1
|
Wilson AC, Pountney DL, Khoo TK. Therapeutic Mechanisms of Exercise in Parkinson's Disease. Int J Mol Sci 2025; 26:4860. [PMID: 40429998 PMCID: PMC12112306 DOI: 10.3390/ijms26104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Despite being the second-most common neurodegenerative disease, the etiology of Parkinson's disease (PD) remains uncertain with current knowledge suggestive of multiple risk factors. Furthermore, curative treatment does not yet exist, and treatment is primarily symptomatic in nature. For this reason, supportive therapies such as exercise are a crucial tool in PD management. It is useful to better understand how exercise affects the brain and body in the context of PD to guide clinical decision-making and determine the optimal exercise intensity and modality for PD patients. This review outlines the various mechanisms by which exercise can be beneficial as a therapeutic option in PD.
Collapse
Affiliation(s)
- Alice C. Wilson
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Dean L. Pountney
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Tien K. Khoo
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
- Northern New South Wales Local Health District, NSW Health, Lismore, NSW 2480, Australia
| |
Collapse
|
2
|
Kumar D, Kumar R, Janrao S, Sharma V, Begum N, Fernandes V, Khatri DK. Treadmill exercise mitigates rotenone-induced neuroinflammation and α-synuclein level in a mouse model of Parkinson's disease. Brain Res 2025; 1854:149540. [PMID: 40023234 DOI: 10.1016/j.brainres.2025.149540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 7-10 million people globally. It presents with motor symptoms like bradykinesia, tremors, rigidity, and postural instability, along with non-motor issues such as anxiety and mood fluctuations. PD is characterized by the progressive loss of nigrostriatal neurons, α-synuclein protein aggregation, reduced tyrosine hydroxylase level, and impaired dopamine signaling. Neuroinflammation plays a key role in PD progression, with elevated pro-inflammatory cytokines promoting M1 microglial activation, which exacerbates neurodegeneration. Conversely, anti-inflammatory cytokines such as IL-10 and IL-4 help shift microglia to the neuroprotective M2 phenotype, reducing inflammation. Animal models show an imbalance with increased M1 and reduced M2 microglia. This study explored the neuroprotective effects of treadmill exercise in a rotenone-induced PD mouse model. After 21 days of exercise, behavioral impairments improved, as shown by open field tests, Rota-rod, and footprint analysis. Exercise also reduced pro-inflammatory cytokines; TNF-α, and IL-1β levels while increasing anti-inflammatory cytokines; IL-10, and IL-4. This shift correlated with decreased α-synuclein levels and increased tyrosine hydroxylase expression, indicating reduced neurodegeneration. These findings suggest that treadmill exercise can mitigate PD symptoms and pathology by modulating neuroinflammation and restoring dopaminergic function.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rohith Kumar
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sushmita Janrao
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vaishnavi Sharma
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Biologicals Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| |
Collapse
|
3
|
Li T, Zhou SY, Quan W, Zhou Y, Wu J, Zhao LP, Qiao CM, Zhao WJ, Cui C, Shen YQ. Six Weeks of Moderate-Intensity Treadmill Exercise Improves Intestinal Barrier and Intestinal Inflammation in Parkinson's Disease Mice. Mol Neurobiol 2025:10.1007/s12035-025-04938-x. [PMID: 40232644 DOI: 10.1007/s12035-025-04938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
More than 80% of patients with Parkinson's disease (PD) exhibit severe gastrointestinal symptoms, which seriously affect life quality of life. Several large-scale epidemiological studies have confirmed that exercise can improve motor symptoms of PD patients, but the influence on gastrointestinal symptoms has not been reported. To clarify whether exercise can enhance intestinal barrier and ameliorate intestinal inflammation in PD mice, we examined whether moderate-intensity treadmill exercise for 6 weeks could alleviate gastrointestinal symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute PD mice. Our results demonstrated that 6 weeks moderate-intensity treadmill exercise enhanced the expression of Muc-2 and tight junction proteins, while reducing the expression of cytokines and chemokines, in the distal colon. Moreover, 6 weeks of treadmill exercise reduced the concentrations of short-chain fatty acids (SCFAs) and the expression of G protein-coupled receptor 43 (GPR43) to maintain the intestinal barrier and alleviate intestinal inflammation. Further data showed that 6 weeks of moderate-intensity treadmill exercise enhanced insulin-like growth factor 1 (IGF-1) expression and activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Taken as a whole, these results revealed that 6 weeks of moderate-intensity treadmill exercise enhanced intestinal barrier function, reduced intestinal inflammation and corrected abnormal concentrations of SCFAs by activating IGF-1/PI3K/Akt pathway in MPTP-induced subacute PD mice.
Collapse
Affiliation(s)
- Ting Li
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sheng-Yang Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Quan
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Zhou
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Ping Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen-Meng Qiao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
4
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on nigrostriatal neuroprotection in Parkinson's disease: a systematic review. Front Neurosci 2025; 18:1464168. [PMID: 39844853 PMCID: PMC11752748 DOI: 10.3389/fnins.2024.1464168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD). Methods PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10. Various exercise training regimens, administered 5 days per week for 6.5 weeks, were applied to MPTP, 6-OHDA, and PFF-α-synuclein-induced PD animal models. Results Exercise training was found to downregulate the inflammatory pathway by attenuating α-synuclein aggregation, inhibiting the TLR/MyD88/IκBα signaling cascade and NF-κB phosphorylation, and decreasing pro-inflammatory cytokines IL-1β and TNF-α while increasing anti-inflammatory cytokines IL-10 and TGF-β within the nigrostriatum. It also inhibited the ASC and NLRP3 inflammasome complex and reduced the BAX/ Bcl-2 ratio and caspase-1/3 proteins, thereby decreasing neuronal apoptosis in the nigrostriatum. Exercise training elevated the expression of Pro-BDNF, BDNF, GDNF, TrkB, and Erk1/2, providing neurotrophic support to dopaminergic neurons. Furthermore, it upregulated the dopaminergic signaling pathway by increasing the expression of TH, DAT, PSD-95, and synaptophysin in the nigrostriatum. Discussion The findings suggested that exercise training downregulated inflammatory and apoptotic pathways while upregulated BDNF/GDNF pathways and dopaminergic signaling within the nigrostriatum. These molecular changes contributed to neuroprotection, reduced dopaminergic neuron loss, and improved motor function in PD animal models. Systematic review registration CRD42024484537 https://www.crd.york.ac.uk/prospero/#recordDetails.
Collapse
Affiliation(s)
- Shahid Ishaq
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Iqbal Ali Shah
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Yao H, Tong W, Song Y, Li R, Xiang X, Cheng W, Zhou Y, He Y, Yang Y, Liu Y, Li S, Jin L. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson's disease. J Neuroinflammation 2024; 21:246. [PMID: 39342308 PMCID: PMC11439226 DOI: 10.1186/s12974-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The primary pathological change in Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra. Additionally, excessive microglial activation and synaptic loss are also typical features observed in PD samples. Exercise trainings have been proven to improve PD symptoms, delay the disease progression as well as affect excessive microglial synaptic phagocytosis. In this study, we established a mouse model of PD by injecting mouse-derived α-synuclein preformed fibrils (M-α-syn PFFs) into the substantia nigra, and demonstrated that treadmill exercise inhibits microglial activation and synaptic phagocytosis in striatum. Using RNA-Seq and proteomics, we also found that PD involves excessive activation of the complement pathway which is closely related to over-activation of microglia and abnormal synaptic function. More importantly, exercise training can inhibit complement levels and complement-mediated microglial phagocytosis of synapses. It is probably triggered by CD55, as we observed that CD55 in the striatum significantly increased after exercise training and up-regulation of that molecule rescued motor deficits of PD mice, accompanied with reduced microglial synaptic phagocytosis in the striatum. This research elucidated the interplay among microglia, complement, and synapses, and analyzed the effects of exercise training on these factors. Our work also suggested CD55 as a complement-relevant candidate molecule for developing therapeutic strategies of PD.
