1
|
Nakayama T, Singh AK, Fukutomi T, Uchida N, Terao Y, Hamada H, Muraoka T, Muthusamy E, Kundu TK, Akagawa K. Activator of KAT3 histone acetyltransferase family ameliorates a neurodevelopmental disorder phenotype in the syntaxin 1A ablated mouse model. Cell Rep 2024; 43:114101. [PMID: 38613786 DOI: 10.1016/j.celrep.2024.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Syntaxin-1A (stx1a) repression causes a neurodevelopmental disorder phenotype, low latent inhibition (LI) behavior, by disrupting 5-hydroxytryptaminergic (5-HTergic) systems. Herein, we discovered that lysine acetyltransferase (KAT) 3B increases stx1a neuronal transcription and TTK21, a KAT3 activator, induces stx1a transcription and 5-HT release in vitro. Furthermore, glucose-derived CSP-TTK21 could restore decreased stx1a expression, 5-HTergic systems in the brain, and low LI in stx1a (+/-) mice by crossing the blood-brain barrier, whereas the KAT3 inhibitor suppresses stx1a expression, 5-HTergic systems, and LI behaviors in wild-type mice. Finally, in wild-type and stx1a (-/-) mice treated with IKK inhibitors and CSP-TTK21, respectively, we show that KAT3 activator-induced LI improvement is a direct consequence of KAT3B-stx1a pathway, not a side effect. In conclusion, KAT3B can positively regulate stx1a transcription in neurons, and increasing neuronal stx1a expression and 5-HTergic systems by a KAT3 activator consequently improves the low LI behavior in the stx1a ablation mouse model.
Collapse
Affiliation(s)
- Takahiro Nakayama
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | - Akash K Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Hiroki Hamada
- Department of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Eswaramoorthy Muthusamy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| |
Collapse
|
2
|
Luppe J, Sticht H, Lecoquierre F, Goldenberg A, Gorman KM, Molloy B, Agolini E, Novelli A, Briuglia S, Kuismin O, Marcelis C, Vitobello A, Denommé-Pichon AS, Julia S, Lemke JR, Abou Jamra R, Platzer K. Heterozygous and homozygous variants in STX1A cause a neurodevelopmental disorder with or without epilepsy. Eur J Hum Genet 2023; 31:345-352. [PMID: 36564538 PMCID: PMC9995539 DOI: 10.1038/s41431-022-01269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.
Collapse
Affiliation(s)
- Johannes Luppe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Inserm U1245, FHU G4 Génomique, F-76000, Rouen, France
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Outi Kuismin
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Antonio Vitobello
- Inserm UMR1231 GAD, University of Burgundy-Franche Comté, Dijon, France
| | | | - Sophie Julia
- Federative Institute of Biology, CHU de Toulouse, Toulouse, France
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
The role of Sp3 transcription factor in syntaxin 1A gene silencing. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zhou J, Zheng Y, Liang G, Xu X, Liu J, Chen S, Ge T, Wen P, Zhang Y, Liu X, Zhuang J, Wu Y, Chen J. Atypical deletion of Williams-Beuren syndrome reveals the mechanism of neurodevelopmental disorders. BMC Med Genomics 2022; 15:79. [PMID: 35379245 PMCID: PMC8981662 DOI: 10.1186/s12920-022-01227-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Genes associated with specific neurocognitive phenotypes in Williams–Beuren syndrome are still controversially discussed. This study identified nine patients with atypical deletions out of 111 patients with Williams–Beuren syndrome; these deletions included seven smaller deletions and two larger deletions. One patient had normal neurodevelopment with a deletion of genes on the distal side of the Williams–Beuren syndrome chromosomal region, including GTF2I and GTF2IRD1. However, another patient retained these genes but showed neurodevelopmental abnormalities. By comparing the genotypes and phenotypes of patients with typical and atypical deletions and previous reports in the literature, we hypothesize that the BAZ1B, FZD9, and STX1A genes may play an important role in the neurodevelopment of patients with WBS.
