1
|
Sanchez-Romero R, Akyuz S, Krekelberg B. EFMouse: a Matlab toolbox to model stimulation-induced electric fields in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.605227. [PMID: 39091807 PMCID: PMC11291114 DOI: 10.1101/2024.07.25.605227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcome experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of non-invasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here, we introduce EFMouse, a toolbox that extends previous approaches to model intracranial electric fields and is optimized to generate predictions that can be tested with in-vivo intracranial recordings in mice. Although the EFMouse toolbox has general applicability and could be used to predict intracranial fields for any electrical stimulation study using mice, we illustrate its usage by comparing fields in a tES high-density multi-electrode montage with a more traditional two-electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability. The EFMouse toolbox is publicly available at https://github.com/klabhub/EFMouse.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Sibel Akyuz
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Ai Y, Yin M, Zhang L, Hu H, Zheng H, Feng W, Ku Y, Hu X. Effects of different types of high-definition transcranial electrical stimulation on visual working memory and contralateral delayed activity. J Neuroeng Rehabil 2024; 21:201. [PMID: 39516946 PMCID: PMC11545573 DOI: 10.1186/s12984-024-01498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Working memory is critical for individuals and has been found to be improved by electrical stimulation of the left dorsolateral prefrontal cortex (DLPFC). However, the effects of different types of transcranial electrical stimulation on working memory are controversial, and the underlying mechanism remains uncertain. In this study, high-definition transcranial direct current stimulation (HD-tDCS) and high-definition transcranial random noise stimulation (HD-tRNS) were applied to the DLPFC to observe the different effects on visual working memory (VWM). The aim was to explore the causal relationship between the electrical activity of the DLPFC and the posterior parietal cortex (PPC) electrical activity and the contralateral delayed activity (CDA). METHODS Thirty-three healthy subjects received HD-tDCS, HD-tRNS and sham stimulation in a random order. Stimulation was applied to the left DLPFC for 20 min. The subjects underwent a color change-detection task as our VWM task and an auditory digit span test (DST) immediately after stimulation. Event-related potential (ERP) data were collected during the VWM task. RESULTS The results revealed significant differences between the different types of HD-tES. There was a remarkable increase in VWM capacity following HD-tDCS compared with both HD-tRNS (pa = 0.038) and sham stimulation (pa = 0.038). Additionally, the CDA from the PPC differed after stimulation of the DLPFC. Both HD-tDCS and HD-tRNS expanded the maximum CDA amplitude from set size of 4 to 6, whereas after sham stimulation, the maximum CDA was maintained at a set size of 4. Compared with the sham condition, only HD-tDCS induced a noteworthy increase in CDA amplitude (pa = 0.012). Notably, a significant correlation emerged between the mean CDA amplitude and VWM capacity (p < 0.001, r = - 0.402). CONCLUSION These findings underscore the ability of HD-tDCS to target the DLPFC to augment working memory capacity while concurrently amplifying CDA amplitudes in the PPC through the frontoparietal network. Trial registration ChiCTR2300074898.
Collapse
Affiliation(s)
- Yinan Ai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Haojie Hu
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY, 10003, USA
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
- Peng Cheng Laboratory, Shenzhen, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Otstavnov N, Nieto-Doval C, Galli G, Feurra M. Frontoparietal Brain Network Plays a Crucial Role in Working Memory Capacity during Complex Cognitive Task. eNeuro 2024; 11:ENEURO.0394-23.2024. [PMID: 39029954 PMCID: PMC11315429 DOI: 10.1523/eneuro.0394-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 07/21/2024] Open
Abstract
Recent neurophysiological studies provide inconsistent results of frontoparietal network (FPN) stimulation for altering working memory (WM) capacity. This study aimed to boost WM capacity by manipulating the activity of the FPN via dual-site high-definition transcranial direct current stimulation. Forty-eight participants were randomly assigned to three stimulation groups, receiving either simultaneous anodal stimulation of the frontal and parietal areas (double stimulation), or stimulation of the frontal area only (single stimulation), or the placebo stimulation (sham) to frontal and parietal areas. After the stimulation, we used an operation span task to test memory accuracy, mathematical accuracy, time of calculation and memorizing, and recall response time across the three groups. The results revealed an enhancement of memory accuracy and a reduction of time of calculation in the double stimulation group compared with that in others. In addition, recall response time was significantly decreased in the double and single stimulation groups compared with that in sham. No differences in mathematical accuracy were observed. Our results confirm the pivotal role of the FPN in WM and suggest its functional dissociation, with the frontal component more implicated in the retrieval stage and the parietal component in the processing and retention stages.
Collapse
Affiliation(s)
- Nikita Otstavnov
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Carlos Nieto-Doval
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| | - Giulia Galli
- Department of Psychology, Kingston University, London KT1 2EE, United Kingdom
| | - Matteo Feurra
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow 101000, Russia
| |
Collapse
|
4
|
Fromm AE, Grittner U, Brodt S, Flöel A, Antonenko D. No Object-Location Memory Improvement through Focal Transcranial Direct Current Stimulation over the Right Temporoparietal Cortex. Life (Basel) 2024; 14:539. [PMID: 38792561 PMCID: PMC11122124 DOI: 10.3390/life14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day. The focal stimulation did not enhance OLM performance on either training day (stimulation effect: -0.09, 95%CI: [-0.19; 0.02], p = 0.08). Higher electric field magnitudes in the target region were not associated with individual performance benefits. Participants with content-related learning strategies showed slightly superior performance compared to participants with position-related strategies. Additionally, training gains were associated with individual verbal learning skills. Consequently, the lack of behavioral benefits through focal tDCS might be due to the involvement of different cognitive processes and brain regions, reflected by participant's learning strategies. Future studies should evaluate whether other brain regions or memory-relevant networks may be involved in the modulation of object-location associations, investigating other target regions, and further exploring individualized stimulation parameters.
Collapse
Affiliation(s)
- Anna Elisabeth Fromm
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Svenja Brodt
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17489 Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
5
|
McDonald MA, Meckes SJ, Shires J, Berryhill ME, Lancaster CL. Augmenting Virtual Reality Exposure Therapy for Social and Intergroup Anxiety With Transcranial Direct Current Stimulation. J ECT 2024; 40:51-60. [PMID: 38009966 PMCID: PMC10920400 DOI: 10.1097/yct.0000000000000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVES Exposure therapy is a cornerstone of social anxiety treatment, yet not all patients respond. Symptoms in certain social situations, including intergroup (ie, out-group) contexts, may be particularly resistant to treatment. Exposure therapy outcomes may be improved by stimulating neural areas associated with safety learning, such as the medial prefrontal cortex (mPFC). The mPFC also plays an important role in identifying others as similar to oneself. We hypothesized that targeting the mPFC during exposure therapy would reduce intergroup anxiety and social anxiety. METHODS Participants (N = 31) with the public speaking subtype of social anxiety received active (anodal) or sham transcranial direct current stimulation (tDCS) targeting the mPFC during exposure therapy. Exposure therapy consisted of giving speeches to audiences in virtual reality. To target intergroup anxiety, half of the public speaking exposure trials were conducted with out-group audiences, defined in this study as audiences of a different ethnicity. RESULTS Contrary to hypotheses, tDCS did not facilitate symptom reduction. Some evidence even suggested that tDCS temporarily increased in-group favoritism, although these effects dissipated at 1-month follow-up. In addition, collapsing across all participants, we found reductions across time for public speaking anxiety and intergroup anxiety. CONCLUSIONS The data provide evidence that standard exposure therapy techniques for social anxiety can be adapted to target intergroup anxiety. Transcranial direct current stimulation targeting the mPFC may boost safety signaling, but only in contexts previously conditioned to signal safety, such as an in-group context.