Collapse
Affiliation(s)
- Hongkai Yao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weifang Tong
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xuerui Xiang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunjiao Zhou
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Jiang H, Kimura Y, Inoue S, Li C, Hatakeyama J, Wakayama M, Takamura D, Moriyama H. Effects of different exercise modes and intensities on cognitive performance, adult hippocampal neurogenesis, and synaptic plasticity in mice. Exp Brain Res 2024; 242:1709-1719. [PMID: 38806710 DOI: 10.1007/s00221-024-06854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yusuke Kimura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Affiliated Hospital of Zunyi Medical University, Zun Yi, China
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Masahiro Wakayama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Daisuke Takamura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
8
|
Liu Z, Lemus J, Smirnova IV, Liu W. Rehabilitation for non-motor symptoms for patients with Parkinson's disease from an α-synuclein perspective: a narrative review. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:235-257. [PMID: 37920444 PMCID: PMC10621781 DOI: 10.37349/ent.2023.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting aged population around the world. PD is characterized by neuronal Lewy bodies present in the substantia nigra of the midbrain and the loss of dopaminergic neurons with various motor and non-motor symptoms associated with the disease. The protein α-synuclein has been extensively studied for its contribution to PD pathology, as α-synuclein aggregates form the major component of Lewy bodies, a hallmark of PD. In this narrative review, the authors first focus on a brief explanation of α-synuclein aggregation and circumstances under which aggregation can occur, then present a hypothesis for PD pathogenesis in the peripheral nervous system (PNS) and how PD can spread to the central nervous system from the PNS via the transport of α-synuclein aggregates. This article presents arguments both for and against this hypothesis. It also presents various non-pharmacological rehabilitation approaches and management techniques for both motor and non-motor symptoms of PD and the related pathology. This review seeks to examine a possible hypothesis of PD pathogenesis and points to a new research direction focus on rehabilitation therapy for patients with PD. As various non-motor symptoms of PD appear to occur earlier than motor symptoms, more focus on the treatment of non-motor symptoms as well as a better understanding of the biochemical mechanisms behind those non-motor symptoms may lead to better long-term outcomes for patients with PD.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Lemus
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Irina V. Smirnova
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Su Y, Jia M, Yuan S, Wang C, Feng J, Zhang Y. Acute MPTP treatment decreases dendritic spine density of striatal Medium Spiny Neurons via SNK-SPAR pathway in C57BL/6 mice. Synapse 2022; 76:e22249. [PMID: 36008099 DOI: 10.1002/syn.22249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is a well-known neurodegenerative disorder associated with a high risk in middle-aged and elderly individuals, severely impacting the patient's quality of life. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is frequently used to establish PD in animals. Dendritic spines are dendritic processes that form the foundation of learning and memory. Reportedly, dendritic spine density of striatal medium spiny neurons (MSNs) declines in PD, and this decline has been associated with PD progression; however, the underlying mechanism remains elusive. Herein, we used the MPTP animal model to examine whether serum-induced kinase (SNK) and spine-associated Rap guanosine triphosphatase (SPAR) contribute to decreased dendritic spine density in striatal MSNs. MPTP was used to establish the animal model, which exhibits motor function impairment and dopaminergic cell loss. To assess spine density, Golgi staining was performed to count striatal dendritic spines, which were reduced in the MPTP group when compared with those in the normal control group. Immunohistochemistry was performed to analyze changes in SNK and SPAR expression. MPTP treatment significantly increased the expression of SNK in striatal MSNs, whereas that of SPAR was significantly decreased when compared with the normal control group. These findings offer clues to further explore the mechanism of declining dendritic spine density in patients with PD and provide evidence for potential target identification in PD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yebo Su
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Miao Jia
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Sifan Yuan
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Cong Wang
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Jiahui Feng
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| | - Yumei Zhang
- College of Basic Medical Science, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China.,Department of physiology, Shenyang Medical College, 146 Huanghe North Street, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Katz A, Gonen M, Shahar Y, Roichman A, Lerrer B, Cohen HY. Hypothalamus-Muscle Parallel Induction of Metabolic Pathways Following Physical Exercise. Front Neurosci 2022; 16:897005. [PMID: 35928013 PMCID: PMC9344923 DOI: 10.3389/fnins.2022.897005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The modern lifestyle requires less physical activity and skills during our daily routine, leading to multiple pathologies related to physical disabilities and energy accessibility. Thus, exploring the mechanisms underlying the metabolic regulation of exercise is crucial. Here, we characterized the effect of forced and voluntary endurance exercises on three key metabolic signaling pathways, sirtuins, AMPK, and mTOR, across several metabolic tissues in mice: brain, muscles, and liver. Both voluntary and forced exercises induced AMPK with higher intensity in the first. The comparison between those metabolic tissues revealed that the hypothalamus and the hippocampus, two brain parts, showed different metabolic signaling activities. Strikingly, despite the major differences in the physiology of muscles and hypothalamic tissues, the hypothalamus replicates the metabolic response of the muscle in response to physical exercise. Specifically, muscles and hypothalamic tissues showed an increase and a decrease in AMPK and mTOR signaling, respectively. Overall, this study reveals new insight into the relation between the hypothalamus and muscles, which enhances the coordination within the muscle-brain axis and potentially improves the systemic response to physical activity performance and delaying health inactivity disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Haim Yosef Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, The Sagol Center for Healthy Human Longevity, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
11
|
Khalaji N, Aminpour G, Pourheydar B, Abdollahzade N, Parsaie H, Derafshpour L. The pattern of hippocampal neuronal, LTP and unilateral labyrinthectomy in male rats: the role of exercise and curcumin. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A wide range of cognitive disorders, long-term potentiation (LTP) disorders, and biochemical changes have been reported in labyrinthectomy situations in the hippocampus of rodents. In order to investigate whether exercise and/or curcumin induce LTP and increase neurons in the hippocampus of unilateral labyrinthectomy male rats, after undergoing labyrinthectomy, animals were subjected to treadmill exercises after the intraperitoneal injection of curcumin five days per week, for 30 days. An increase of LTP and neuron count of the hippocampus was observed in unilateral labyrinthectomy rats. Interestingly the combination of exercise and curcumin did not enhance LTP in unilateral labyrinthectomy rats. These findings demonstrated that treadmill exercise and curcumin individually, significantly affect reinforcement of many of the pathological processes playing a role in increasing memory in unilateral labyrinthectomy situations.