Collapse
Affiliation(s)
- Jianrong Zhou
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Zheng
- Department of Nutrition, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiying Liang
- Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jian Liu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tongkai Ge
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengju Wen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zhang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Department of Physical Therapy and Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jimei Chen
- Department of Cardiovascular Surgery of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Fujiwara T, Kofuji T, Akagawa K. Disturbance of the reciprocal-interaction between the OXTergic and DAergic systems in the CNS causes atypical social behavior in syntaxin 1A knockout mice. Behav Brain Res 2021; 413:113447. [PMID: 34224763 DOI: 10.1016/j.bbr.2021.113447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Several studies have shown that oxytocin (OXT) modulates social behavior. Similarly, monoamines such as dopamine (DA) play a role in regulating social behavior. Previous studies have demonstrated that the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) protein syntaxin 1A (STX1A) regulates the secretion of OXT and monoamines, and that STX1A gene knockout (STX1A KO) mice exhibit atypical social behavior, such as deficient social recognition, due to reduced OXT release. In this study, we analyzed the neural mechanism regulating social behavior by OXT and/or DA using STX1A KO mice as a model animal. We found that OXT directly induced DA release from cultured DA neurons through OXT and V1a receptors. In STX1A KO mice, the atypical social behavior was partially improved by OXT administration, which was inhibited by D1 receptor blockade. In addition, the atypical social behavior in STX1A KO mice was partially improved by facilitation of DAergic signaling with the DA reuptake inhibitor GBR12909. Moreover, the amelioration by GBR12909 was inhibited by OXTR blockade. These results suggest that the reciprocal interaction between the DAergic and OXTergic neuronal systems in the CNS may be important in regulating social behavior.
Collapse
Affiliation(s)
- Tomonori Fujiwara
- Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama, Japan; Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan; Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kimio Akagawa
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
7
|
Tracking Single Molecule Dynamics in the Adult Drosophila Brain. eNeuro 2021; 8:ENEURO.0057-21.2021. [PMID: 33875453 PMCID: PMC8174007 DOI: 10.1523/eneuro.0057-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
Super-resolution microscopy provides valuable insight for understanding the nanoscale organization within living tissue, although this method is typically restricted to cultured or dissociated cells. Here, we develop a method to track the mobility of individual proteins in ex vivo adult Drosophila melanogaster brains, focusing on a key component of the presynaptic release machinery, syntaxin1A (Sx1a). We show that individual Sx1a dynamics can be reliably tracked within neurons in the whole fly brain, and that the mobility of Sx1a molecules increases following conditional neural stimulation. We then apply this preparation to the problem of general anesthesia, to address how different anesthetics might affect single molecule dynamics in intact brain synapses. We find that propofol, etomidate, and isoflurane significantly impair Sx1a mobility, while ketamine and sevoflurane have little effect. Resolving single molecule dynamics in intact fly brains provides a novel approach to link localized molecular effects with systems-level phenomena such as general anesthesia.
