1
|
Vitor-de-Lima SM, Figueira de Oliveira ML, Tavares IDS, Leandro CVG, Guedes RCA. Maternal voluntary physical exercise in the adult rat: evidence of exercise-associated differences in maternal food intake, and in brain effects on the progeny. Nutr Neurosci 2024; 27:120-131. [PMID: 36633889 DOI: 10.1080/1028415x.2023.2166415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Maternal physical activity may impact behavioral and electrophysiological aspects of brain function, with short- and long-term effects on pre- and postnatal neurodevelopment of the offspring. This study evaluated in the rat the effects of maternal voluntary physical activity (MVPA) on food intake and weight gain in the dams, as well as anxiety-like behavior, short-term memory and the brain excitability-related phenomenon known as cortical spreading depression (CSD) on the mother-pup dyad.Methods: Female Wistar rats (n=33) were individually housed in cages containing a running wheel for a 30-days adaptation period before mating. Rats were classified as inactive (I); active (A) or very active (VA) according to the distance spontaneously travelled daily. During gestation, the dams continued to have access to the running wheel. Mothers and their respective pups (1 pup per mother) were evaluated in the open field test (OFT), object recognition test (ORT), elevated plus maze test (EPMT) and the CSD propagation features.Results: MVPA was directly associated with increased food intake and weight gain during gestation, and maternal anxiolytic-like behavioral responses in the OFT. Pups from VA mothers showed a high discrimination index for shape recognition memory (ORT) and decreased propagation velocities of CSD, when compared with the inactive group.Discussion: The data suggest that MVPA during the gestational period induces neuroplasticity and may modulate the brain functions in the mother-infant dyad in the rat.
Collapse
Affiliation(s)
| | | | | | - Carol Virgínia Góis Leandro
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Department of Nutrition, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | |
Collapse
|
2
|
Searles CT, Harder HJ, Vogt ME, Murphy AZ. Perigestational Opioid Exposure Alters Alcohol-Driven Reward Behaviors in Adolescent Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567041. [PMID: 38014019 PMCID: PMC10680700 DOI: 10.1101/2023.11.14.567041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every fifteen minutes, a baby is born in the U.S. experiencing neonatal opioid withdrawal syndrome (NOWS). Since 2004, the rate of NOWS has increased 7-fold. Clinical studies have established intrauterine exposure to drugs of abuse as a risk factor for adverse health outcomes in adult life, including the propensity for future illicit drug use. Despite extensive knowledge about common mechanisms of action in the neural circuitry that drives opioid and alcohol reward, there is little data on the risks that those born with NOWS face regarding alcohol use later in life. Here, we investigate the impact of perigestational opioid exposure (POE) on the mesolimbic reward system of male and female Sprague Dawley rats at postnatal and adolescent ages. Our laboratory has developed a clinically relevant model for morphine exposure spanning pre-conception to the first week of life. Using this model, we found that POE increased alcohol consumption in female rats under noncontingent conditions, and inversely, reduced alcohol consumption in both male and female rats during operant conditioning sessions. Operant responding was also reduced for sucrose, suggesting that the impact of POE on reward-seeking behaviors is not limited to drugs of abuse. Expression of µ-opioid receptors was also significantly altered in the nucleus accumbens and medial habenula, regions previously shown to play a significant role in reward/aversion circuitry. Significance Statement Early life exposure to opioids is known to alter future drug behavior in rats. In the present study, female rats exposed to morphine via their mothers throughout and after pregnancy exhibited increased alcohol consumption when allowed to consume freely. During operant conditioning, however, male and female rats exposed to gestational morphine decreased consumption of alcohol as well as sucrose. We also observed that gestational morphine exposure altered µ-opioid receptor expression in reward-related brain regions. Our study provides the first evidence of changes in alcohol-directed reward behavior in a gestational opioid exposure rat model.