Collapse
|
6
|
Imperio CM, Chua EF. Differential effects of remotely supervised transcranial direct current stimulation on recognition memory depending on task order. Front Hum Neurosci 2023; 17:1239126. [PMID: 37635805 PMCID: PMC10450219 DOI: 10.3389/fnhum.2023.1239126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Prior work has shown positive effects of High Definition transcranial direct current stimulation (HD-tDCS) over the dorsolateral prefrontal cortex (DLPFC) on semantic memory performance and metamemory monitoring accuracy. However, HD-tDCS requires setup by a trained researcher, which is not always feasible. Few studies have used remotely supervised (rs) tDCS in healthy populations, and remote supervision has strong practical benefits. Objective/hypothesis The goal of the current study was to test if previously shown effects of HD-tDCS over the left DLPFC on semantic memory performance and metamemory monitoring accuracy extended to conventional rs-tDCS, which is less focal than HD-tDCS, and to episodic memory and metamemory tasks. Materials and methods A total of 36 healthy participants completed 6 weeks of rs-tDCS sessions, with either active left or right anodal DLPFC stimulation, or sham. Participants completed semantic and episodic memory and metamemory tasks, which each lasted for three consecutive sessions, and session order was counterbalanced across participants. Results Overall, there were no main effects of rs-tDCS on metamemory monitoring accuracy or memory performance for either the semantic or the episodic tasks. However, there were effects of rs-tDCS that depended on the order of completing the episodic and semantic task sessions. When participants completed the semantic task sessions after the episodic task sessions, semantic recognition was greater in the left anodal DLPFC condition. In a parallel effect, when participants completed the episodic task sessions after the semantic task sessions, episodic recognition was greater in the right anodal DLPFC condition. Conclusion Prior experience with tDCS is a factor for effects of rs-tDCS on cognition. Additionally, the current experiment provides evidence for the feasibility of fully remotely supervised tDCS in healthy participants.
Collapse
Affiliation(s)
- Casey M. Imperio
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| | - Elizabeth F. Chua
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Dagnino PC, Braboszcz C, Kroupi E, Splittgerber M, Brauer H, Dempfle A, Breitling-Ziegler C, Prehn-Kristensen A, Krauel K, Siniatchkin M, Moliadze V, Soria-Frisch A. Stratification of responses to tDCS intervention in a healthy pediatric population based on resting-state EEG profiles. Sci Rep 2023; 13:8438. [PMID: 37231030 DOI: 10.1038/s41598-023-34724-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS. A randomized, sham-controlled, double-blind crossover study design was conducted within a clinical trial for the development of pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation session, participants performed 3 cognitive tasks to assess the response to the intervention: the Flanker Task, N-Back Task and Continuous Performance Test (CPT). We used data from 56 healthy children and adolescents to implement an unsupervised clustering approach that stratify participants based on their resting-state EEG spectral features before the tDCS intervention. We then applied a correlational analysis to characterize the clusters of EEG profiles in terms of participant's difference in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after a tDCS-sham or a tDCS-active session. Better behavioral performance following the active tDCS session compared to the sham tDCS session is considered a positive intervention response, whilst the reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 clusters. These results show that specific EEG-based digital phenotypes can be associated to particular responses. While one cluster presents neurotypical EEG activity, the remaining clusters present non-typical EEG characteristics, which seem to be associated with a positive response. Findings suggest that unsupervised machine learning can be successfully used to stratify and eventually predict responses of individuals to a tDCS treatment.
Collapse
Affiliation(s)
| | - Claire Braboszcz
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain
| | - Eleni Kroupi
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University Hospital Schleswig Holstein, Kiel University, Kiel, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
| | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Campus Bielefeld Bethel, Bielefeld, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Aureli Soria-Frisch
- Neuroscience BU, Starlab Barcelona SL, Av Tibidabo 47 bis, Barcelona, Spain.
| |
Collapse
|
8
|
Tedla JS, Sangadala DR, Reddy RS, Gular K, Dixit S. High-definition trans cranial direct current stimulation and its effects on cognitive function: a systematic review. Cereb Cortex 2022; 33:6077-6089. [PMID: 36533541 DOI: 10.1093/cercor/bhac485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract
High-Definition Transcranial Direct Current Stimulation (HD-tDCS) is focal and improves higher mental functions. Due to the lack of published evidence, we conducted this review on the effect of HD-tDCS on cognitive functions in healthy and diseased individuals. We performed an electronic-data and gray-literature search to obtain the relevant studies for the review. The two distinct literature searches obtained a total of 468 studies. Out of these, a total of 12 studies were conducted on higher mental functions, and of these, two were on disordered consciousness, five were on memory, two were on speech, two were on cognition, and one was on execution. We submitted nine studies with control group to methodological quality assessment using the PEDro Scale. Remaining three studies underwent quality assessment by Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. We found that anodal HD-tDCS stimulation is significantly effective in treating disordered consciousness and improving memory, speech, cognition, and execution.
Collapse
Affiliation(s)
- Jaya Shanker Tedla
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Devika Rani Sangadala
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Ravi Shankar Reddy
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Kumar Gular
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| | - Snehil Dixit
- King Khalid University Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, , Abha 61421, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep 2022; 12:20754. [PMID: 36456622 PMCID: PMC9715685 DOI: 10.1038/s41598-022-25016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology - CEITEC, Masaryk university, Brno, Czech Republic
| | - Martin Gajdoš
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology - CEITEC, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, ICRC, St Anne's University Hospital and Faculty of Medicine, Brno, Czech Republic.