Collapse
Affiliation(s)
- N. Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - G. Aminpour
- Student Research Committee, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - B. Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - N. Abdollahzade
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - H. Parsaie
- Department of Anatomy, Faculty of Medicine science, Iran University of Medical Sciences, Tehran, Iran
| | - L. Derafshpour
- Neurophysiology Research Center, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| |
Collapse
|
12
|
Zheng Y, Meng Z, Zhi X, Liang Z. Dual-task training to improve cognitive impairment and walking function in Parkinson's disease patients: A brief review. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:202-206. [PMID: 35783369 PMCID: PMC9219296 DOI: 10.1016/j.smhs.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
In daily functional activities, the body needs the ability to perform two or more tasks at the same time (such as talking while walking). However, the gait disorder of patients with Parkinson's disease is aggravated when performing dual tasks, which seriously affects their quality of life. Therefore, the medical management plan should offer effective exercise training programming to improve Parkinson's disease patients' ability to perform dual tasks. Most traditional exercise intervention methods only focus on the perspective of exercise or cognition, ignoring their interaction, and fail to adequately resolve the dual task obstacles associated with Parkinson's disease. Some scholars put forward the concept of dual-task training and have applied dual-task training to patients with neurological disorders and have achieved good therapeutic effects. Therefore, this article summarizes the research literature concerning dual-task training to improve cognitive impairment and walking function of Parkinson's disease patients, to evaluate and discuss possible mechanisms of action, and provide a basis for adjuvant treatment and rehabilitation of Parkinson's disease patients.
Collapse
|
13
|
Ferreira AFF, Binda KH, Real CC. The effects of treadmill exercise in animal models of Parkinson's disease: A systematic review. Neurosci Biobehav Rev 2021; 131:1056-1075. [PMID: 34688727 DOI: 10.1016/j.neubiorev.2021.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.
Collapse
Affiliation(s)
- Ana Flávia F Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Henrique Binda
- Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark
| | - Caroline Cristiano Real
- Translational Neuropsychiatry Unit (TNU), Aarhus University, Aarhus, Denmark; Faculdade de Medicina (FMUSP), Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
14
|
Liu YJ, Cui ZY, Yang AL, Jallow AW, Huang HL, Shan CL, Lee SD. Anti-apoptotic and pro-survival effect of exercise training on early aged hypertensive rat cerebral cortex. Aging (Albany NY) 2021; 13:20495-20510. [PMID: 34432648 PMCID: PMC8436911 DOI: 10.18632/aging.203431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/23/2021] [Indexed: 01/09/2023]
Abstract
The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.
Collapse
Affiliation(s)
- Yi-Jie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Amadou W Jallow
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hai-Liang Huang
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Chun-Lei Shan
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China.,Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Torikoshi S, Morizane A, Shimogawa T, Samata B, Miyamoto S, Takahashi J. Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson's Disease Model Rats. JOURNAL OF PARKINSONS DISEASE 2021; 10:511-521. [PMID: 31929121 PMCID: PMC7242856 DOI: 10.3233/jpd-191755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Cell transplantation is expected to be a promising treatment for Parkinson’s disease (PD), in which re-innervation of the host striatum by grafted dopamine (DA) neurons is essential. In particular, the dorsolateral part of the striatum is important because it is the target of midbrain A9 DA neurons, which are degenerated in PD pathology. The effect of exercise on the survival and maturation of grafted neurons has been reported in several neurological disease models, but never in PD models. Objective: We investigated how exercise influences cell transplantation for PD, especially from the viewpoint of cell survival and neurite extensions. Methods: Ventral mesencephalic neurons from embryonic (E12.5) rats were transplanted into the striatum of adult 6-OHDA-lesioned rats. The host rats then underwent treadmill training as exercise after the transplantation. Six weeks after the transplantation, they were sacrificed, and the grafts in the striatum were analyzed. Results: The addition of exercise post-transplantation significantly increased the number of surviving DA neurons. Moreover, it promoted neurite extensions from the graft toward the dorsolateral part of the striatum. Conclusions: This study indicates a beneficial effect of exercise after cell transplantation in PD.
Collapse
Affiliation(s)
- Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takafumi Shimogawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Ebanks B, Ingram TL, Katyal G, Ingram JR, Moisoi N, Chakrabarti L. The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging (Albany NY) 2021; 13:14709-14728. [PMID: 34074800 PMCID: PMC8221352 DOI: 10.18632/aging.203128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
One of the genes which has been linked to the onset of juvenile/early onset Parkinson’s disease (PD) is PINK1. There is evidence that supports the therapeutic potential of exercise in the alleviation of PD symptoms. It is possible that exercise may enhance synaptic plasticity, protect against neuro-inflammation and modulate L-Dopa regulated signalling pathways. We explored the effects of exercise on Pink1 deficient Drosophila melanogaster which undergo neurodegeneration and muscle degeneration. We used a ‘power-tower’ type exercise platform to deliver exercise activity to Pink1- and age matched wild-type Drosophila. Mitochondrial proteomic profiles responding to exercise were obtained. Of the 516 proteins identified, 105 proteins had different levels between Pink1- and wild-type non-exercised Drosophila. Gene ontology enrichment analysis and STRING network analysis highlighted proteins and pathways with altered expression within the mitochondrial proteome. Comparison of the Pink1- exercised proteome to wild-type proteomes showed that exercising the Pink1- Drosophila caused their proteomic profile to return towards wild-type levels.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - John R Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| |
Collapse
|
17
|
Binda KH, Lillethorup TP, Real CC, Bærentzen SL, Nielsen MN, Orlowski D, Brooks DJ, Chacur M, Landau AM. Exercise protects synaptic density in a rat model of Parkinson's disease. Exp Neurol 2021; 342:113741. [PMID: 33965411 DOI: 10.1016/j.expneurol.2021.113741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/04/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features. Physical exercise benefits PD patients - possibly by promoting neuroplasticity including synaptic regeneration. OBJECTIVES In a parkinsonian rat model, we test the hypotheses that exercise: (a) increases synaptic density and reduces neuroinflammation and (b) lowers the nociceptive threshold by increasing μ-opioid receptor expression. METHODS Brain autoradiography was performed on rats unilaterally injected with either 6-hydroxydopamine (6-OHDA) or saline and subjected to treadmill exercise over 5 weeks. [3H]UCB-J was used to measure synaptic vesicle glycoprotein 2A (SV2A) density. Dopamine D2/3 receptor and μ-opioid receptor availability were assessed with [3H]Raclopride and [3H]DAMGO, respectively, while neuroinflammation was detected with the 18kDA translocator protein (TSPO) marker [3H]PK11195. The nociceptive threshold was determined prior to and throughout the exercise protocol. RESULTS We confirmed a dopaminegic deficit with increased striatal [3H]Raclopride D2/3 receptor availability and reduced nigral tyrosine hydroxylase immunoreactivity in the ipsilateral hemisphere of all 6-OHDA-injected rats. Sedentary rats lesioned with 6-OHDA showed significant reduction of ipsilateral striatal and substantia nigra [3H]UCB-J binding while [3H]PK11195 showed increased ipsilateral striatal neuroinflammation. Lesioned rats who exercised had higher levels of ipsilateral striatal [3H]UCB-J binding and lower levels of neuroinflammation compared to sedentary lesioned rats. Striatal 6-OHDA injections reduced thalamic μ-opioid receptor availability but subsequent exercise restored binding. Exercise also raised thalamic and hippocampal SV2A synaptic density in 6-OHDA lesioned rats, accompanied by a rise in nociceptive threshold. CONCLUSION These data suggest that treadmill exercise protects nigral and striatal synaptic integrity in a rat lesion model of PD - possibly by promoting compensatory mechanisms. Exercise was also associated with reduced neuroinflammation post lesioning and altered opioid transmission resulting in an increased nociceptive threshold.