Collapse
|
3
|
Harder HJ, Searles CT, Vogt ME, Murphy AZ. Perinatal opioid exposure leads to decreased social play in adolescent male and female rats: Potential role of oxytocin signaling in brain regions associated with social reward. Horm Behav 2023; 153:105384. [PMID: 37295323 PMCID: PMC10330883 DOI: 10.1016/j.yhbeh.2023.105384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed males and females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed males and females also initiated fewer pins and nape attacks. Together, these data suggest that male and female rats exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, United States of America.
| |
Collapse
|
4
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Harder HJ, Searles CT, Vogt ME, Murphy AZ. Perinatal Opioid Exposure Leads to Decreased Social Play in Adolescent Male and Female Rats: Potential Role of Oxytocin Signaling in Brain Regions Associated with Social Reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532122. [PMID: 36945450 PMCID: PMC10028981 DOI: 10.1101/2023.03.10.532122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Over the last two decades, the number of infants exposed to opioids in utero has quadrupled in the United States, with some states reporting rates as high as 55 infants per 1000 births. Clinical studies report that children previously exposed to opioids during gestation show significant deficits in social behavior, including an inability to form friendships or other social relationships. To date, the neural mechanisms whereby developmental opioid exposure disrupts social behavior remain unknown. Using a novel paradigm of perinatal opioid administration, we tested the hypothesis that chronic opioid exposure during critical developmental periods would disrupt juvenile play. As oxytocin is a major regulator of sociability, the impact of perinatal morphine exposure on oxytocin peptide and receptor expression was also examined. Juvenile play was assessed in vehicle- or morphine-exposed male and female rats at P25, P35, and P45. Classical features of juvenile play were measured, including time spent engaged in social play, time not in contact, number of pins, and number of nape attacks. We report that morphine-exposed females spend less time engaged in play behavior than control males and females, with a corresponding increase in time spent alone. Morphine-exposed females also initiated fewer pins and nape attacks. Oxytocin receptor binding was reduced in morphine-exposed females in the nucleus accumbens, a brain region critical for social reward. Together, these data suggest that females exposed to morphine during critical developmental periods are less motivated to participate in social play, potentially due to alterations in oxytocin-mediated reward signaling.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
6
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
7
|
Grecco GG, Haggerty DL, Reeves KC, Gao Y, Maulucci D, Atwood BK. Prenatal opioid exposure reprograms the behavioural response to future alcohol reward. Addict Biol 2022; 27:e13136. [PMID: 35229956 PMCID: PMC8896285 DOI: 10.1111/adb.13136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
As the opioid crisis has continued to grow, so has the number of infants exposed to opioids during the prenatal period. A growing concern is that prenatal exposure to opioids may induce persistent neurological changes that increase the propensity for future addictions. Although alcohol represents the most likely addictive substance that the growing population of prenatal opioid exposed will encounter as they mature, no studies to date have examined the effect of prenatal opioid exposure on future sensitivity to alcohol reward. Using a recently developed mouse model of prenatal methadone exposure (PME), we investigated the rewarding properties of alcohol and alcohol consumption in male and female adolescent PME and prenatal saline exposed (PSE) control animals. Conditioned place preference to alcohol was disrupted in PME offspring in a sex-dependent manner with PME males exhibiting resistance to the rewarding properties of alcohol. Repeated injections of alcohol revealed enhanced sensitivity to the locomotor-stimulating effects of alcohol specific to PME females. PME males consumed significantly more alcohol over 4 weeks of alcohol access relative to PSE males and exhibited increased resistance to quinine-adulterated alcohol. Further, a novel machine learning model was developed to employ measured differences in alcohol consumption and drinking microstructure to reliably predict prenatal exposure. These findings indicate that PME alters the sensitivity to alcohol reward in adolescent mice in a sex-specific manner and suggests prenatal opioid exposure may induce persistent effects on reward neurocircuitry that can reprogram offspring behavioural response to alcohol later in life.
Collapse
Affiliation(s)
- Gregory G. Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN 46202
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yong Gao
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Maulucci
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Corresponding Author: Brady K. Atwood, Ph.D. Department of Pharmacology and Toxicology, Contact: 320 W. 15th St, Indianapolis, IN 46202, NB 400-C. phone: 317-274-8917.
