy control subjects, and individuals with familial risk for psychosis (first-degree relatives of patients with schizophrenia or bipolar disorder; N=426). In voxel-wise analyses of FA, we observed a significant genotype-by-group interaction (PFWE<0.05). The familial risk group with risk genotype had lower FA (PFWE<0.05), but there was no genetic association in controls. In vertex-wise analyses of SA, we also observed a significant genotype-by-group interaction (PFWE<0.05). Relatives with MIR137 risk genotype had lower SA, however the risk genotype was associated with higher SA in the controls (all PFWE<0.05). These results show that MIR137 risk genotype is associated with lower FA in psychosis relatives that is similar to previous imaging-genetics findings in patients with schizophrenia. Furthermore, MIR137 genotype may also be a risk factor in a subclinical population with wide reductions in white matter FA and cortical SA.
Collapse
Affiliation(s)
- Bob O Vogel
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Tristram A Lett
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Carolin Wackerhagen
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Kristina Otto
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Janina I Schweiger
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Heike Tost
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Marcella Rietschel
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Stephanie H Witt
- Central Institute of Mental Health, University of Heidelberg, J 5, 68159 Mannheim, Germany.
| | | | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
11
|
Gibbons A, Udawela M, Dean B. Non-Coding RNA as Novel Players in the Pathophysiology of Schizophrenia. Noncoding RNA 2018; 4:E11. [PMID: 29657307 PMCID: PMC6027250 DOI: 10.3390/ncrna4020011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Department of Psychiatry, the University of Melbourne, Parkville, Victoria, Australia.
| | - Madhara Udawela
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
12
|
Cosgrove D, Mothersill DO, Whitton L, Harold D, Kelly S, Holleran L, Holland J, Anney R, Richards A, Mantripragada K, Owen M, O'Donovan MC, Gill M, Corvin A, Morris DW, Donohoe G. Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. Am J Med Genet B Neuropsychiatr Genet 2018; 177:369-376. [PMID: 29418072 DOI: 10.1002/ajmg.b.32620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022]
Abstract
Multiple genome-wide association studies of schizophrenia have implicated genetic variants within the gene encoding microRNA-137. As risk variants within or regulated by MIR137 have been implicated in memory performance, we investigated the additive effects of schizophrenia-associated risk variants in genes empirically regulated by MIR137 on brain regions associated with memory function. A polygenic risk score (PRS) was calculated (at a p = 0.05 threshold), using this empirically regulated MIR137 gene set, to investigate associations between this PRS and structural brain measures. These measures included total brain volume, cortical thickness, cortical surface area, and hippocampal volume, in a sample of 216 individuals consisting of healthy participants (n = 171) and patients with psychosis (n = 45). We did not observe a significant association between MIR137 PRS and these cortical thickness, surface area or hippocampal volume measures linked to memory function; a significant association between increasing PRS and decreasing total brain volume, independent of diagnosis status (R2 = 0.008, Beta = -0.09, p = 0.029), was observed. This did not survive correction for multiple testing. In conclusion, our study yielded only suggestive evidence that risk variants interacting with MIR137 impacts on cortical structure.