Collapse
Affiliation(s)
- K H Binda
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - T P Lillethorup
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - C C Real
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Laboratory of Nuclear Medicine (LIM 43), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - S L Bærentzen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| | - M N Nielsen
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark.
| | - D Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University and Department of Neurosurgery, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| | - D J Brooks
- Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark; Institute for Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - M Chacur
- Laboratory of Functional Neuroanatomy of Pain, Departamento de Anatomia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - A M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, Building 2b, Aarhus C 8000, Denmark; Department of Nuclear Medicine and PET, Aarhus University and Hospital, Palle Juul-Jensens Boulevard 165, J109, Aarhus N 8200, Denmark.
| |
Collapse
|
18
|
Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA, Hage-Melim LIS. Parkinson's Disease: A Review from Pathophysiology to Treatment. Mini Rev Med Chem 2021; 20:754-767. [PMID: 31686637 DOI: 10.2174/1389557519666191104110908] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age. PD is caused by the necrosis of dopaminergic neurons in the substantia nigra, which is the brain region responsible for the synthesis of the neurotransmitter dopamine (DA), resulting in its decrease in the synaptic cleft. The monoamine oxidase B (MAO-B) degrades dopamine, promoting the glutamate accumulation and oxidative stress with the release of free radicals, causing excitotoxicity. The PD symptoms are progressive physical limitations such as rigidity, bradykinesia, tremor, postural instability and disability in functional performance. Considering that there are no laboratory tests, biomarkers or imaging studies to confirm the disease, the diagnosis of PD is made by analyzing the motor features. There is no cure for PD, and the pharmacological treatment consists of a dopaminergic supplement with levodopa, COMT inhibitors, anticholinergics agents, dopaminergic agonists, and inhibitors of MAO-B, which basically aims to control the symptoms, enabling better functional mobility and increasing life expectancy of the treated PD patients. Due to the importance and increasing prevalence of PD in the world, this study reviews information on the pathophysiology, symptomatology as well as the most current and relevant treatments of PD patients.
Collapse
Affiliation(s)
- Bianca L B Marino
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Lucilene R de Souza
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Kessia P A Sousa
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Jaderson V Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| | - Elias C Padilha
- Faculdade de Ciencias Farmaceuticas, Universidade Estadual Paulista (UNESP), Campus Araraquara, Departamento de Principios Ativos Naturais e Toxicologia, Araraquara, Sao Paulo, Brazil
| | - Carlos H T P da Silva
- Laboratório Computacional de Química Farmacêutica, Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlton A Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
| | - Lorane I S Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Amapa, Brazil
| |
Collapse
|
19
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Liu W, Fu R, Wang Z, Liu S, Tang C, Li L, Yin D. Regular Aerobic Exercise-Alleviated Dysregulation of CAMKIIα Carbonylation to Mitigate Parkinsonism via Homeostasis of Apoptosis With Autophagy. J Neuropathol Exp Neurol 2020; 79:46-61. [PMID: 31750928 DOI: 10.1093/jnen/nlz106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated carbonylation of proteins with oxidative modification profiling in the striatum of aging and Parkinson disease (PD) rats, as well as the long-term effects of regular aerobic exercise on the carbonylation process and the damaging effects of PD vs habitual sedentary behavior. Regular aerobic exercise improved the PD rats' rotational behavior, increased tyrosine hydroxylase expression in both the striatum and substantia nigra pars compacta, and decreased α-synuclein expression significantly. Interestingly, apoptotic nuclei and autophagosomes were increased in the aerobic exercise PD rat striatum. Carbonylated protein Ca2+/calmodulin-dependent protein kinase alpha (CAMKIIα) was present in the middle-aged and aged groups but only in the sedentary, not the exercise, PD rat striatum. Notably, CAMKIIα was characterized by a 4-hydroxynonenal adduct. Regular aerobic exercise upregulated CAMKIIα expression level, activated the CAMK signaling pathway, and promoted the expression of autophagy markers Beclin1 and microtubule-associated proteins 1 A/1B light chain 3II. Aberrant carbonylation of CAMKII initiated age-related changes and might be useful as a potential biomarker of PD. Regular aerobic exercise alleviated protein carbonylation modification of CAMKIIα and regulated the CAMK signaling pathway, thereby affecting and regulating the homeostasis of apoptosis and autophagy in the striatum to alleviate the neurodegenerative process of PD lesions.
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Rang Fu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Li Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| | - Dazhong Yin
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, Hunan, China (WL, RF, ZW, SL, CT, LL, DY); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota (WL); School of Health & Kinesiology, Georgia Southern University, Statesboro, Georgia (LL); and Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China (DY)
| |
Collapse
|
21
|
Schirinzi T, Canevelli M, Suppa A, Bologna M, Marsili L. The continuum between neurodegeneration, brain plasticity, and movement: a critical appraisal. Rev Neurosci 2020; 31:723-742. [DOI: 10.1515/revneuro-2020-0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 01/09/2023]
Abstract
Abstract
While the “physiological” aging process is associated with declines in motor and cognitive features, these changes do not significantly impair functions and activities of daily living. Differently, motor and cognitive impairment constitute the most common phenotypic expressions of neurodegeneration. Both manifestations frequently coexist in the same disease, thus making difficult to detect “pure” motor or cognitive conditions. Movement disorders are often characterized by cognitive disturbances, and neurodegenerative dementias often exhibit the occurrence of movement disorders. Such a phenotypic overlap suggests approaching these conditions by highlighting the commonalities of entities traditionally considered distinct. In the present review, we critically reappraised the common clinical and pathophysiological aspects of neurodegeneration in both animal models and patients, looking at motricity as a trait d’union over the spectrum of neurodegeneration and focusing on synaptopathy and oscillopathy as the common pathogenic background. Finally, we discussed the possible role of movement as neuroprotective intervention in neurodegenerative conditions, regardless of the etiology. The identification of commonalities is critical to drive future research and develop novel possible disease-modifying interventions.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Marco Canevelli
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- National Center for Disease Prevention and Health Promotion, National Institute of Health , Rome , Italy
| | - Antonio Suppa
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Matteo Bologna
- Department of Human Neurosciences , Sapienza University of Rome , Rome , Italy
- IRCCS Neuromed , Pozzilli , IS , Italy
| | - Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson’s Disease and Movement Disorders , University of Cincinnati , 260 Stetson Street , Cincinnati , 45219, OH , USA
| |
Collapse
|
22
|
Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY) 2020; 11:1934-1964. [PMID: 30958793 PMCID: PMC6503885 DOI: 10.18632/aging.101884] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Memory deficiency is a common non-motor symptom of Parkinson’s disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
23
|
Askar MH, Hussein AM, Al-Basiony SF, Meseha RK, Metias EF, Salama MM, Antar A, El-Sayed A. Effects of Exercise and Ferulic Acid on Alpha Synuclein and Neuroprotective Heat Shock Protein 70 in An Experimental Model of Parkinsonism Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:156-169. [PMID: 30113007 DOI: 10.2174/1871527317666180816095707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVE This study investigated the effects of ferulic acid (FR), muscle exercise (Ex) and combination of them on rotenone (Rot)-induced Parkinson disease (PD) in mice as well as their underlying mechanisms. METHOD 56 male C57BL/6 mice were allocated into 8 equal groups, 1) Normal control (CTL), 2) FR (mice received FR at 20 mg/kg/day), 3) Ex (mice received swimming Ex) and 4) Ex + FR (mice received FR and Ex), 5) Rot (mice received Rot 3 mg/Kg i.p. for 70 days), 6) ROT+ FR (mice received Rot + FR at 20 mg/kg/day), 7) ROT+ Ex (mice received Rot + swimming Ex) and 8) ROT+ Ex + FR (mice received Rot + FR and Ex). ROT group showed significant impairment in motor performance and significant reduction in tyrosine hydroxylase (TH) density and Hsp70 expression (p< 0.05) with Lewy bodies (alpha synuclein) aggregates in corpus striatum. Also, ROT+FR, ROT+EX and ROT + Ex+ FR groups showed significant improvement in behavioral and biochemical changes, however the effect of FR alone was more potent than Ex alone (p< 0.05) and addition of Ex to FR caused no more significant improvement than FR alone. CONCLUSION We concluded that, FR and Ex improved the motor performance in rotenone-induced PD rodent model which might be due to increased Hsp70 expression and TH density in corpus striatum and combination of both did not offer more protection than FR alone.