| |
Collapse
|
8
|
Gilak-Dalasm M, Peeri M, Azarbayjani MA. Swimming exercise decreases depression-like behaviour and inflammatory cytokines in a mouse model of type 2 diabetes. Exp Physiol 2021; 106:1981-1991. [PMID: 34347905 DOI: 10.1113/ep089501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can swimming exercise decrease depression-like behaviour and inflammation in type 2 diabetic mice? What is the main finding and its importance? Swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Swimming exercise might be useful for the treatment of depression-related disorders in patients with type 2 diabetes. ABSTRACT Clinical and experimental studies have shown that type 2 diabetes is associated with depression-related disorders. Inflammation has been identified as a common mechanism in both type 2 diabetes and depression. Several studies have suggested that swimming exercise might be able to reduce depression-related symptoms. The present study aimed to explore whether swimming exercise can decrease depression-like behaviour in type 2 diabetic mice. To induce type 2 diabetes, male C57BL6 mice were treated with a high-fat diet and streptozocin. Type 2 diabetic animals were subjected to swimming exercise for 4 weeks. Then, depression-like behaviours were evaluated by sucrose preference, novelty-suppressed feeding, social interaction and tail suspension tests. We also measured levels of glucose, insulin and pro-inflammatory cytokines such as interleukin-1β and tumour necrosis factor-α in the serum of animals. The results indicated that type 2 diabetes significantly increased anhedonia- and depression-like behaviours in mice. We also found significant increases in glucose, insulin and inflammatory cytokines in diabetic mice. Moreover, swimming exercise reduced anhedonia- and depression-like behaviour in type 2 diabetic mice. Swimming exercise also decreased glucose and inflammatory cytokines in the serum of mice with type 2 diabetes. Collectively, this study demonstrates that swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Further clinical studies are needed to validate these findings in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mohadeseh Gilak-Dalasm
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
9
|
Abu Y, Roy S. Prenatal opioid exposure and vulnerability to future substance use disorders in offspring. Exp Neurol 2021; 339:113621. [PMID: 33516730 PMCID: PMC8012222 DOI: 10.1016/j.expneurol.2021.113621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/06/2023]
Abstract
The heightened incidence of opioid use during pregnancy has resulted in unprecedented rates of neonates prenatally exposed to opioids. Prenatal opioid exposure (POE) results in significantly adverse medical, developmental, and behavioral outcomes in offspring. Of growing interest is whether POE contributes to future vulnerability to substance use disorders. The effects of POE on brain development is difficult to assess in humans, as the timing, dose, and route of drug exposure together with complex genetic and environmental factors affect susceptibility to addiction. Preclinical models of POE have allowed us to avoid methodological difficulties and confounding factors of POE in humans. Here, we review the effects of maternal opioid exposure on the developing brain with an emphasis on the neurobiological basis of drug addiction and on preclinical models of POE and their limitations. These studies have indicated that POE increases self-administration of drugs, reward-driven behaviors in the conditioned place paradigm, and locomotor sensitization. While addiction is multifaceted and vulnerability to drug addiction is still inconclusive in human studies of prenatally exposed infants, animal studies do provide a noteworthy corroboration of negative behavioral outcomes.
Collapse
Affiliation(s)
- Yaa Abu
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Yazdanfar N, Farnam A, Sadigh-Eteghad S, Mahmoudi J, Sarkaki A. Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Res Bull 2021; 170:98-105. [PMID: 33592274 DOI: 10.1016/j.brainresbull.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
Prenatal opioids exposure negatively affects the neurobehavioral abilities of children born from dependence dams. Adolescent housing conditions can buffer the detrimental impacts of early life experiences or contradictory can worsen individual psychosocial functions. The present study investigated the effects of maternal morphine dependence and different rearing conditions on behaviors and protein expression in brain reward circuits of male pups. Female Wistar rats a week before conception, during pregnancy and lactation were injected twice daily with escalating doses of morphine or saline. On a postnatal day 21, male pups were weaned and subjected to three different environments for two months: standard (STD), isolated (ISO), or enriched environment (EE). The anxiety and drug-related reward were measured using elevated plus maze, open field test, and conditioned place preference. Western blotting was used to determine the protein level of ΔFosB and μ-opioid receptor proteins in the striatum and the midbrain of male offspring, respectively. Results showed that maternal morphine administration dramatically increased anxiety-like and morphine place preference behaviors in offspring. Also, ISO condition aggravated these behavioral outcomes. While, rearing in EE could attenuate anxiety and morphine conditioning in pups. At molecular levels, maternal morphine exposure and social isolation markedly increased both of ΔFosB and μ-opioid receptor proteins expression. However, rearing in the EE declined ΔFosB protein expression. Together, these findings help to elucidate long lasting impacts of early life morphine exposure and rearing environment on the behavioral and molecular profile of addicted individuals.