Collapse
|
8
|
Zhong X, Yu Y, Wang C, Zhu Q, Wu J, Ke W, Ji D, Niu C, Yang X, Wei Y. Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124111. [PMID: 33189059 DOI: 10.1016/j.jhazmat.2020.124111] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
With the spread of organophosphorus flame retardants (OPFRs), the environmental and health risks they induce are attracting attention. Triphenyl phosphate (TPHP) is a popular alternative to brominated flame retardant and halogenated OPFRs. Neurodevelopmental toxicity is TPHP's primary adverse effect, whereas the biomarkers and the modes of action have yet to be elucidated. In the present study, 0.5, 5, and 50 mg/kg of TPHP were orally administered to mice from postnatal day 10 (P10) to P70. The behavioral tests showed a compromised learning and memory capability. Proteomic analysis of the hippocampus exposed to 0.5 or 50 mg/kg of TPHP identified 531 differentially expressed proteins that were mainly involved in axon guidance, synaptic function, neurotransmitter transport, exocytosis, and energy metabolism. Immunoblot and immunofluorescence analysis showed that exposure to TPHP reduced the protein levels of TUBB3 and SYP in the synapses of hippocampal neurons. TPHP exposure also downregulated the gene expression of neurotransmitter receptors including Grins, Htr1α, and Adra1α in a dose-dependent fashion. Moreover, the calcium-dependent synaptic exocytosis governed by synaptic vesicle proteins STX1A and SYT1 was inhibited in the TPHP-treated hippocampus. Our results reveal that TPHP exposure causes abnormal learning and memory behaviors by disturbing synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qicheng Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Combined cellomics and proteomics analysis reveals shared neuronal morphology and molecular pathway phenotypes for multiple schizophrenia risk genes. Mol Psychiatry 2021; 26:784-799. [PMID: 31142819 PMCID: PMC7910218 DOI: 10.1038/s41380-019-0436-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
An enigma in studies of neuropsychiatric disorders is how to translate polygenic risk into disease biology. For schizophrenia, where > 145 significant GWAS loci have been identified and only a few genes directly implicated, addressing this issue is a particular challenge. We used a combined cellomics and proteomics approach to show that polygenic risk can be disentangled by searching for shared neuronal morphology and cellular pathway phenotypes of candidate schizophrenia risk genes. We first performed an automated high-content cellular screen to characterize neuronal morphology phenotypes of 41 candidate schizophrenia risk genes. The transcription factors Tcf4 and Tbr1 and the RNA topoisomerase Top3b shared a neuronal phenotype marked by an early and progressive reduction in synapse numbers upon knockdown in mouse primary neuronal cultures. Proteomics analysis subsequently showed that these three genes converge onto the syntaxin-mediated neurotransmitter release pathway, which was previously implicated in schizophrenia, but for which genetic evidence was weak. We show that dysregulation of multiple proteins in this pathway may be due to the combined effects of schizophrenia risk genes Tcf4, Tbr1, and Top3b. Together, our data provide new biological functions for schizophrenia risk genes and support the idea that polygenic risk is the result of multiple small impacts on common neuronal signaling pathways.
Collapse
|
10
|
Bisphenol a Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling. Int J Mol Sci 2020; 21:ijms21093129. [PMID: 32365465 PMCID: PMC7246794 DOI: 10.3390/ijms21093129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound detected in the urine of more than 92% of humans, easily crosses the placental barrier, and has been shown to influence gene expression during fetal brain development. The purpose of this study was to investigate the effect of in utero BPA exposure on gene expression in the anterior hypothalamus, the basal nucleus of the stria terminalis (BNST), and hippocampus in C57BL/6 mice. Mice were exposed in utero to human-relevant doses of BPA, and then RNA sequencing was performed on male PND 28 tissue from whole hypothalamus (n = 3/group) that included the medial preoptic area (mPOA) and BNST to determine whether any genes were differentially expressed between BPA-exposed and control mice. A subset of genes was selected for further study using RT-qPCR on adult tissue from hippocampus to determine whether any differentially expressed genes (DEGs) persisted into adulthood. Two different RNA-Seq workflows indicated a total of 259 genes that were differentially expressed between BPA-exposed and control mice. Gene ontology analysis indicated that those DEGs were overrepresented in categories relating to mating, cell-cell signaling, behavior, neurodevelopment, neurogenesis, synapse formation, cognition, learning behaviors, hormone activity, and signaling receptor activity, among others. Ingenuity Pathway Analysis was used to interrogate novel gene networks and upstream regulators, indicating the top five upstream regulators as huntingtin, beta-estradiol, alpha-synuclein, Creb1, and estrogen receptor (ER)-alpha. In addition, 15 DE genes were identified that are suspected in autism spectrum disorders.