Collapse
Affiliation(s)
- Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Soheir F Al-Basiony
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Refka K Meseha
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mohamed M Salama
- Department of Clinical Toxicology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ashraf Antar
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Aya El-Sayed
- MERC, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| |
Collapse
|
24
|
Zhang L, Fan Y, Kong X, Hao W. Neuroprotective effect of different physical exercises on cognition and behavior function by dopamine and 5-HT level in rats of vascular dementia. Behav Brain Res 2020; 388:112648. [PMID: 32339549 DOI: 10.1016/j.bbr.2020.112648] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
The aim of the present study is to evaluate neuroprotective effect of different physical exercises on cognition and behavior function by dopamine and 5-HT in rats of vascular dementia. Forty Sprague-Dawley rats were enrolled in this study and randomly divided into following 5 groups: control group (C group, n = 8), vascular dementia group (VD group, n = 8), treadmill exercise and vascular dementia group (TE-VD group, n = 8), in-voluntary exercise and vascular dementia group (IE-VD group, n = 8), voluntary exercise and vascular dementia group (VE-VD group, n = 8). The rats in TE-VD, IE-VD and VE-VD groups were received different physical exercise interventions, treadmill exercise, voluntary running exercise, involuntary running exercise respectively, total 4 weeks. Next, the rats in VE-VD, IE-VD, TE-VD and VD groups were received bilateral common carotids arteries operation to create vascular dementia model. Then, we use a passive avoid test to evaluate cognition and open field test to evaluate cognition autonomic activity in each group. The level in hippocampal dopamine and 5-HT were detected by microdialysis coupled with high performance liquid chromatography. Behavior results demonstrated that: compared with C group, the cognition in VD group significantly decreased (p < 0.001); compared with VD group, the cognition in VE-VD, IE-VD and TE-VD groups were significantly increased (p < 0.001). However, there are no significant difference between VE-VD, IE-VD and TE-VD groups (p> 0.05). In addition, hippocampal dopamine and 5-HT level significantly decreased in VD group when compared with C group (p < 0.001); hippocampal dopamine and 5-HT level in VE-VD, IE-VD and TE-VD groups were significantly increased when compared with VD group (p < 0.05). However, there are no significant difference between VE-VD, IE-VD and TE-VD groups (p> 0.05). Therefore, we concluded that different physical exercises, included treadmill exercise, in-voluntary exercise and voluntary exercise, all can protect cognition by up-regulate dopamine and 5-HT level in rats of vascular dementia.
Collapse
Affiliation(s)
- Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, 350007, China; Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Yongzhao Fan
- Capital University of Physical Education and Sports, Beijing, 100191, China; Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Xiaoyang Kong
- Li-Ning Sports Science Research Center, Beijing, China
| | - Wu Hao
- Capital University of Physical Education and Sports, Beijing, 100191, China; Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Capital University of Physical Education and Sports, Beijing, 100191, China.
| |
Collapse
|
25
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
26
|
Kang J, Wang Y, Wang D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci 2019; 130:541-550. [DOI: 10.1080/00207454.2019.1679809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Kang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Di Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Long-Term Voluntary Physical Exercise Exerts Neuroprotective Effects and Motor Disturbance Alleviation in a Rat Model of Parkinson's Disease. Behav Neurol 2019; 2019:4829572. [PMID: 31885725 PMCID: PMC6915149 DOI: 10.1155/2019/4829572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder affecting 7–10 million individuals. The pathologic hallmark of PD is nigrostriatal dopaminergic neuron loss, leading to several motor and nonmotor disturbances, such as akinesia, gait disturbance, depression, and anxiety. Recent animal studies have demonstrated that physical exercise improves behavioral and neuropathological deficits in PD. However, the exact underlying mechanism underlying this effect remains unclear. In this study, we investigated whether long-term exercise has neuroprotective effects on dopaminergic nigrostriatal neurons and whether it further alleviates impairment of the gait pattern, locomotor activity, akinesia, and anxiety-like behavior in PD rats. Methods A hemiparkinsonian rat model, generated by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, was applied to evaluate neuroprotective effects and motor behaviors. Comprehensive spatiotemporal gait analysis, open-field locomotor activity, akinesia, apomorphine-induced rotational analysis, and dopaminergic neuron degeneration level were assessed every week and up to 8 weeks after daily voluntary running wheel exercise. Results Compared with the sham-treated group, we found that 10 weeks of voluntary exercise (i.e., 2-week exercise before PD lesion and 8-week exercise post-PD lesion) significantly reduced 6-OHDA-induced motor deficits in the gait pattern, akinesia, and rotational behavior in the exercise group. Immunohistochemically, a tyrosine hydroxylase-positive neuron in the substantia nigra was significantly preserved in the exercise group. Conclusions Our results demonstrated that long-term exercise training is effective for neuroprotection and further attenuates motor declines induced by 6-OHDA in an experimental model of PD. Our data further highlighted potential therapeutic effects of long-term physical exercise relevant to clinical effects for further potential application on human PD subjects.