Collapse
Affiliation(s)
- Neda Yazdanfar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Farnam
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Sarkaki
- The Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Eyolfson E, Bhatt D, Wang M, Lohman AW, Mychasiuk R. Paternal exposure to exercise and/or caffeine and alcohol modify offspring behavioral and pathophysiological recovery from repetitive mild traumatic brain injury in adolescence. GENES, BRAIN, AND BEHAVIOR 2021; 20:egbb12736. [PMID: 33876557 DOI: 10.1111/gbb.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Only recently has the scope of parental research expanded to include the paternal sphere with epidemiological studies implicating stress, nutrition and alcohol consumption in the neurobiological and behavioral characteristics of offspring. This study was designed to determine if paternal exposure to caffeine, alcohol and exercise prior to conception would improve or exacerbate offspring recovery from adolescent repetitive mild traumatic brain injury (RmTBI). Sires received 7 weeks of standard drinking water, or caffeine and ethanol and were housed in regular cages or cages with running wheels, prior to being mated to control females. At postnatal day 40, offspring were administered RmTBI or sham injuries and were assessed for post concussive symptomology. Post-mortem quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression in the prefrontal cortex (PFC), nucleus accumbens (NAc) and changes in telomere length. Additionally, enzyme-linked immunosorbent assay (ELISA's) were run on serum to detect levels of cytokines, chemokines and sex hormones. Paternal experience did not improve or exacerbate RmTBI behavioral outcomes. However, female and male offspring displayed unique responses to RmTBI and paternal experience, resulting in changes in physical, behavioral and molecular outcomes. Injury and paternal exercise modified changes in female offspring, whereas male offspring were affected by paternal exercise, caffeine and alcohol treatment. Additionally, paternal experience and RmTBI modified expression of many genes in the PFC, NAc, telomere length and levels of sex hormones. Although further exploration is required to understand the heterogeneity that exists in disease risk and resiliency, this study provides corroborating evidence that paternal experiences prior to conception influences offspring development.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melinda Wang
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alexander W Lohman
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Yang Y, Lagisz M, Foo YZ, Noble DWA, Anwer H, Nakagawa S. Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance. Biol Rev Camb Philos Soc 2021; 96:1504-1527. [PMID: 33783115 DOI: 10.1111/brv.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.
Collapse
Affiliation(s)
- Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Biosystems Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yong Zhi Foo
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel W A Noble
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Nagpal TS, Bhattacharjee J, da Silva DF, Souza SCS, Mohammad S, Puranda JL, Abu-Dieh A, Cook J, Adamo KB. Physical activity may be an adjuvant treatment option for substance use disorders during pregnancy: A scoping review. Birth Defects Res 2021; 113:265-275. [PMID: 32940021 DOI: 10.1002/bdr2.1803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Substance abuse in pregnancy increases the chance of physical and neurobehavioral disabilities as well as many other undesirable fetal outcomes. In nonpregnant populations, physical exercise has shown to be an effective adjunctive therapy option for substance use disorders. Given the known positive maternal and fetal physiological and mental health benefits associated with prenatal exercise, perhaps exercise during pregnancy may also be a viable adjuvant therapy option for women with substance use disorders. The purpose of this scoping review was to summarize the available literature that has assessed the relationship between prenatal exercise and substance use disorders. METHODS A search strategy was developed combining the terms pregnancy, exercise/physical activity, and substance use. A systematic search was completed in the following databases: Medline/PubMed, SPORTDiscus, and ProQuest. Substances eligible for inclusion included illicit drugs, alcohol, and cannabis. Retrieved data were categorized as animal or human model studies, and were summarized narratively. RESULTS Eight studies were included in this review (five human studies, three animal model studies). Studies in humans suggest that pregnant women with substance use disorders are interested in engaging in physical activity interventions; however, known acute metabolic and physiological responses to prenatal exercise may be impaired in this population. Rodent models show preliminary evidence for improved mental health outcomes following prenatal exercise for substance use disorders. CONCLUSION The findings from this review may inform the development of future clinical trials to test the effect of structured exercise programs as an adjunctive treatment option for pregnant women with substance use disorders.
