1
|
Xiang X, Jiang X, Lin H, Yu M, Wu L, Zhou R. Acylhydrazone Derivative A5 Promotes Neurogenesis by Up-Regulating Neurogenesis-Related Genes and Inhibiting Cell-Cycle Progression in Neural Stem/Progenitor Cells. Molecules 2024; 29:3330. [PMID: 39064908 PMCID: PMC11279415 DOI: 10.3390/molecules29143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Adult neurogenesis involves the generation of functional neurons from neural progenitor cells, which have the potential to complement and restore damaged neurons and neural circuits. Therefore, the development of drugs that stimulate neurogenesis represents a promising strategy in stem cell therapy and neural regeneration, greatly facilitating the reconstruction of neural circuits in cases of neurodegeneration and brain injury. Our study reveals that compound A5, previously designed and synthesized by our team, exhibits remarkable neuritogenic activities, effectively inducing neurogenesis in neural stem/progenitor cells (NSPCs). Subsequently, transcriptome analysis using high-throughput Illumina RNA-seq technology was performed to further elucidate the underlying molecular mechanisms by which Compound A5 promotes neurogenesis. Notably, comparative transcriptome analysis showed that the up-regulated genes were mainly associated with neurogenesis, and the down-regulated genes were mainly concerned with cell cycle progression. Furthermore, we confirmed that Compound A5 significantly affected the expression of transcription factors related to neurogenesis and cell cycle regulatory proteins. Collectively, these findings identify a new compound with neurogenic activity and may provide insights into drug discovery for neural repair and regeneration.
Collapse
Affiliation(s)
- Xiaoliang Xiang
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (L.W.); (R.Z.)
| | - Xia Jiang
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (L.W.); (R.Z.)
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China;
| | - Hongwei Lin
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China;
| | - Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510180, China;
| | - Liming Wu
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (L.W.); (R.Z.)
| | - Rong Zhou
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (L.W.); (R.Z.)
| |
Collapse
|
2
|
Jiang X, Hu Z, Qiu X, Wu L, Zhou R, Yang Y, Xiang X. Poria cocos (Schw.) Wolf, a Traditional Chinese Edible Medicinal Herb, Promotes Neuronal Differentiation, and the Morphological Maturation of Newborn Neurons in Neural Stem/Progenitor Cells. Molecules 2023; 28:7480. [PMID: 38005201 PMCID: PMC10672746 DOI: 10.3390/molecules28227480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Neurogenesis in the adult brain comprises the entire set of events of neuronal development. It begins with the division of precursor cells to form a mature, integrated, and functioning neuronal network. Adult neurogenesis is believed to play an important role in animals' cognitive abilities, including learning and memory. In the present study, significant neuronal differentiation-promoting activity of 80% (v/v) ethanol extract of P. cocos (EEPC) was found in Neuro-2a cells and mouse cortical neural stem/progenitor cells (NSPCs). Subsequently, a total of 97 compounds in EEPC were identified by UHPLC-Q-Exactive-MS/MS. Among them, four major compounds-Adenosine; Choline; Ethyl palmitoleate; and L-(-)-arabinitol-were further studied for their neuronal differentiation-promoting activity. Of which, choline has the most significant neuronal differentiation-promoting activity, indicating that choline, as the main bioactive compound in P. cocos, may have a positive effect on learning and memory functions. Compared with similar research literature, this is the first time that the neuronal differentiation-promoting effects of P. cocos extract have been studied.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
| | - Xiaoyan Qiu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
| | - Liming Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
| | - Rong Zhou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
| | - Yaoyao Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
| | - Xiaoliang Xiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; (X.J.); (Z.H.); (X.Q.); (L.W.); (R.Z.); (Y.Y.)