| |
Collapse
|
10
|
Müller D, Habel U, Brodkin ES, Weidler C. High-definition transcranial direct current stimulation (HD-tDCS) for the enhancement of working memory - A systematic review and meta-analysis of healthy adults. Brain Stimul 2022; 15:1475-1485. [PMID: 36371009 DOI: 10.1016/j.brs.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) administers weak electric current through multiple electrodes, enabling focal brain stimulation. An increasing number of studies investigate the effects of anodal HD-tDCS on the enhancement of working memory (WM). The effectiveness of the technique is, however, still unclear. OBJECTIVE/HYPOTHESIS This systematic review analyzed the current literature on anodal HD-tDCS for WM enhancement, investigating its effectiveness and the influence of different moderators to allow for comparison with conventional tDCS. METHODS Following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, a comprehensive literature review was conducted using PubMed, Web of Science, and Scopus. Sixteen single- or double-blind, sham-controlled studies were included in the review. Eleven studies were included in the meta-analysis, focusing solely on stimulation of the left prefrontal cortex (PFC). RESULTS No significant effect of anodal HD-tDCS on the left PFC for WM accuracy (g = 0.23, p = 0.08), and reaction time (g = 0.03, p = 0.75 after trim-and-fill) was found. Further analysis revealed heterogeneity in the accuracy results. Here, moderator analysis indicated a significant difference between studies that repeatedly used HD-tDCS enhanced WM training and studies with one-time use of HD-tDCS (p < 0.001), the latter having a smaller effect size. Another moderator was the research design, with differences between within-subjects-, and between-subjects designs (p < 0.05). Within-subject studies showed lower effect sizes and substantially lower heterogeneity. Qualitative analysis reinforced this finding and indicated that the motivation of the participant to engage in the task also moderates the effectiveness of HD-tDCS. CONCLUSION This review highlights the importance of inter-individual differences and the setup for the effectiveness of anodal, HD-tDCS augmented WM training. Limited evidence for increased sensitivity of HD-tDCS to these factors as compared to conventional tDCS is provided.
Collapse
Affiliation(s)
- Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany; Institute of Neuroscience and Medicine, JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Straße, 52438, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Suite 3080, Philadelphia, PA, 19104-3309, USA
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstraße 30, Aachen, 52074, North Rhine-Westphalia, Germany
| |
Collapse
|
11
|
Assecondi S, Hu R, Kroeker J, Eskes G, Shapiro K. Older adults with lower working memory capacity benefit from transcranial direct current stimulation when combined with working memory training: A preliminary study. Front Aging Neurosci 2022; 14:1009262. [PMID: 36299611 PMCID: PMC9589058 DOI: 10.3389/fnagi.2022.1009262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Aging is a very diverse process: successful agers retain most cognitive functioning, while others experience mild to severe cognitive decline. This decline may eventually negatively impact one’s everyday activities. Therefore, scientists must develop approaches to counteract or, at least, slow down the negative change in cognitive performance of aging individuals. Combining cognitive training and transcranial direct current stimulation (tDCS) is a promising approach that capitalizes on the plasticity of brain networks. However, the efficacy of combined methods depends on individual characteristics, such as the cognitive and emotional state of the individual entering the training program. In this report, we explored the effectiveness of working memory training, combined with tDCS to the right dorsolateral prefrontal cortex (DLPFC), to manipulate working memory performance in older individuals. We hypothesized that individuals with lower working memory capacity would benefit the most from the combined regimen. Thirty older adults took part in a 5-day combined regimen. Before and after the training, we evaluated participants’ working memory performance with five working memory tasks. We found that individual characteristics influenced the outcome of combined cognitive training and tDCS regimens, with the intervention selectively benefiting old-old adults with lower working memory capacity. Future work should consider developing individualized treatments by considering individual differences in cognitive profiles.
Collapse
Affiliation(s)
- Sara Assecondi
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto, Italy
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Sara Assecondi, ,
| | - Rong Hu
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Neurology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jacob Kroeker
- Departments of Psychiatry and Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Gail Eskes
- Departments of Psychiatry and Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kim Shapiro
- Visual Experience Laboratory, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Center for Human Brain Health (CHBH), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Hong KS, Khan MNA, Ghafoor U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: A review. J Neural Eng 2022; 19. [PMID: 35905708 DOI: 10.1088/1741-2552/ac857d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumgeong-gu, Busan, Busan, 609735, Korea (the Republic of)
| | - M N Afzal Khan
- Pusan National University, Department of Mechanical Engineering, Busan, 46241, Korea (the Republic of)
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University College of Engineering, room 204, Busan, 46241, Korea (the Republic of)
| |
Collapse
|
13
|
Au J, Smith-Peirce RN, Carbone E, Moon A, Evans M, Jonides J, Jaeggi SM. Effects of Multisession Prefrontal Transcranial Direct Current Stimulation on Long-term Memory and Working Memory in Older Adults. J Cogn Neurosci 2022; 34:1015-1037. [PMID: 35195728 PMCID: PMC9836784 DOI: 10.1162/jocn_a_01839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive form of electrical brain stimulation popularly used to augment the effects of working memory (WM) training. Although success has been mixed, some studies report enhancements in WM performance persisting days, weeks, or even months that are actually more reminiscent of consolidation effects typically observed in the long-term memory (LTM) domain, rather than WM improvements per se. Although tDCS has been often reported to enhance both WM and LTM, these effects have never been directly compared within the same study. However, given their considerable neural and behavioral overlap, this is a timely comparison to make. This study reports results from a multisession intervention in older adults comparing active and sham tDCS over the left dorsolateral pFC during training on both an n-back WM task and a word learning LTM task. We found strong and robust effects on LTM, but mixed effects on WM that only emerged for those with lower baseline ability. Importantly, mediation analyses showed an indirect effect of tDCS on WM that was mediated by improvements in consolidation. We conclude that tDCS over the left dorsolateral pFC can be used as an effective intervention to foster long-term learning and memory consolidation in aging, which can manifest in performance improvements across multiple memory domains.
Collapse
Affiliation(s)
- Jacky Au
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| | | | - Elena Carbone
- Department of General Psychology, University of Padova, Padova, 35131, Italy
| | - Austin Moon
- Department of Psychology, University of California, Riverside, Riverside CA, 92521, USA
| | - Michelle Evans
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor MI, 48109, USA
| | - Susanne M. Jaeggi
- School of Education, University of California, Irvine, Irvine CA, 92697, USA
| |
Collapse
|
14
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
15
|
Teixeira-Santos AC, Moreira CS, Pereira DR, Pinal D, Fregni F, Leite J, Carvalho S, Sampaio A. Working Memory Training Coupled With Transcranial Direct Current Stimulation in Older Adults: A Randomized Controlled Experiment. Front Aging Neurosci 2022; 14:827188. [PMID: 35493937 PMCID: PMC9039392 DOI: 10.3389/fnagi.2022.827188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) has been employed to boost working memory training (WMT) effects. Nevertheless, there is limited evidence on the efficacy of this combination in older adults. The present study is aimed to assess the delayed transfer effects of tDCS coupled with WMT in older adults in a 15-day follow-up. We explored if general cognitive ability, age, and educational level predicted the effects. Methods In this single-center, double-blind randomized sham-controlled experiment, 54 older adults were randomized into three groups: anodal-tDCS (atDCS)+WMT, sham-tDCS (stDCS)+WMT, and double-sham. Five sessions of tDCS (2 mA) were applied over the left dorsolateral prefrontal cortex (DLPFC). Far transfer was measured by Raven’s Advanced Progressive Matrices (RAPM), while the near transfer effects were assessed through Digit Span. A frequentist linear mixed model (LMM) was complemented by a Bayesian approach in data analysis. Results Working memory training improved dual n-back performance in both groups submitted to this intervention but only the group that received atDCS+WMT displayed a significant improvement from pretest to follow-up in transfer measures of reasoning (RAPM) and short-term memory (forward Digit Span). Near transfer improvements predicted gains in far transfer, demonstrating that the far transfer is due to an improvement in the trained construct of working memory. Age, formal education, and vocabulary score seem to predict the gains in reasoning. However, Bayesian results do not provide substantial evidence to support this claim. Conclusion This study will help to consolidate the incipient but auspicious field of cognitive training coupled with tDCS in healthy older adults. Our findings demonstrated that atDCS may potentialize WMT by promoting transfer effects in short-term memory and reasoning in older adults, which are observed especially at follow-up.