Collapse
|
11
|
Barón-Mendoza I, González-Arenas A. Relationship between the effect of polyunsaturated fatty acids (PUFAs) on brain plasticity and the improvement on cognition and behavior in individuals with autism spectrum disorder. Nutr Neurosci 2020; 25:387-410. [PMID: 32338174 DOI: 10.1080/1028415x.2020.1755793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: This work aimed to compile information about the neuronal processes in which polyunsaturated fatty acids (PUFAs) could modulate brain plasticity, in order to analyze the role of nutritional intervention with the ω-3 and ω-6 fatty acids as a therapeutic strategy for the Autism Spectrum Disorder (ASD)-related signs and symptoms.Methods: We reviewed different articles reporting the effect of PUFAS on neurite elongation, membrane expansion, cytoskeleton rearrangement and neurotransmission, considering the ASD-related abnormalities in these processes.Results: In accordance to the reviewed studies, it is clear that ASD is one of the neurological conditions associated with an impairment in neuronal plasticity; therefore, PUFAs-rich diet improvements on cognition and behavioral deficits in individuals with autism, could be involved with the regulation of neuronal processes implicated in the atypical brain plasticity related with this neurodevelopmental disorder.Discussion: The behavioral and cognitive improvement observed in individuals with ASD after PUFAs treatment might underlie, at least in part, in the ability of ω-3 and ω-6 fatty acids to induce neurite outgrowth, probably, through the dynamic regulation of the neuronal cytoskeleton along with the expansion of neuronal membranes. Furthermore, it might also be associated with an enhancement of the efficacy of synaptic transmission and the modulation of neurotransmitters release.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
12
|
Di Nanni N, Bersanelli M, Cupaioli FA, Milanesi L, Mezzelani A, Mosca E. Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E3363. [PMID: 31323926 PMCID: PMC6651137 DOI: 10.3390/ijms20133363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/16/2023] Open
Abstract
Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways. Besides, the integrative analysis of multiple omics has emerged as an approach to provide a more comprehensive view of a disease. In this work, we carry out a network-based meta-analysis of the genes reported as associated with ASDs by studies that involved genomics, epigenomics, and transcriptomics. Collectively, our analysis provides a prioritization of the large number of genes proposed to be associated with ASDs, based on genes' relevance within the intracellular circuits, the strength of the supporting evidence of association with ASDs, and the number of different molecular alterations affecting genes. We discuss the presence of the prioritized genes in the SFARI (Simons Foundation Autism Research Initiative) database and in gene networks associated with ASDs by other investigations. Lastly, we provide the full results of our analyses to encourage further studies on common targets amenable to therapy.
Collapse
Affiliation(s)
- Noemi Di Nanni
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
- Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy
- National Institute of Nuclear Physics (INFN), 40127 Bologna, Italy
| | - Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| |
Collapse
|
13
|
Sanfeliu A, Kaufmann WE, Gill M, Guasoni P, Tropea D. Transcriptomic Studies in Mouse Models of Rett Syndrome: A Review. Neuroscience 2019; 413:183-205. [PMID: 31229631 DOI: 10.1016/j.neuroscience.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Rett Syndrome (RTT) is a neurological disorder mainly associated with mutations in the X-linked gene coding for the methyl-CpG binding protein 2 (MECP2). To assist in studying MECP2's function, researchers have generated Mecp2 mouse mutants showing that MECP2's product (MeCP2) mostly functions as a transcriptional regulator. During the last two decades, these models have been used to determine the genes that are regulated by MeCP2, slowly dissecting the etiological mechanisms underlying RTT. In the present review, we describe the findings of these transcriptomic studies, and highlight differences between them, and discuss how studies on these genetic models can sharpen our understanding of the human disorder. We conclude that - while there's large variability regarding the number of differentially expressed genes identified - there are overlapping features that inform on the biology of RTT.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine and Department of Neurology, University of California Davis School of Medicine, Atlanta, GA 30322, USA
| | - Michael Gill
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland
| | - Paolo Guasoni
- Department of Mathematical Sciences, Dublin City University, Glasnevin, D9, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, School of Medicine, Trinity Center for Health Sciences, St James Hospital D8, Dublin, Ireland; Trinity College Institute of Neuroscience, Lloyd Building, D2, Dublin, Ireland.