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua University, Huaihua 418008, China
| |
Collapse
|
3
|
Xiang X, Jiang X, Lu X. Regulation of neural stem cell self-renewal, proliferation and differentiation by the RhoA guanine nucleotide exchange factor Arhgef 1. Gene 2023; 863:147306. [PMID: 36813057 DOI: 10.1016/j.gene.2023.147306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The role of the Arhgef1 as a RhoA-specific guanine nucleotide exchange factor has been widely investigated in the immune system. Our previous findings reveal that Arhgef 1 is highly expressed in neural stem cells (NSCs) and controls the process of neurite formation. However, the functional role of Arhgef 1 in NSCs remains poorly understood. In order to investigate the role of Arhgef 1 in NSCs, Arhgef 1 expression in NSCs was reduced by using lentivirus-mediated short hairpin RNA interference. Our results indicate that down-regulated expression of Arhgef 1 reduced the self-renewal, proliferation capacity of NSCs and affect cell fate determination. In addition, the comparative transcriptome analysis from RNA-seq data determines the mechanisms of deficits in Arhgef 1 knockdown NSCs. Altogether, our present studies show that Arhgef 1 down-regulation leads to interruption of the cell cycle procession. The importance of Arhgef 1 for regulating self-renewal, proliferation and differentiation in NSCs is reported for the first time.
Collapse
Affiliation(s)
- Xiaoliang Xiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province,College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China.
| | - Xia Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province,College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China
| | - Xiaomin Lu
- Department of Pathology, Hunan University of Medicine Huaihua, Hunan 418000, China
| |
Collapse
|
4
|
Wegrzyn D, Zokol J, Faissner A. Vav3-Deficient Astrocytes Enhance the Dendritic Development of Hippocampal Neurons in an Indirect Co-culture System. Front Cell Neurosci 2022; 15:817277. [PMID: 35237130 PMCID: PMC8882586 DOI: 10.3389/fncel.2021.817277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Vav proteins belong to the class of guanine nucleotide exchange factors (GEFs) that catalyze the exchange of guanosine diphosphate (GDP) by guanosine triphosphate (GTP) on their target proteins. Here, especially the members of the small GTPase family, Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 homolog (Cdc42) can be brought into an activated state by the catalytic activity of Vav-GEFs. In the central nervous system (CNS) of rodents Vav3 shows the strongest expression pattern in comparison to Vav2 and Vav1, which is restricted to the hematopoietic system. Several studies revealed an important role of Vav3 for the elongation and branching of neurites. However, little is known about the function of Vav3 for other cell types of the CNS, like astrocytes. Therefore, the following study analyzed the effects of a Vav3 knockout on several astrocytic parameters as well as the influence of Vav3-deficient astrocytes on the dendritic development of cultured neurons. For this purpose, an indirect co-culture system of native hippocampal neurons and Vav3-deficient cortical astrocytes was used. Interestingly, neurons cultured in an indirect contact with Vav3-deficient astrocytes showed a significant increase in the dendritic complexity and length after 12 and 17 days in vitro (DIV). Furthermore, Vav3-deficient astrocytes showed an enhanced regeneration in the scratch wound heal assay as well as an altered profile of released cytokines with a complete lack of CXCL11, reduced levels of IL-6 and an increased release of CCL5. Based on these observations, we suppose that Vav3 plays an important role for the development of dendrites by regulating the expression and the release of neurotrophic factors and cytokines in astrocytes.
Collapse
|
5
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Jiang X, Lv J, Zhou R, Xiang X. The effect of cofilin 1 expression and phosphorylation dynamics on cell fate determination and neuron maturation in neural stem cells. Neurosci Lett 2021; 764:136292. [PMID: 34655709 DOI: 10.1016/j.neulet.2021.136292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 11/27/2022]
Abstract
Previous studies showed that neural stem cells (NSCs) have an ability to differentiate into neurons, astrocytes and oligodendrocytes. However, the mechanisms that govern the fate of neural stem cell determination have not yet been fully clarified. In this study, we demonstrated that expression and activation of cofilin 1, a F-actin depolymerizing factor, are significantly changed during the development of brain, cortex or NSCs. Using Neuro-2a cells as a model, we found that overexpression of cofilin 1 significantly inhibit the cell differentiation and neurite outgrowth, while inhibition of intracellular cofilin 1 phosphorylation was significantly promoted. In cultured NSCs, we observed that cofilin 1 reduced the proportion of neurons derived from NSC due to inhibition of the phosphorylation, while the morphological maturation of neurons was promoted. Together, our findings revealed that cofilin 1 plays dynamic regulatory role on NSC cell fate determination and enhance neuronal maturation through regulating its activity and expression.