Collapse
Affiliation(s)
- Ana C. Teixeira-Santos
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-Belval, Luxembourg
- *Correspondence: Ana C. Teixeira-Santos,
| | - Célia S. Moreira
- Department of Mathematics, Centre for Mathematics of the University of Porto, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Diana R. Pereira
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| | - Jorge Leite
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Portucalense Institute for Human Development, Universidade Portucalense, Porto, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
- Adriana Sampaio,
| |
Collapse
|
16
|
Ghafoor U, Yang D, Hong KS. Neuromodulatory effects of HD-tACS/tDCS on the prefrontal cortex: A resting-state fNIRS-EEG study. IEEE J Biomed Health Inform 2021; 26:2192-2203. [PMID: 34757916 DOI: 10.1109/jbhi.2021.3127080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) can modulate human brain dynamics and cognition. However, these modalities have not been compared using multiple imaging techniques concurrently. In this study, 15 participants participated in an experiment involving two sessions with a gap of 10 d. In the first and second sessions, tACS and tDCS were administered to the participants. The anode for tDCS was positioned at point FpZ, and four cathodes were positioned over the left and right prefrontal cortices (PFCs) to target the frontal regions simultaneously. tDCS was administered with 1 mA current. tACS was supplied with a current of 1 mA (zero-to-peak value) at 10 Hz frequency. Stimulation was applied concomitantly with functional near-infrared spectroscopy and electroencephalography acquisitions in the resting-state. The statistical test showed significant alteration (p < 0.001) in the mean hemodynamic responses during and after tDCS and tACS periods. Between-group comparison revealed a significantly less (p < 0.001) change in the mean hemodynamic response caused by tACS compared with tDCS. As hypothesized, we successfully increased the hemodynamics in both left and right PFCs using tDCS and tACS. Moreover, a significant increase in alpha-band power (p < 0.01) and low beta band power (p < 0.05) due to tACS was observed after the stimulation period. Although tDCS is not frequency-specific, it increased but not significantly (p > 0.05) the powers of most bands including delta, theta, alpha, low beta, high beta, and gamma. These findings suggest that both hemispheres can be targeted and that both tACS and tDCS are equally effective in high-definition configurations, which may be of clinical relevance.
Collapse
|
17
|
Gebodh N, Esmaeilpour Z, Datta A, Bikson M. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 2021; 8:274. [PMID: 34707095 PMCID: PMC8551279 DOI: 10.1038/s41597-021-01046-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
We present a dataset combining human-participant high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data include within participant application of nine High-Definition tES (HD-tES) types, targeting three cortical regions (frontal, motor, parietal) with three stimulation waveforms (DC, 5 Hz, 30 Hz); more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics. Experiment 1 and 2 consisted of participants performing a continuous vigilance/alertness task over three 70-minute and two 70.5-minute sessions, respectively. Demographic data were collected, as well as self-reported wellness questionnaires before and after each session. Participants received all 9 stimulation types in Experiment 1, with each session including three stimulation types, with 4 trials per type. Participants received two stimulation types in Experiment 2, with 20 trials of a given stimulation type per session. Within-participant reliability was tested by repeating select sessions. This unique dataset supports a range of hypothesis testing including interactions of tDCS/tACS location and frequency, brain-state, physiology, fatigue, and cognitive performance.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA.
- Soterix Medical Inc., New York, USA.
| | - Zeinab Esmaeilpour
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| |
Collapse
|
18
|
Schmicker M, Menze I, Schneider C, Taubert M, Zaehle T, Mueller NG. Making the rich richer: Frontoparietal tDCS enhances transfer effects of a single-session distractor inhibition training on working memory in high capacity individuals but reduces them in low capacity individuals. Neuroimage 2021; 242:118438. [PMID: 34332042 DOI: 10.1016/j.neuroimage.2021.118438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
Working memory (WM) performance depends on the ability to extract relevant while inhibiting irrelevant information from entering the WM storage. This distractor inhibition ability can be trained and is known to induce transfer effects on WM performance. Here we asked whether transfer on WM can be boosted by transcranial direct current stimulation (tDCS) during a single-session distractor inhibition training. As WM performance is ascribed to the frontoparietal network, in which prefrontal areas are associated with inhibiting distractors and posterior parietal areas with storing information, we placed the anode over the prefrontal and the cathode over the posterior parietal cortex during a single-session distractor inhibition training. This network-oriented stimulation protocol should enhance inhibition processes by shifting the neural activity from posterior to prefrontal regions. WM improved after a single-session distractor inhibition training under verum stimulation but only in subjects with a high WM capacity. In subjects with a low WM capacity, verum tDCS reduced the transfer effects on WM. We assume tDCS to strengthen the frontostriatal pathway in individuals with a high WM capacity leading to efficient inhibition of distractors. In contrast, the cathodal stimulation of the posterior parietal cortex might have hindered usual compensational mechanism in low capacity subjects, i.e. maintaining also irrelevant information in memory. Our results thus stress the need to adjust tDCS protocols to well-founded knowledge about neural networks and individual cognitive differences.
Collapse
Affiliation(s)
- Marlen Schmicker
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Inga Menze
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christine Schneider
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Chair for Training Science, Faculty for Humanities, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Notger G Mueller
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
19
|
Transcranial Direct Current Stimulation (tDCS) over the Intraparietal Sulcus Does Not Influence Working Memory Performance. Psychol Belg 2021; 61:200-211. [PMID: 34277028 PMCID: PMC8269793 DOI: 10.5334/pb.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed results of the impact of transcranial direct current stimulation (tDCS) on working memory have been reported. Contrarily to previous studies who focused mainly on stimulating the dorsolateral prefrontal cortex, we modulated the left intraparietal sulcus (IPS) area which is considered to support attentional control aspects of working memory. Using a within-participant experimental design, participants completed three different conditions: anodal stimulation of the IPS, cathodal stimulation of the IPS, and sham stimulation of the IPS. Both visual and verbal working memory tasks were administered. In the visual task, participants had to memorize a random set of colored figures. In the verbal task, participants had to memorize a string of letters. Working memory load was manipulated in both tasks (six figures/letters vs. two figures/letters). No significant differences in accuracy or reaction time between the anodal, cathodal and sham conditions were found. Bayesian analysis supported evidence for an absence of effect. The results of the present study add to the growing body of contradictory evidence regarding the modulatory effects of single session tDCS on working memory performance.