Collapse
|
28
|
Palasz E, Niewiadomski W, Gasiorowska A, Wysocka A, Stepniewska A, Niewiadomska G. Exercise-Induced Neuroprotection and Recovery of Motor Function in Animal Models of Parkinson's Disease. Front Neurol 2019; 10:1143. [PMID: 31736859 PMCID: PMC6838750 DOI: 10.3389/fneur.2019.01143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is manifested by progressive motor, autonomic, and cognitive disturbances. Dopamine (DA) synthesizing neurons in the substantia nigra (SN) degenerate, causing a decline in DA level in the striatum that leads to the characteristic movement disorders. A disease-modifying therapy to arrest PD progression remains unattainable with current pharmacotherapies, most of which cause severe side effects and lose their efficacy with time. For this reason, there is a need to seek new therapies supporting the pharmacological treatment of PD. Motor therapy is recommended for pharmacologically treated PD patients as it alleviates the symptoms. Molecular mechanisms behind the beneficial effects of motor therapy are unknown, nor is it known whether such therapy may be neuroprotective in PD patients. Due to obvious limitations, human studies are unlikely to answer these questions; therefore, the use of animal models of PD seems indispensable. Motor therapy in animal models of PD characterized by the loss of dopaminergic neurons has neuroprotective and neuroregenerative effects, and the completeness of neuronal protection may depend on (i) degree of neuronal loss, (ii) duration and intensity of exercise, and (iii) time elapsed between insult and commencing of training. As the physical activity is neuroprotective for dopaminergic neurons, the question arises what is the mechanism of this protective action. A current hypothesis assumes a central role of neurotrophic factors in the neuroprotection of dopaminergic neurons, even though it is still not clear whether increased DA level in the nigrostriatal axis results from neurogenesis of dopaminergic neurons in the SN, recovery of the phenotype of dopaminergic neurons, increased sprouting of the residual dopaminergic axons in the striatum, or generation of local striatal neurons from inhibitory interneurons. In the present review, we discuss studies describing the influence of physical exercise on the PD-like changes manifested in animal models of the disease and focus our interest on the current state of knowledge on the mechanism of neuroprotection induced by physical activity as a supportive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Wiktor Niewiadomski
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gasiorowska
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland.,Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Wysocka
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Anna Stepniewska
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
29
|
Torre-Muruzabal T, Devoght J, Van den Haute C, Brône B, Van der Perren A, Baekelandt V. Chronic nigral neuromodulation aggravates behavioral deficits and synaptic changes in an α-synuclein based rat model for Parkinson's disease. Acta Neuropathol Commun 2019; 7:160. [PMID: 31640762 PMCID: PMC6805517 DOI: 10.1186/s40478-019-0814-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of alpha-synuclein (α-SYN) is the pathological hallmark of several diseases named synucleinopathies, including Parkinson's disease (PD), which is the most common neurodegenerative motor disorder. Alpha-SYN has been linked to synaptic function both in physiological and pathological conditions. However, the exact link between neuronal activity, α-SYN toxicity and disease progression in PD is not clear. In this study, we aimed to investigate the effect of chronic neuromodulation in an α-SYN-based rat model for PD using chemogenetics. To do this, we expressed excitatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) combined with mutant A53T α-SYN, using two different recombinant adeno-associated viral (rAAV) vectors (serotypes 2/7 and 2/8) in rat substantia nigra (SN) and investigated the effect on motor behavior, synapses and neuropathology. We found that chronic neuromodulation aggravates motor deficits induced by α-SYN, without altering dopaminergic neurodegeneration. In addition, neuronal activation led to changes in post-translational modification and subcellular localization of α-SYN, linking neuronal activity to the pathophysiological role of α-SYN in PD.
Collapse
Affiliation(s)
- Teresa Torre-Muruzabal
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven, Leuven Viral Vector Core, Leuven, Belgium
| | | | - Anke Van der Perren
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
30
|
Zhang L, So KF. Exercise, spinogenesis and cognitive functions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:323-360. [PMID: 31607360 DOI: 10.1016/bs.irn.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise training improves mental and cognitive functions by enhancing neurogenesis and neuroprotection. Recent studies suggest the facilitation of spinogenesis across different brain regions including hippocampus and cerebral cortex by physical activity. In this article we will summarize major findings for exercise effects on synaptogenesis and spinogenesis, in order to provide mechanisms for exercise intervention of both psychiatric diseases and neurodegenerative disorders. We will also revisit major findings for molecular mechanism governing exercise-related spinogenesis, and will discuss the screening for novel factors, or exerkines, whose levels are correlated with endurance training and affect neural plasticity. We believe that further studies focusing on the molecular mechanism of exercise-mediate spinogenesis should benefit the optimization of exercise therapy in clinics and the evaluation of treatment efficiency using specific biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China.
| |
Collapse
|
31
|
Real CC, Doorduin J, Kopschina Feltes P, Vállez García D, de Paula Faria D, Britto LR, de Vries EF. Evaluation of exercise-induced modulation of glial activation and dopaminergic damage in a rat model of Parkinson's disease using [ 11C]PBR28 and [ 18F]FDOPA PET. J Cereb Blood Flow Metab 2019; 39:989-1004. [PMID: 29271291 PMCID: PMC6545619 DOI: 10.1177/0271678x17750351] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence suggests that exercise can modulate neuroinflammation and neuronal damage. We evaluated if such effects of exercise can be detected with positron emission tomography (PET) in a rat model of Parkinson's disease (PD). Rats were unilaterally injected in the striatum with 6-hydroxydopamine (PD rats) or saline (controls) and either remained sedentary (SED) or were forced to exercise three times per week for 40 min (EX). Motor and cognitive functions were evaluated by the open field, novel object recognition, and cylinder tests. At baseline, day 10 and 30, glial activation and dopamine synthesis were assessed by [11C]PBR28 and [18F]FDOPA PET, respectively. PET data were confirmed by immunohistochemical analysis of microglial (Iba-1) / astrocyte (GFAP) activation and tyrosine hydroxylase (TH). [11C]PBR28 PET showed increased glial activation in striatum and hippocampus of PD rats at day 10, which had resolved at day 30. Exercise completely suppressed glial activation. Imaging results correlated well with post-mortem Iba-1 staining, but not with GFAP staining. [18F]FDOPA PET, TH staining and behavioral tests indicate that 6-OHDA caused damage to dopaminergic neurons, which was partially prevented by exercise. These results show that exercise can modulate toxin-induced glial activation and neuronal damage, which can be monitored noninvasively by PET.