Collapse
Affiliation(s)
- Taniya S Nagpal
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Society of Obstetricians and Gynaecologists of Canada, Ottawa, Canada
| | | | | | - Sara C S Souza
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Shuhiba Mohammad
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | | | - Anas Abu-Dieh
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Jocelynn Cook
- Society of Obstetricians and Gynaecologists of Canada, Ottawa, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Canada
| | - Kristi B Adamo
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Luft C, Levices IP, da Costa MS, de Oliveira JR, Donadio MVF. Effects of running before pregnancy on long-term memory and hippocampal alterations induced by prenatal stress. Neurosci Lett 2021; 746:135659. [PMID: 33482306 DOI: 10.1016/j.neulet.2021.135659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022]
Abstract
Studies have shown that an adverse environment in utero influences fetal growth and development, leading to several neuroendocrine and behavioral changes in adult life. Nevertheless, the mechanisms involved in the long-term benefits of pregestational exercise are still poorly understood. Thus, this study aimed to evaluate the effects of physical exercise before the gestational period on memory behavior and gene expression in the hippocampus of adult mice submitted to prenatal stress. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS), and exercise before the gestational period plus PNS (EX + PNS). When adults, male and female offspring were submitted to the object recognition test followed by the hippocampal evaluation of BDNF exons I and IV mRNA expression, as well as hypothalamic-pituitary-adrenal axis related genes. Pregestational exercise did not prevent the decreased recognition index, as well as GR and CRHR1 gene expression observed in PNS males. Conversely, prenatal stress did not influence female memory behavior. Moreover, exercise attenuated the effects of prenatal stress on female BDNF IV gene expression. The results indicate that pregestational exercise was able to prevent the effects of maternal stress on hippocampal BDNF IV gene expression in females, although no effects were seen on the stress-induced memory impairment in males.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Isadora Perez Levices
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
16
|
Taghipour M, Sabahi P, Pooriamehr A, Miladi-Gorji H. Swimming exercise during morphine abstinence in parents-to-be attenuated morphine-induced conditioned place preference and locomotor sensitization only in male rat offspring. Neurosci Lett 2020; 740:135433. [PMID: 33075421 DOI: 10.1016/j.neulet.2020.135433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
This study was designed to examine the effects of swimming exercise during morphine abstinence in parents-to-be before mating on morphine-induced conditioned place preference (CPP) and locomotor sensitization in the pubertal male and female rat offspring. Male and female Wistar rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days. The exercising rats exposed to a regular swimming exercise (45 min/d, five days per a week) during 30 days of morphine abstinence before mating. Then, the pubertal male and female rat offspring were tested for morphine-induced CPP and locomotor sensitization (using the open field). The results showed that the pubertal male offspring of the morphine-abstinent parents-to-be exhibited an increase in CPP to morphine and locomotor activity after morphine challenge than the offspring from the control group. While, swimming exercise in morphine-abstinent parents-to-be decreased CPP score and locomotor activity in the pubertal male offspring than control offspring. Thus, exposure to swimming exercise in morphine-abstinent parents-to-be before mating may exert a protective effect against morphine-induced reward and locomotor sensitization in their pubertal offspring which may prevent the vulnerability of the first generation to drug abuse following opiate-addicted parents before mating.
Collapse
Affiliation(s)
- Mona Taghipour
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Parviz Sabahi
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Alireza Pooriamehr
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
17
|
Prenatal Opioid Exposure Enhances Responsiveness to Future Drug Reward and Alters Sensitivity to Pain: A Review of Preclinical Models and Contributing Mechanisms. eNeuro 2020; 7:ENEURO.0393-20.2020. [PMID: 33060181 PMCID: PMC7768284 DOI: 10.1523/eneuro.0393-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential underlying molecular mechanisms which may contribute to this enhanced addictive phenotype in POE offspring are further discussed with special attention given to key brain regions associated with reward including the striatum, prefrontal cortex (PFC), ventral tegmental area (VTA), hippocampus, and amygdala. Improvements in preclinical models and further areas of study are also identified which may advance the translational value of findings and help address the growing problem of POE in clinical populations.