Collapse
Affiliation(s)
- Xia Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China; School of Innovation and Entrepreneurship, Huaihua University, Huaihua 418008, China
| | - Jianyi Lv
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China
| | - Rong Zhou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China
| | - Xiaoliang Xiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua 418008, China.
| |
Collapse
|
7
|
Wilson E, Rudisill T, Kirk B, Johnson C, Kemper P, Newell-Litwa K. Cytoskeletal regulation of synaptogenesis in a model of human fetal brain development. J Neurosci Res 2020; 98:2148-2165. [PMID: 32713041 DOI: 10.1002/jnr.24692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Excitatory synapse formation begins in mid-fetal gestation. However, due to our inability to image fetal synaptogenesis, the initial formation of synapses remains understudied. The recent development of human fetal brain spheroids provides access to this critical period of synapse formation. Using human neurons and brain spheroids, we address how altered actin regulation impacts the formation of excitatory synapses during fetal brain development. Prior to synapse formation, inhibition of RhoA kinase (ROCK) signaling promotes neurite elongation and branching. In addition to increasing neural complexity, ROCK inhibition increases the length of protrusions along the neurite, ultimately promoting excitatory synapse formation in human cortical brain spheroids. A corresponding increase in Rac1-driven actin polymerization drives this increase in excitatory synaptogenesis. Using STORM super-resolution microscopy, we demonstrate that actomyosin regulators, including the Rac1 regulator, α-PIX, and the RhoA regulator, p115-RhoGEF, localize to nascent excitatory synapses, where they preferentially localize to postsynaptic compartments. These results demonstrate that coordinated RhoGTPase activities underlie the initial formation of excitatory synapses and identify critical cytoskeletal regulators of early synaptogenic events.
Collapse
Affiliation(s)
- Emily Wilson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Taylor Rudisill
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Brenna Kirk
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Colin Johnson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Paige Kemper
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Karen Newell-Litwa
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| |
Collapse
|
8
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
9
|
Bisbal M, Remedi M, Quassollo G, Cáceres A, Sanchez M. Rotenone inhibits axonogenesis via an Lfc/RhoA/
ROCK
pathway in cultured hippocampal neurons. J Neurochem 2018; 146:570-584. [DOI: 10.1111/jnc.14547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Mariano Bisbal
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Remedi
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Alfredo Cáceres
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| | - Mónica Sanchez
- Laboratory of Neurobiology INIMEC‐CONICET Córdoba Argentina
- Universidad Nacional de Córdoba Córdoba Argentina
- Instituto Universitario Ciencias Biomédicas Córdoba Córdoba Argentina
| |
Collapse
|
10
|
Liao Y, Zhuang X, Huang X, Peng Y, Ma X, Huang ZX, Liu F, Xu J, Wang Y, Chen WM, Ye WC, Shi L. A Bivalent Securinine Compound SN3-L6 Induces Neuronal Differentiation via Translational Upregulation of Neurogenic Transcription Factors. Front Pharmacol 2018; 9:290. [PMID: 29674963 PMCID: PMC5895701 DOI: 10.3389/fphar.2018.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Developing therapeutic approaches that target neuronal differentiation will be greatly beneficial for the regeneration of neurons and synaptic networks in neurological diseases. Protein synthesis (mRNA translation) has recently been shown to regulate neurogenesis of neural stem/progenitor cells (NSPCs). However, it has remained unknown whether engineering translational machinery is a valid approach for manipulating neuronal differentiation. The present study identifies that a bivalent securinine compound SN3-L6, previously designed and synthesized by our group, induces potent neuronal differentiation through a novel translation-dependent mechanism. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis in Neuro-2a progenitor cells revealed that SN3-L6 upregulated a group of neurogenic transcription regulators, and also upregulated proteins involved in RNA processing, translation, and protein metabolism. Notably, puromycylation and metabolic labeling of newly synthesized proteins demonstrated that SN3-L6 induced rapid and robust activation of general mRNA translation. Importantly, mRNAs of the proneural transcription factors Foxp1, Foxp4, Hsf1, and Erf were among the targets that were translationally upregulated by SN3-L6. Either inhibition of translation or knockdown of these transcription factors blocked SN3-L6 activity. We finally confirmed that protein synthesis of a same set of transcription factors was upregulated in primary cortical NPCs. These findings together identify a new compound for translational activation and neuronal differentiation, and provide compelling evidence that reprogramming transcriptional regulation network at translational levels is a promising strategy for engineering NSPCs.
Collapse
Affiliation(s)
- Yumei Liao
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoji Zhuang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojie Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuanyue Ma
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Feng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wen-Cai Ye
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|