Collapse
Affiliation(s)
- Caroline C Real
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil.,2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Janine Doorduin
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paula Kopschina Feltes
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Vállez García
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniele de Paula Faria
- 3 Laboratory of Nuclear Medicine (LIM 43), University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Luiz R Britto
- 1 Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, SP, Brazil
| | - Erik Fj de Vries
- 2 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Shi K, Liu X, Hou L, Qiao D, Lin X. Effects of exercise on mGluR-mediated glutamatergic transmission in the striatum of hemiparkinsonian rats. Neurosci Lett 2019; 705:143-150. [PMID: 31029678 DOI: 10.1016/j.neulet.2019.04.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Abstract
Hyperexcitability in the corticostriatal glutamatergic pathway may have a pivotal role in the pathogenesis of Parkinson's disease (PD). Metabotropic glutamate receptors (mGluRs) modulate glutamate transmission by both pre- and postsynaptic mechanisms, making them attractive targets for modifying pathological changes in the corticostriatal pathway. Exercise reportedly alleviates motor dysfunction and induced neuroplasticity in glutamatergic transmission. Here, the mGluR-mediated plasticity mechanism underlying behavioral improvement by exercise intervention was investigated. The experimental models were prepared by 6-hydroxydopamine injection into the right medial forebrain bundle. The models were evaluated with the apomorphine-induced rotation test. Starting 2 weeks postoperatively, exercise intervention was applied to the PD + Ex group for 4 weeks. The exercise-intervention effects on locomotor behavior, glutamate levels, and mGluR (mGluR2/3 and mGluR5) expression in hemiparkinsonian rats were investigated. The results showed that hemiparkinsonian rats have a significant increase in extracellular glutamate levels in the lesioned-lateral striatum. MGluR2/3 protein expression was reduced while mGluR5 protein expression was increased in the striatum. Notably, treadmill exercise markedly reversed these abnormal changes in the corticostriatal glutamate system and promoted motor performance in PD rats. These findings suggest that mGluR-mediated glutamatergic transmission in the corticostriatal pathway may serve as an attractive target for exercise-induced neuroplasticity in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, 100083, China; College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoli Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - Decai Qiao
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| | - Xiangming Lin
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
33
|
Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol 2019; 313:60-78. [DOI: 10.1016/j.expneurol.2018.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
|
34
|
Berrío Sánchez J, Cucarian Hurtado J, Barcos Nunes R, de Oliveira AA. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson's disease: therapeutic assets beyond the motor domain. Rev Neurosci 2019; 30:165-178. [PMID: 29959887 DOI: 10.1515/revneuro-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a very common neurodegenerative condition in which both motor and nonmotor deficits evolve throughout the course of the disease. Normally characterized as a movement disorder, PD has been broadly studied from a motor perspective. However, mild to moderate cognitive deficits began to appear in the early phases of the disease, even before motor disturbances actually manifest, and continue to progress relentlessly. These nonmotor manifestations are also a source of detriment to the patients' already strained functionality and quality of life, and pose a therapeutic challenge seeing that replacing therapies have had conflicting results. Considering that the currently approved therapies can hardly be considered curative, efforts to find therapeutic approaches with an actual disease-modifying quality and capable of addressing not only motor but also cognitive dysfunctions are clearly needed. Among possible alternatives with such attribute, mesenchymal stem cell transplantation and exercise are worth highlighting given their common neuroprotective, neuroplastic, and immunomodulatory properties. In this paper, we will summarize the existent literature on the topic, focusing on the mechanisms of action through which these two approaches might beget therapeutic benefits for PD beyond the commonly assessed motor dysfunctions, alluding, at the same time, toward a potential synergic association of both therapies as an optimized approach for PD.
Collapse
Affiliation(s)
- Jenny Berrío Sánchez
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Jaison Cucarian Hurtado
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department, Instituto Federal de Educação, Ciência e Tecnologia. SUL-RIO-GRANDENSE, Rua Men de Sá, 800, Bom Sucesso, Gravataí, CEP 94.135-300, Brazil
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
35
|
Gratuze M, Josset N, Petry FR, Pflieger M, Eyoum Jong L, Truchetti G, Poitras I, Julien J, Bezeau F, Morin F, Samadi P, Cicchetti F, Bretzner F, Planel E. The toxin MPTP generates similar cognitive and locomotor deficits in hTau and tau knock-out mice. Brain Res 2019; 1711:106-114. [PMID: 30641037 DOI: 10.1016/j.brainres.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is characterized by motor deficits, although cognitive disturbances are frequent and have been noted early in the disease. The main pathological characteristics of PD are the loss of dopaminergic neurons and the presence of aggregated α-synuclein in Lewy bodies of surviving cells. Studies have also documented the presence of other proteins within Lewy bodies, particularly tau, a microtubule-associated protein implicated in a wide range of neurodegenerative diseases, including Alzheimer's disease (AD). In AD, tau pathology correlates with cognitive dysfunction, and tau mutations have been reported to lead to dementia associated with parkinsonism. However, the role of tau in PD pathogenesis remains unclear. To address this question, we induced parkinsonism by injecting the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in hTau mice, a mouse model of tauopathy expressing human tau, and a mouse model knock-out for tau (TKO). We found that although MPTP impaired locomotion (gait analysis) and cognition (Barnes maze), there were no discernable differences between hTau and TKO mice. MPTP also induced a slight but significant increase in tau phosphorylation (Thr205) in the hippocampus of hTau mice, as well as a significant decrease in the soluble and insoluble tau fractions that correlated with the loss of dopaminergic neurons in the brainstem. Overall, our findings suggest that, although MPTP can induce an increase in tau phosphorylation at specific epitopes, tau does not seem to causally contribute to cognitive and locomotor deficits induced by this toxin.
Collapse
Affiliation(s)
- Maud Gratuze
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada.
| | - Nicolas Josset
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Franck R Petry
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Mathieu Pflieger
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Laura Eyoum Jong
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Geoffrey Truchetti
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Isabelle Poitras
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Jacinthe Julien
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - François Bezeau
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Françoise Morin
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Pershia Samadi
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Francesca Cicchetti
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Frédéric Bretzner
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Emmanuel Planel
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada.
| |
Collapse
|
36
|
Lin TW, Tsai SF, Kuo YM. Physical Exercise Enhances Neuroplasticity and Delays Alzheimer's Disease. Brain Plast 2018; 4:95-110. [PMID: 30564549 PMCID: PMC6296269 DOI: 10.3233/bpl-180073] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that exercise can improve learning and memory as well as attenuate neurodegeneration, including Alzheimer's disease (AD). In addition to improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates systems like angiogenesis and glial activation that are known to support neuroplasticity. Moreover, exercise helps to maintain a cerebral microenvironment that facilitates synaptic plasticity by enhancing the clearance of Aβ, one of the main culprits of AD pathogenesis. The purpose of this review is to highlight the positive impacts of exercise on promoting neuroplasticity. Possible mechanisms involved in exercise-modulated neuroplasticity are also discussed. Undoubtedly, more studies are needed to design an optimal personalized exercise protocol for enhancing brain function.
Collapse
Affiliation(s)
- Tzu-Wei Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Docosahexaenoic acid protection in a rotenone induced Parkinson's model: Prevention of tubulin and synaptophysin loss, but no association with mitochondrial function. Neurochem Int 2018; 121:26-37. [DOI: 10.1016/j.neuint.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
38
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
39
|
Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci 2018; 209:455-465. [DOI: 10.1016/j.lfs.2018.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
40
|
Klemann CJHM, Xicoy H, Poelmans G, Bloem BR, Martens GJM, Visser JE. Physical Exercise Modulates L-DOPA-Regulated Molecular Pathways in the MPTP Mouse Model of Parkinson's Disease. Mol Neurobiol 2018; 55:5639-5657. [PMID: 29019056 PMCID: PMC5994219 DOI: 10.1007/s12035-017-0775-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), resulting in motor and non-motor dysfunction. Physical exercise improves these symptoms in PD patients. To explore the molecular mechanisms underlying the beneficial effects of physical exercise, we exposed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP)-treated mice to a four-week physical exercise regimen, and subsequently explored their motor performance and the transcriptome of multiple PD-linked brain areas. MPTP reduced the number of DA neurons in the SNpc, whereas physical exercise improved beam walking, rotarod performance, and motor behavior in the open field. Further, enrichment analyses of the RNA-sequencing data revealed that in the MPTP-treated mice physical exercise predominantly modulated signaling cascades that are regulated by the top upstream regulators L-DOPA, RICTOR, CREB1, or bicuculline/dalfampridine, associated with movement disorders, mitochondrial dysfunction, and epilepsy-related processes. To elucidate the molecular pathways underlying these cascades, we integrated the proteins encoded by the exercise-induced differentially expressed mRNAs for each of the upstream regulators into a molecular landscape, for multiple key brain areas. Most notable was the opposite effect of physical exercise compared to previously reported effects of L-DOPA on the expression of mRNAs in the SN and the ventromedial striatum that are involved in-among other processes-circadian rhythm and signaling involving DA, neuropeptides, and endocannabinoids. Altogether, our findings suggest that physical exercise can improve motor function in PD and may, at the same time, counteract L-DOPA-mediated molecular mechanisms. Further, we hypothesize that physical exercise has the potential to improve non-motor symptoms of PD, some of which may be the result of (chronic) L-DOPA use.