Collapse
|
20
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Qiao Y, Hu Q, Xuan R, Guo Q, Ge Y, Chen H, Zhu C, Ji G, Yu F, Wang K, Zhang L. High-definition transcranial direct current stimulation facilitates emotional face processing in individuals with high autistic traits: A sham-controlled study. Neurosci Lett 2020; 738:135396. [PMID: 32961273 DOI: 10.1016/j.neulet.2020.135396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
The deficit in emotional face processing is a critical impairment for individuals with high autistic traits. The temporalparietal junction(TPJ) is considered to be closely related to emotional face processing. The aim of this study was to examine the effect of highdefinition transcranial direct current stimulation (HD-tDCS) over the right temporal-parietal junction (rTPJ) on facial emotion processing of individuals with high autistic traits using eye-tracking technology. Twenty-nine participants with high autistic traits completed an eyetracking task (including happy, fearful and neutral faces) before and after five consecutive days of stimulation (anodal or sham). Results showed that anodal HD-tDCS significantly increased fixation time and fixation count in the mouth area, but this effect was not found after the sham stimulation. Moreover, this increased effect of mouth recognition with anodal rTPJ HD-tDCS was shown in both happy and fearful faces, but no remarkable difference was found in neutral faces. These findings suggest that right TPJ anodal HD-tDCS can facilitate emotional face processing in individuals with high autistic traits.
Collapse
Affiliation(s)
- Yuxi Qiao
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Qian Hu
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Rongrong Xuan
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Qianhui Guo
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Yuqi Ge
- Department of First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Han Chen
- Department of First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Chunyan Zhu
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Gongjun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Fengqiong Yu
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China
| | - Kai Wang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China.
| | - Lei Zhang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
22
|
Zhu R, Luo Y, Wang Z, You X. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain Cogn 2020; 145:105630. [PMID: 33091807 DOI: 10.1016/j.bandc.2020.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
Verbal working memory (VWM) involves visual and auditory verbal information. Neuroimaging studies have shown significant modality effects for VWM in the left posterior parietal cortex (PPC). The left inferior frontal gyrus (IFG) is more sensitive to auditory and phonological information. However, much less is known about the effects of transcranial direct current stimulation (tDCS) over the left PPC and IFG on different sensory modalities of VWM (auditory vs. visual). Therefore, the present study aimed to examine whether tDCS over the left PPC and IFG affects visual and auditory VWM updating performance using a single-blind design. Fifty-one healthy participants were randomly assigned to three tDCS groups (left PPC/left IFG/sham) and were asked to complete both the visual and auditory letter 3-back tasks. Results showed that stimulating the left PPC enhanced the response efficiency of visual, but not auditory, VWM compared with the sham condition. Anodal stimulation to the left IFG improved the response efficiency of both tasks. The present study revealed a modality effect of VWM in the left PPC, while the left IFG had a causal role in VWM updating of different sensory modalities.
Collapse
Affiliation(s)
- Rongjuan Zhu
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yangmei Luo
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Ziyu Wang
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
23
|
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Front Psychol 2020; 11:570030. [PMID: 33154728 PMCID: PMC7591503 DOI: 10.3389/fpsyg.2020.570030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on working memory (WM) performance are promising but variable and contested. In particular, designs involving one session of tDCS are prone to variable outcomes with notable effects of individual differences. Some participants benefit, whereas others are impaired by the same tDCS protocol. In contrast, protocols including multiple sessions of tDCS more consistently report WM improvement across participants. The objective of the current project was to test whether differences in resting-state connectivity between stimulation site and two WM-relevant networks [default mode network (DMN) and central executive network (CEN)] could account for initial and longitudinal responses to tDCS. Healthy young adults completed 5 days of visual WM training during sham or anodal right frontal tDCS. The behavioral data showed that only the active tDCS group significantly improved over the visual WM training period. There were no significant correlations between initial response to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly correlated with WM training slope. These data underscore the importance of sampling in studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) may produce more consistent data in a single experiment with limited power, whereas heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization and translational value.
Collapse
Affiliation(s)
- Adelle G B Cerreta
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| | - Ryan E B Mruczek
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| | - Marian E Berryhill
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| |
Collapse
|
24
|
Vieira PG, Krause MR, Pack CC. tACS entrains neural activity while somatosensory input is blocked. PLoS Biol 2020; 18:e3000834. [PMID: 33001971 PMCID: PMC7553316 DOI: 10.1371/journal.pbio.3000834] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/13/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain’s endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons. Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. However, whereas one hypothesis is that tACS affects neural responses directly, another is that tACS affects neural activity indirectly, via sensory fibers in the skin. This study demonstrates that tACS directly affects neurons within the brain, rather than relying on a peripheral route.
Collapse
Affiliation(s)
- Pedro G. Vieira
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Matthew R. Krause
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Splittgerber M, Salvador R, Brauer H, Breitling-Ziegler C, Prehn-Kristensen A, Krauel K, Nowak R, Ruffini G, Moliadze V, Siniatchkin M. Individual Baseline Performance and Electrode Montage Impact on the Effects of Anodal tDCS Over the Left Dorsolateral Prefrontal Cortex. Front Hum Neurosci 2020; 14:349. [PMID: 33100989 PMCID: PMC7506510 DOI: 10.3389/fnhum.2020.00349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/04/2020] [Indexed: 11/15/2022] Open
Abstract
Anodal transcranial direct current stimulation (tDCS), applied over the left dorsolateral prefrontal cortex (lDLPFC), can produce significant effects on working memory (WM) performance and associated neurophysiological activity. However, results from previous studies are inconsistent and occasionally contradictory. This inconsistency may be attributed to methodological and individual differences during experiments. This study therefore investigated two hypotheses: (1) A multichannel-optimized montage was expected to be more effective than a classical bipolar montage, because of increased focality. (2) The subjects were expected to benefit differently from the stimulation depending on their initial task performance. In a sham-controlled crossover study, 24 healthy participants received bipolar, multichannel, and sham stimulation for 20 min in randomized order, targeting the lDLPFC while performing a 2-back WM task. After stimulation, electroencephalography (EEG) was recorded at rest and during 2-back and nontarget continuous performance task (CPT) performance. Bipolar and multichannel stimulations were both well tolerated and effectively blinded. We found no effect of stimulation on behavioral performance or neuronal oscillations comparing the classical bipolar or multichannel montage with sham stimulation. We did, however, find an interaction between stimulation and initial task performance. For multichannel stimulation, initially low-performing participants tended to improve their WM performance while initially high-performing participants tended to worsen their performance compared to sham stimulation. Both tDCS montages induced changes in neural oscillatory power, which correlated with baseline performance. The worse the participants’ initial WM performance was, the more task-related theta power was induced by multichannel and bipolar stimulation. The same effect was observed for alpha power in the nontarget task following multichannel stimulation. Notably, we were not able to show a superiority of multichannel stimulation compared to bipolar stimulation. Still, comparing both montages with sham stimulation, multichannel stimulation led to stronger effects than bipolar stimulation. The current study highlights the importance of investigating different parameters with potential influence on tDCS effects in combination. Our results demonstrate how individual differences in cognitive performance and electrode montages influence effects of tDCS on neuropsychological performance. These findings support the idea of an individualized and optimized stimulation setting, potentially leading to increased tDCS effects.