Collapse
Affiliation(s)
- Donna Cosgrove
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - David O Mothersill
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Whitton
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laurena Holleran
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Holland
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Alex Richards
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kiran Mantripragada
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Owen
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
15
|
Kandratsenka H, Nestsiarovich A, Goloenko I, Danilenko N, Makarevich A, Obyedkov V, Davydenko O, Waszkiewicz N. Association of MIR137 With Symptom Severity and Cognitive Functioning in Belarusian Schizophrenia Patients. Front Psychiatry 2018; 9:295. [PMID: 30026708 PMCID: PMC6041593 DOI: 10.3389/fpsyt.2018.00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-137 (miRNA-137; miR-137) is one of the important post-transcriptional regulators of the nervous system development, and its MIR137 gene rs1625579 polymorphism was reported to be a potential regulator for schizophrenia susceptibility. However, schizophrenia characteristics controlled by MIR137 rs1625579 polymorphism are still insufficiently understood. There were 3 groups included in the study: (a) subjects with diagnosis of schizophrenia (n = 150; 81-females, 69-males), (b) mentally healthy people (control group; n = 102; 66-females, 36-males) and (c) Belarusian indigenous male group (n = 295). Associations of rs1625579 with schizophrenia, symptom's severity and cognitive performance [by using Positive and Negative Syndrome Scale (PANSS) and Wisconsin Card Sorting Test (WCST), respectively] were studied, when compared to controls. Allele and genotype frequencies were investigated in Belarusian indigenous males. Rs1625579 displayed no association with schizophrenia in Belarusian population. Significant "symptom severity-genotype" interactions were revealed for schizophrenia patients. Patients with T/G genotype displayed lower severity of positive symptoms and general psychopathology compared to homozygous subjects. T/T genotype was associated with the highest symptom's severity. The negative symptom scores and the total PANSS-score were significantly higher in females carrying genotype T/T vs. T/G+G/G; no significant gene-phenotype associations were found in males. WCST parameters did not show any association with rs1625579 polymorphism. MIR137 rs1625579 polymorphism might be an important sex-dependent factor influencing severity of schizophrenia psychopathological manifestations. These findings also contribute to the knowledge on candidate gene effects on characteristics related to schizophrenia phenotype. As miR 137 is considered to be cancer therapeutic target, miR-137 may also explain the lower incidence of cancer in schizophrenia patients. Further studies with larger sample size are needed to confirm these novel findings.
Collapse
Affiliation(s)
- Hanna Kandratsenka
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Anastasiya Nestsiarovich
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, United States
| | - Inna Goloenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Nina Danilenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Anna Makarevich
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | - Victor Obyedkov
- Department of Psychiatry and Medical Psychology, Belarusian State Medical University, Minsk, Belarus
| | - Oleg Davydenko
- Laboratory of Cytoplasmic Inheritance, Institute of Genetics and Cytology, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
| | | |
Collapse
|
16
|
Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet 2017; 92:235-242. [PMID: 27925170 DOI: 10.1111/cge.12950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are genetic variations that contribute to human phenotypes associated with various diseases. SNPs are involved in the regulation of a broad range of physiological and pathological processes, such as cellular senescence, apoptosis, inflammation, and immune response, by upregulating the expression of classical inflammation markers. Recent studies have suggested that SNPs located in gene-encoding microRNAs (miRNAs) affect various aspects of diseases by regulating the expression or activity of miRNAs. In the last few years, miRNA polymorphisms that increase and/or reduce the risk of developing many diseases, such as cancers, autoimmune diseases, and cardiovascular diseases, have attracted increasing attention not only because of their involvement in the pathophysiology of diseases but also because they can be used as prognostic biomarkers for a variety of diseases. In this review, we summarize the relationships between miRNA SNPs and the pathophysiology and risk of diseases.
Collapse
Affiliation(s)
- X Liu
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Z Han
- Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - C Yang
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
17
|
Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophr Res 2016; 177:70-77. [PMID: 27094720 DOI: 10.1016/j.schres.2016.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately onethird of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected post mortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.
Collapse
|
18
|
González-Giraldo Y, González-Reyes RE, Forero DA. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults. Psychiatry Res 2016; 236:202-205. [PMID: 26778630 DOI: 10.1016/j.psychres.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/17/2023]
Abstract
MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
19
|
Wright C, Gupta CN, Chen J, Patel V, Calhoun VD, Ehrlich S, Wang L, Bustillo JR, Perrone-Bizzozero NI, Turner JA. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia. Transl Psychiatry 2016; 6:e724. [PMID: 26836412 PMCID: PMC4872419 DOI: 10.1038/tp.2015.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023] Open
Abstract
Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene (MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137-regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes of these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.
Collapse
Affiliation(s)
- C Wright
- The Mind Research Network, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - C N Gupta
- The Mind Research Network, Albuquerque, NM, USA
| | - J Chen
- The Mind Research Network, Albuquerque, NM, USA
| | - V Patel
- The Mind Research Network, Albuquerque, NM, USA
| | - V D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - S Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität, Dresden, Germany
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - L Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J R Bustillo
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - N I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - J A Turner
- The Mind Research Network, Albuquerque, NM, USA
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|