Collapse
Affiliation(s)
- Cornelius J H M Klemann
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Helena Xicoy
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| |
Collapse
|
41
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
42
|
Jang Y, Kwon I, Song W, Cosio-Lima LM, Lee Y. Endurance Exercise Mediates Neuroprotection Against MPTP-mediated Parkinson’s Disease via Enhanced Neurogenesis, Antioxidant Capacity, and Autophagy. Neuroscience 2018; 379:292-301. [DOI: 10.1016/j.neuroscience.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
43
|
Chen YH, Kuo TT, Kao JH, Huang EYK, Hsieh TH, Chou YC, Hoffer BJ. Exercise Ameliorates Motor Deficits and Improves Dopaminergic Functions in the Rat Hemi-Parkinson's Model. Sci Rep 2018; 8:3973. [PMID: 29507426 PMCID: PMC5838260 DOI: 10.1038/s41598-018-22462-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/23/2018] [Indexed: 01/08/2023] Open
Abstract
To determine the influences of exercise on motor deficits and dopaminergic transmission in a hemiparkinson animal model, we measured the effects of exercise on the ambulatory system by estimating spatio-temporal parameters during walking, striatal dopamine (DA) release and reuptake and synaptic plasticity in the corticostriatal pathway after unilateral 6-OHDA lesions. 6-OHDA lesioned hemiparkinsonian rats were exercised on a fixed speed treadmill for 30 minutes per day. Controls received the same lesion but no exercise. Animals were subsequently analyzed for behavior including gait analysis, rotarod performance and apomorphine induced rotation. Subsequently, in vitro striatal dopamine release was analyzed by using FSCV and activity-dependent plasticity in the corticostriatal pathway was measured in each group. Our data indicated that exercise could improve motor walking speed and increase the apomorphine-induced rotation threshold. Exercise also ameliorated spatiotemporal impairments in gait in PD animals. Exercise increased the parameters of synaptic plasticity formation in the corticostriatal pathway of PD animals as well as the dynamics of dopamine transmission in PD animals. Fixed speed treadmill training 30 minutes per day could ameliorate spatial-temporal gait impairment, improve walking speed, dopamine transmission as well as corticostriatal synaptic plasticity in the unilateral 6-OHDA lesioned rat model.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C..
| | - Tung-Tai Kuo
- Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C
| | - Jen-Hsin Kao
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Barry J Hoffer
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Ahlskog JE. Aerobic Exercise: Evidence for a Direct Brain Effect to Slow Parkinson Disease Progression. Mayo Clin Proc 2018; 93:360-372. [PMID: 29502566 DOI: 10.1016/j.mayocp.2017.12.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
No medications are proven to slow the progression of Parkinson disease (PD). Of special concern with longer-standing PD is cognitive decline, as well as motor symptoms unresponsive to dopamine replacement therapy. Not fully recognized is the substantial accumulating evidence that long-term aerobic exercise may attenuate PD progression. Randomized controlled trial proof will not be forthcoming due to many complicating methodological factors. However, extensive and diverse avenues of scientific investigation converge to argue that aerobic exercise and cardiovascular fitness directly influence cerebral mechanisms mediating PD progression. To objectively assess the evidence for a PD exercise benefit, a comprehensive PubMed literature search was conducted, with an unbiased focus on exercise influences on parkinsonism, cognition, brain structure, and brain function. This aggregate literature provides a compelling argument for regular aerobic-type exercise and cardiovascular fitness attenuating PD progression.
Collapse
|
45
|
Zhou W, Barkow JC, Freed CR. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS One 2017; 12:e0190160. [PMID: 29272304 PMCID: PMC5741244 DOI: 10.1371/journal.pone.0190160] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson's disease by preventing abnormal protein aggregation in brain.
Collapse
Affiliation(s)
- Wenbo Zhou
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Jessica Cummiskey Barkow
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Curt R. Freed
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
46
|
Almeida MF, Silva CM, Chaves RS, Lima NCR, Almeida RS, Melo KP, Demasi M, Fernandes T, Oliveira EM, Netto LES, Cardoso SM, Ferrari MFR. Effects of mild running on substantia nigra during early neurodegeneration. J Sports Sci 2017; 36:1363-1370. [PMID: 28895489 DOI: 10.1080/02640414.2017.1378494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.
Collapse
Affiliation(s)
- Michael F Almeida
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Carolliny M Silva
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Rodrigo S Chaves
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Nathan C R Lima
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Renato S Almeida
- b Institute for Biosciences , University of Taubate , Taubate , Brazil
| | - Karla P Melo
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Marilene Demasi
- c Laboratory of Biochemistry and Biophysics , Butantan Institute , Sao Paulo , Brazil
| | - Tiago Fernandes
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Edilamar M Oliveira
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Luis E S Netto
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Sandra M Cardoso
- e Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,f Institute of Cellular and Molecular Biology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Merari F R Ferrari
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
47
|
Tripathi P, Singh A, Bala L, Patel DK, Singh MP. Ibuprofen Protects from Cypermethrin-Induced Changes in the Striatal Dendritic Length and Spine Density. Mol Neurobiol 2017; 55:2333-2339. [DOI: 10.1007/s12035-017-0491-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
|
48
|
Koo JH, Cho JY, Lee UB. Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson's disease. Exp Gerontol 2017; 89:20-29. [PMID: 28062370 DOI: 10.1016/j.exger.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/26/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
Abstract
Alpha-synuclein (α-Syn) accumulation is significantly correlated with motor deficits and mitochondrial dysfunction in Parkinson's disease (PD), but the molecular mechanism underlying its pathogenesis is unclear. In this study, we investigated the effects of treadmill exercise on motor deficits and mitochondrial dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treadmill exercise inhibited dopaminergic neuron loss by promoting the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) and seemed to improve cell survival by reducing α-Syn expression. Most importantly, treadmill exercise increased expression of the mitochondrial import machinery proteins TOM-40, TOM-20, and TIM-23. This was associated with decreased α-Syn expression and subsequent upregulation of the mitochondrial proteins COX-I, COX-IV, and mtHSP70. Taken together, these results indicate that treadmill exercise may ameliorate motor deficits and improve mitochondrial dysfunction by reducing α-Syn expression in the MPTP-induced mouse model of PD.
Collapse
Affiliation(s)
- Jung-Hoon Koo
- Department of Exercise Biochemistry, Korea National Sport University, Seoul 138-763, Republic of Korea; Institute of Sport Science, Korea National Sport University, Seoul, 138-763, Republic of Korea
| | - Joon-Yong Cho
- Department of Exercise Biochemistry, Korea National Sport University, Seoul 138-763, Republic of Korea
| | - Ung-Bae Lee
- Department of Beauty Health Science, Shinhan University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|