| |
Collapse
|
14
|
Fujiwara T, Kofuji T, Mishima T, Akagawa K. Syntaxin 1B contributes to regulation of the dopaminergic system through GABA transmission in the CNS. Eur J Neurosci 2017; 46:2867-2874. [PMID: 29139159 DOI: 10.1111/ejn.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
Abstract
In neuronal plasma membrane, two syntaxin isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are predominantly expressed as soluble N-ethylmaleimide-sensitive fusion attachment protein receptors, also known as t-SNAREs. We previously reported that glutamatergic and GABAergic synaptic transmissions are impaired in Stx1b null mutant (Stx1b-/- ) mice but are almost normal in Stx1a null mutant (Stx1a-/- ) mice. These observations suggested that STX1A and STX1B have distinct functions in fast synaptic transmission in the central nervous system (CNS). Interestingly, recent studies indicated that Stx1a-/- or Stx1a+/- mice exhibit disruption in the monoaminergic system in the CNS, causing unusual behaviour that is similar to neuropsychological alterations observed in psychiatric patients. Here, we studied whether STX1B contributes to the regulation of monoaminergic system and if STX1B is related to neuropsychological properties in human neuropsychological disorders similar to STX1A. We found that monoamine release in vitro was normal in Stx1b+/- mice unlike Stx1a-/- or Stx1a+/- mice, but the basal extracellular dopamine (DA) concentration in the ventral striatum was increased. DA secretion in the ventral striatum is regulated by GABAergic neurons, and Stx1b+/- mice exhibited reduced GABA release both in vitro and in vivo, disrupting the DAergic system in the CNS of these mice. We also found that Stx1b+/- mice exhibited reduced pre-pulse inhibition (PPI), which is believed to represent one of the prominent schizotypal behavioural profiles of human psychiatric patients. The reduction in PPI was rescued by DA receptor antagonists. These observations indicated that STX1B contributes to excess activity of the DAergic system through regulation of GABAergic transmission.
Collapse
Affiliation(s)
- Tomonori Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Takefumi Kofuji
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.,Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tatsuya Mishima
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Kimio Akagawa
- Department of Cell Physiology, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
15
|
Transcription regulation mechanism of the syntaxin 1A gene via protein kinase A. Biochem J 2017; 474:2465-2473. [PMID: 28559304 DOI: 10.1042/bcj20170249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
Syntaxin 1A (Stx1a) is primarily involved in the docking of synaptic vesicles at active zones in neurons. Its gene is a TATA-less gene, with several transcription initiation sites, which is activated by the binding of Sp1 and acetylated histone H3 (H3) in the core promoter region (CPR) through the derepression of class I histone deacetylase (HDAC). In the present study, to clarify the factor characterizing Stx1a gene expression via the protein kinase A (PKA) pathway inducing the Stx1a mRNA, we investigated whether the epigenetic process is involved in the Stx1a gene transcription induced by PKA signaling. We found that the PKA activator forskolin induced Stx1a expression in non-neuronal cells, FRSK and 3Y1, which do not endogenously express Stx1a, unlike PC12. HDAC8 inhibition by shRNA knockdown and specific inhibitors induced Stx1a expression in FRSK. The PKA inhibitor H89 suppressed HDAC8-Ser39 phosphorylation, H3 acetylation and Stx1a induction by forskolin in FRSK cells. Finally, we also found that forskolin led to the dissociation of HDAC8-CPR interaction and the association of Sp1 and Ac-H3 to CPR in FRSK. The results of the current study suggest that forskolin phosphorylates HDAC8-Ser39 via the PKA pathway and increases histone H3 acetylation in cells expressing HDAC8, resulting in the induction of the Stx1a gene.
Collapse
|