Collapse
Affiliation(s)
- Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | | | | | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center-Schleswig Holstein, Kiel University, Kiel, Germany.,Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, Bielefeld, Germany
| |
Collapse
|
26
|
Hofhansel L, Regenbogen C, Weidler C, Habel U, Raine A, Clemens B. Stimulating the criminal brain: Different effects of prefrontal tDCS in criminal offenders and controls. Brain Stimul 2020; 13:1117-1120. [PMID: 32387538 DOI: 10.1016/j.brs.2020.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany.
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany; Department of Clinical Neuroscience, Karolinska Institutet, Nobels Väg 9, 17177, Stockholm, Sweden
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
28
|
Zhou M, Chen X, Chen W, Bai X. Stimulating the left dorsolateral prefrontal cortex improves the memory representation of threats among individuals with high avoidant attachment. Behav Brain Res 2019; 373:112073. [PMID: 31326509 DOI: 10.1016/j.bbr.2019.112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Prior research has suggested that individuals with high avoidant attachment may demonstrate a vigilant attentional bias and selective attentional avoidance towards attachment-related negative information (threat information). Similarly, some evidence suggests that impairment of hot working memory (WM) or emotional-related WM occurs in highly avoidant individuals. Moreover, functional MRI studies have demonstrated that the less-activated left dorsolateral prefrontal cortex (L-DLPFC) is related to the impairment of cognitive control for threat stimuli in individuals with high avoidant attachment. Therefore, in the present study, the causal role of the L-DLPFC on hot WM presentation was investigated by the high-definition transcranial direct current stimulation (HD-tDCS) technique, and cognitive control for internal mental representations in WM was measured by the Internal Shift Task (IST). The results showed that the highly avoidant participants performed faster on the emotional IST than low avoidant participants in the sham condition. In the emotional IST, highly avoidant participants were slower after receiving anodal HD-tDCS than in the sham condition. Moreover, the switching cost of the emotional IST was significantly smaller in the highly avoidant group than low avoidant group under the sham HD-tDCS condition. Interestingly, in the emotional IST, the switching cost of highly avoidant individuals was significantly greater in the anodal stimulation group than the sham stimulation group. Conversely, the switching cost of low avoidant individuals was significantly smaller with anodal stimulation than for sham stimulation. The findings indicate that anodal HD-tDCS over the L-DLPFC can effectively enhance the ability of memory representation towards threat information in highly avoidant individuals. This study extends causal research by showing that the L-DLPFC is an important brain region for hot WM representations.
Collapse
Affiliation(s)
- Mi Zhou
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Xu Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China.
| | - Wanting Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| | - Xujia Bai
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Effects of High-Definition Transcranial Direct Current Stimulation and Theta Burst Stimulation for Modulating the Posterior Parietal Cortex. J Int Neuropsychol Soc 2019; 25:972-984. [PMID: 31397255 DOI: 10.1017/s1355617719000766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC). METHODS Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test). RESULTS The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen's d) was d = .32 for iTBS (p < .001), .21 for ProcTBS (p = .01) and .15 for HD-tDCS (p = .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found. CONCLUSIONS The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.
Collapse
|
30
|
Bourbon-Teles J, Soto D. Assessing the Role of the Left Dorsal Frontal Cortex in Working Memory Guidance: Attentional or Mnemonic? A Neurostimulation Study. Neuroscience 2019; 411:140-149. [DOI: 10.1016/j.neuroscience.2019.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022]
|
31
|
Besson P, Muthalib M, Dray G, Rothwell J, Perrey S. Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Res 2019; 1710:181-187. [DOI: 10.1016/j.brainres.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 01/01/2019] [Indexed: 01/18/2023]
|
32
|
Chen W, Zhang S, Turel O, Peng Y, Chen H, He Q. Sex-based differences in right dorsolateral prefrontal cortex roles in fairness norm compliance. Behav Brain Res 2019; 361:104-112. [DOI: 10.1016/j.bbr.2018.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
|
33
|
Ke Y, Wang N, Du J, Kong L, Liu S, Xu M, An X, Ming D. The Effects of Transcranial Direct Current Stimulation (tDCS) on Working Memory Training in Healthy Young Adults. Front Hum Neurosci 2019; 13:19. [PMID: 30774590 PMCID: PMC6367257 DOI: 10.3389/fnhum.2019.00019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
Working memory (WM) is a fundamental cognitive ability to support complex thought, but it is limited in capacity. WM training has shown the potential benefit for those in need of a higher WM ability. Many studies have shown the potential of transcranial direct current stimulation (tDCS) to transiently enhance WM performance by delivering a low current to the brain cortex of interest, via electrodes on the scalp. tDCS has also been revealed as a promising intervention to augment WM training in a few studies. However, those few tDCS-paired WM training studies, focused more on the effect of tDCS on WM enhancement and its transferability after training and paid less attention to the variation of cognitive performance during the training procedure. The current study attempted to explore the effect of tDCS on the variation of performance, during WM training, in healthy young adults. All the participants received WM training with the load-adaptive verbal N-back task, for 5 days. During the training procedure, active/sham anodal high-definition tDCS (HD-tDCS) was used to stimulate the left dorsolateral prefrontal cortex (DLPFC). To examine the training effect, pre- and post-tests were performed, respectively, 1 day before and after the training sessions. At the beginning of each training session, stable-load WM tasks were performed, to examine the performance variation during training. Compared to the sham stimulation, higher learning rates of performance metrics during the training procedure were found when WM training was combined with active anodal HD-tDCS. The performance improvements (post–pre) of the active group, were also found to be higher than those of the sham group and were transferred to a similar untrained WM task. Further analysis revealed a negative relationship between the training improvements and the baseline performance. These findings show the potential that tDCS may be leveraged as an intervention to facilitate WM training, for those in need of a higher WM ability.
Collapse
Affiliation(s)
- Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ningci Wang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Jiale Du
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Linghan Kong
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Ulrich M, Niemann J, Boland M, Kammer T, Niemann F, Grön G. The neural correlates of flow experience explored with transcranial direct current stimulation. Exp Brain Res 2018; 236:3223-3237. [DOI: 10.1007/s00221-018-5378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
|
35
|
Jeon DW, Jung DU, Kim SJ, Shim JC, Moon JJ, Seo YS, Jung SS, Seo BJ, Kim JE, Oh M, Kim YN. Adjunct transcranial direct current stimulation improves cognitive function in patients with schizophrenia: A double-blind 12-week study. Schizophr Res 2018; 197:378-385. [PMID: 30955702 DOI: 10.1016/j.schres.2017.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Cognitive impairment is a common symptom of schizophrenia that has significant effects on quality of life and the activities of daily living. The present study examined the ability of transcranial direct current stimulation (tDCS) to improve cognitive function and clinical symptoms in patients with schizophrenia. METHODS Fifty-six patients with schizophrenia were randomized to real-tDCS and sham-tDCS groups. The participants were stable for a period of 3months before study enrollment. Each group received 30min of active 2-mA tDCS or sham stimulation over the left dorsolateral prefrontal cortex (anode F3, cathode F4) once per day for 10 consecutive weekdays. The Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB) and Wisconsin Card Sorting Test (WCST) were used to evaluate cognitive function, and the Positive and Negative Syndrome Scale (PANSS), Clinical Global Impression-Schizophrenia scale (CGI-SCH), and Calgary Depression Scale for Schizophrenia (CDSS) were used to evaluate symptoms at baseline, after 10 sessions, and at 3-month follow-up. RESULTS There was a significant time×group interaction, indicating that MCCB working memory (P=0.008) and overall scores (P=0.031) improved over time in the real-tDCS group compared to the sham-tDCS group. There was also a significant time×group interaction for depressive symptoms as evaluated by the CGI-SCH, which decreased over time in the real-tDCS group (P=0.041). tDCS treatment combined with antipsychotic medication was generally well-tolerated and safe. CONCLUSIONS Adjunct tDCS treatment is safe and effective for improving cognitive status in patients with schizophrenia.
Collapse
Affiliation(s)
- Dong-Wook Jeon
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Do-Un Jung
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea.
| | - Sung-Jin Kim
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Joo-Cheol Shim
- Shim Joo Cheol Psychiatry Clinic, Busan, Republic of Korea
| | - Jung-Joon Moon
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Young-Soo Seo
- Department of Psychiatry, Sharing and Happiness Hospital, Busan, Republic of Korea
| | - Sung-Soo Jung
- Department of Psychiatry, Sharing and Happiness Hospital, Busan, Republic of Korea
| | - Beom-Joo Seo
- Department of Psychiatry, Busan Metropolitan Mental Hospital, Busan, Republic of Korea
| | - Jeong-Eun Kim
- Department of Psychiatry, Busan Metropolitan Mental Hospital, Busan, Republic of Korea
| | - Minkyung Oh
- Department of Pharmacology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - You-Na Kim
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| |
Collapse
|
36
|
Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG, Deng ZD, Dmochowski J, Edwards DJ, Frohlich F, Kappenman ES, Lim KO, Loo C, Mantovani A, McMullen DP, Parra LC, Pearson M, Richardson JD, Rumsey JM, Sehatpour P, Sommers D, Unal G, Wassermann EM, Woods AJ, Lisanby SH. Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul 2018; 11:465-480. [PMID: 29398575 PMCID: PMC5997279 DOI: 10.1016/j.brs.2017.12.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. OBJECTIVE This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. METHODS The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. RESULTS Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. CONCLUSIONS These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Leigh E Charvet
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Zhi-De Deng
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Dylan J Edwards
- Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Rehabilitation and Research, Burke-Cornell Medical Research Facility, White Plains, New York and School of Medicine and Health Sciences, Edith Cowan University, Perth, Australia
| | - Flavio Frohlich
- Department of Psychiatry, Cell Biology and Physiology, Biomedical Engineering, and Neurology, Carolina Center for Neurostimulation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Emily S Kappenman
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis Veterans Administration Health Care System, and Defense Veterans Brain Injury Center, Minneapolis, MN, United States
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Antonio Mantovani
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, New York, NY, United States
| | - David P McMullen
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Michele Pearson
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Judith M Rumsey
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States.
| | - Pejman Sehatpour
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - David Sommers
- Scientific Review Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of the City University of New York, United States
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah H Lisanby
- Division of Translational Research, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Westwood SJ, Romani C. Null Effects on Working Memory and Verbal Fluency Tasks When Applying Anodal tDCS to the Inferior Frontal Gyrus of Healthy Participants. Front Neurosci 2018; 12:166. [PMID: 29615855 PMCID: PMC5867342 DOI: 10.3389/fnins.2018.00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/01/2018] [Indexed: 01/22/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a technique used to modify cognition by modulating underlying cortical excitability via weak electric current applied through the scalp. Although many studies have reported positive effects with tDCS, a number of recent studies highlight that tDCS effects can be small and difficult to reproduce. This is especially the case when attempting to modulate performance using single applications of tDCS in healthy participants. Possible reasons may be that optimal stimulation parameters have yet to be identified, and that individual variation in cortical activity and/or level of ability confound outcomes. To address these points, we carried out a series of experiments in which we attempted to modulate performance in fluency and working memory probe tasks using stimulation parameters which have been associated with positive outcomes: we targeted the left inferior frontal gyrus (LIFG) and compared performance when applying a 1.5 mA anodal current for 25 min and with sham stimulation. There is evidence that LIFG plays a role in these tasks and previous studies have found positive effects of stimulation. We also compared our experimental group (N = 19–20) with a control group receiving no stimulation (n = 24). More importantly, we also considered effects on subgroups subdivided according to memory span as well as to more direct measures of executive function abilities and motivational levels. We found no systematic effect of stimulation. Our findings are in line with a growing body of evidence that tDCS produces unreliable effects. We acknowledge that our findings speak to the conditions we investigated, and that alternative protocols (e.g., multiple sessions, clinical samples, and different stimulation polarities) may be more effective. We encourage further research to explore optimal conditions for tDCS efficacy, given the potential benefits that this technique poses for understanding and enhancing cognition.
Collapse
Affiliation(s)
- Samuel J Westwood
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| | - Cristina Romani
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
38
|
Guo H, Zhang Z, Da S, Sheng X, Zhang X. High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART). Brain Behav 2018; 8:e00884. [PMID: 29484257 PMCID: PMC5822580 DOI: 10.1002/brb3.884] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Studies on risk preferences have long been of great concern and have examined the neural basis underlying risk-based decision making. However, studies using conventional transcranial direct current stimulation (tDCS) revealed that bilateral stimulation could change risk propensity with limited evidence of precisely focalized unilateral high-definition transcranial direct current stimulation (HD-tDCS). The aim of this experiment was to investigate the effect of HD-tDCS focalizing the left dorsal lateral prefrontal cortex (DLPFC) on risk-taking behavior during the Balloon Analogue Risk Task (BART). Methods This study was designed as a between-subject, single-blind, sham-controlled experiment. University students were randomly assigned to three groups: the anodal group (F3 anode, AF3, F1, F5, FC3 returned), the cathodal group (F3 cathodal, AF3, F1, F5, FC3 returned) and the sham group. Subsequently, 1.5-mA 20-min HD-tDCS was applied during the BART, and the Positive Affect and Negative Affect Scale (PANAS), the Sensation Seeking Scale-5 (SSS-5), and the Behavioral Inhibition System and Behavioral Approach System scale (BIS/BAS) were measured as control variables. Results The cathodal group earned less total money than the sham group, and no significant difference was observed between the anodal group and the sham group. Conclusions These results showed that, to some extent, focalized unilateral cathodal HD-tDCS on left DLPFC could change performance during risky tasks and diminish risky decision making. Further studies are needed to investigate the dose effect and electrode distribution of HD-tDCS during risky tasks and examine synchronous brain activity to show the neural basis.
Collapse
Affiliation(s)
- Heng Guo
- Beijing Key Laboratory of Applied Experimental PsychologyNational Demonstration Center for Experimental Psychology EducationFaculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Zhuoran Zhang
- Beijing Key Laboratory of Applied Experimental PsychologyNational Demonstration Center for Experimental Psychology EducationFaculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Shu Da
- Beijing Key Laboratory of Applied Experimental PsychologyNational Demonstration Center for Experimental Psychology EducationFaculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Xiaotian Sheng
- Beijing Key Laboratory of Applied Experimental PsychologyNational Demonstration Center for Experimental Psychology EducationFaculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Xichao Zhang
- Beijing Key Laboratory of Applied Experimental PsychologyNational Demonstration Center for Experimental Psychology EducationFaculty of PsychologyBeijing Normal UniversityBeijingChina
| |
Collapse
|
39
|
Learmonth G, Felisatti F, Siriwardena N, Checketts M, Benwell CSY, Märker G, Thut G, Harvey M. No Interaction between tDCS Current Strength and Baseline Performance: A Conceptual Replication. Front Neurosci 2017; 11:664. [PMID: 29249932 PMCID: PMC5717015 DOI: 10.3389/fnins.2017.00664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field.
Collapse
Affiliation(s)
- Gemma Learmonth
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Matthew Checketts
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gesine Märker
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage 2017; 152:142-157. [PMID: 28274831 DOI: 10.1016/j.neuroimage.2017.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a well-recognised neuromodulatory technology which has been shown to induce short-lasting changes in motor-cortical excitability. The recent and rapid expansion of tDCS into the cognitive domain, however, necessitates deeper mechanistic understanding of its neurophysiological effects over non-motor brain regions. The present study utilised transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to probe the immediate and longer-term effects of both a bipolar (BP-tDCS) and more focal 4×1 High-Definition tDCS (HD-tDCS) montage applied over the left DLPFC on TMS-evoked potentials (TEPs) and oscillations in 19 healthy adult participants. 2-back working memory (WM) performance was also assessed as a marker of cognitive function. Region of interest (ROI) analyses taken from the F1 electrode directly adjacent to the stimulation site revealed increased P60 TEP amplitudes at this location 5min following BP-tDCS and 30min following HD-tDCS. Further global cluster based analyses of all scalp electrodes revealed widespread neuromodulatory changes following HD-tDCS, but not BP-tDCS, both five and 30min after stimulation, with reductions also detected in both beta and gamma oscillatory power over parieto-occipital channels 30min after stimulation. No significant changes in WM performance were observed following either HD-tDCS or BP-tDCS. This study highlights the capacity for single-session prefrontal anodal tDCS montages to modulate neurophysiological processes, as assessed with TMS-EEG.
Collapse
Affiliation(s)
- Aron T Hill
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia.
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| |
Collapse
|
41
|
Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM, Jonides J. Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training. J Cogn Neurosci 2017; 29:1498-1508. [PMID: 28253083 DOI: 10.1162/jocn_a_01115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419-1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.
Collapse
Affiliation(s)
| | - Jacky Au
- University of California, Irvine.,MIND Research Institute, Irvine, CA
| | | | | | | | | | | |
Collapse
|
42
|
Hsu TY, Juan CH, Tseng P. Individual Differences and State-Dependent Responses in Transcranial Direct Current Stimulation. Front Hum Neurosci 2016; 10:643. [PMID: 28066214 PMCID: PMC5174116 DOI: 10.3389/fnhum.2016.00643] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been extensively used to examine whether neural activities can be selectively increased or decreased with manipulations of current polarity. Recently, the field has reevaluated the traditional anodal-increase and cathodal-decrease assumption due to the growing number of mixed findings that report the effects of the opposite directions. Therefore, the directionality of tDCS polarities and how it affects each individual still remain unclear. In this study, we used a visual working memory (VWM) paradigm and systematically manipulated tDCS polarities, types of different independent baseline measures, and task difficulty to investigate how these factors interact to determine the outcome effect of tDCS. We observed that only low-performers, as defined by their no-tDCS corsi block tapping (CBT) performance, persistently showed a decrement in VWM performance after anodal stimulation, whereas no tDCS effect was found when participants were divided by their performance in digit span. In addition, only the optimal level of task difficulty revealed any significant tDCS effect. All these findings were consistent across different blocks, suggesting that the tDCS effect was stable across a short period of time. Lastly, there was a high degree of intra-individual consistency in one’s responsiveness to tDCS, namely that participants who showed positive or negative effect to anodal stimulation are also more likely to show the same direction of effects for cathodal stimulation. Together, these findings imply that tDCS effect is interactive and state dependent: task difficulty and consistent individual differences modulate one’s responsiveness to tDCS, while researchers’ choices of independent behavioral baseline measures can also critically affect how the effect of tDCS is evaluated. These factors together are likely the key contributors to the wide range of “noises” in tDCS effects between individuals, between stimulation protocols, and between different studies in the literature. Future studies using tDCS, and possibly tACS, should take such state-dependent condition in tDCS responsiveness into account.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Research Center of Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical UniversityTaipei, Taiwan; Shuang-Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan; Graduate Institute of Health and Biotechnology Law, Taipei Medical UniversityTaipei, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University Taoyuan, Taiwan
| | - Philip Tseng
- Research Center of Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical UniversityTaipei, Taiwan; Shuang-Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
43
|
Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty. Brain Stimul 2016; 10:231-241. [PMID: 27876306 DOI: 10.1016/j.brs.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The ability to monitor one's own memory is an important feature of normal memory and is an aspect of 'metamemory'. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. OBJECTIVE/HYPOTHESIS We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. METHODS Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a 'feeling-of-knowing' metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. RESULTS HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. CONCLUSION (S) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and 'metamemory' tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation.
Collapse
|