Collapse
|
18
|
Maternal Treadmill Exercise Reduces the Neurotoxicity of Prenatal Sevoflurane Exposure in Rats via Activation of p300 Histone Acetyltransferase. Neurochem Res 2020; 45:1626-1635. [DOI: 10.1007/s11064-020-03023-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
|
19
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
20
|
Wallin CM, Bowen SE, Roberge CL, Richardson LM, Brummelte S. Gestational buprenorphine exposure: Effects on pregnancy, development, neonatal opioid withdrawal syndrome, and behavior in a translational rodent model. Drug Alcohol Depend 2019; 205:107625. [PMID: 31706250 DOI: 10.1016/j.drugalcdep.2019.107625] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The opioid crisis has led to an increased number of pregnant opioid-dependent women receiving opioid-maintenance therapy (e.g. buprenorphine, BUP), but little is known about the consequences of gestational BUP exposure on pregnancy outcomes, maternal care, or offspring development. METHODS Our translational rodent model began BUP exposure to adult female rats (N = 30) at least 7 days before conception and continued throughout the postpartum period. Both therapeutic low-dose (BUP-LD, 0.3 mg/kg, s.c.) and overexposure high-dose (BUP-HD, 1.0 mg/kg) doses of BUP were compared to saline control. Female rats were bred in house with drug-naïve adult male rats. The day after parturition, litters were culled to 5 males/5 females and assigned randomly to various behavioral tests and assessed either neonates or adolescents. Litter characteristics, maternal caregiving, Neonatal Opioid Withdrawal Syndrome (NOWS), offspring development and adolescent behaviors were evaluated. RESULTS BUP-LD decreased maternal care, delayed offspring development, decreased offspring body weight, length, temperature, and pain sensitivity (p's < .05). BUP-HD drastically reduced maternal care and offspring survival, altered litter characteristics, and increased NOWS (p's < .05). CONCLUSION These results demonstrate that the therapeutic BUP-LD in rats was relatively safe with subtle effects on maternal care and rodent offspring. However, overexposure BUP-HD in rats produced NOWS and compromised maternal caregiving as well as rodent offspring survival. More research is critical to validate the translational implication of these findings for human opioid-dependent mothers maintained on BUP-maintenance therapy.
Collapse
Affiliation(s)
- Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Chelsea L Roberge
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | | | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
21
|
Yau SY, Lee THY, Formolo DA, Lee WL, Li LCK, Siu PM, Chan CCH. Effects of Maternal Voluntary Wheel Running During Pregnancy on Adult Hippocampal Neurogenesis, Temporal Order Memory, and Depression-Like Behavior in Adult Female and Male Offspring. Front Neurosci 2019; 13:470. [PMID: 31164801 PMCID: PMC6536667 DOI: 10.3389/fnins.2019.00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Research suggests that maternal exercise in pregnancy may have beneficial effects on the brain function of offspring. This study sought to determine if voluntary wheel running during pregnancy improves depression-like behavior, temporal order memory, and hippocampal neurogenesis in both female and male offspring mice. Pregnant mice were allowed to run voluntarily by introducing running wheels into the housing cages throughout the gestational period. Male and female mice offspring at the age of 8- to 9-week-old were then tested on the temporal order task and forced swim test, then euthanized for immunostaining for examining adult hippocampal cell proliferation and neuronal differentiation. Results showed that both male and female pups had reduced depression-like behavior, while only male offspring demonstrated improvement in temporal order memory. Immunostaining revealed that male offspring showed an increase in the number of immature neurons in the ventral hippocampus, whereas female offspring showed enhanced cell proliferation in the dorsal hippocampus. These findings indicate that maternal voluntary wheel running benefits both female and male offspring on reducing depression-like behavior, but with gender effect on promoting hippocampal cell proliferation, neuronal differentiation, and temporal order memory.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Thomas Ho-Yin Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Douglas Affonso Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Wing-Lun Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Leo Chun-Kit Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Parco M Siu
- Divison of Kinesiology, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chetwyn C H Chan
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Applied Cognitive Neuroscience Laboratory, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
22
|
Rahimi R, Akhavan MM, Kamyab K, Ebrahimi SA. Maternal voluntary exercise ameliorates learning deficit in rat pups exposed, in utero, to valproic acid; role of BDNF and VEGF and their receptors. Neuropeptides 2018; 71:43-53. [PMID: 30144942 DOI: 10.1016/j.npep.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Abstract
In utero exposure to therapeutic doses of valproic acid (VPA) during pregnancy can produce physical malformation and CNS abnormalities in the offspring. There is evidence indicating that even lower doses of VPA during pregnancy could cause cognitive impairment in offspring. It has been demonstrated that maternal exercise has positive effects on offspring's cognitive function. In this study we evaluated the preventive potential of maternal voluntary exercise on cognitive deficits induced by in utero exposure to VPA, in rat pups. Furthermore, the alteration of hippocampal brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) and their respective receptors were measured. In treatment groups, pregnant rats received VPA (10 and 20 mg/kg) daily on the gestation days (GD) 7 for twelve days with or without access to a running wheel. In control groups, rats received saline with or without access to a running wheel. On postnatal day (PND) 30, learning and memory of rat pups were assessed using the Morris Water Maze (MWM) task. Also, on PND 30, hippocampal BDNF and VEGF were measured by ELISA and western blot analysis respectively. VEGFR (VEGF receptor) and TrkB (Tyrosine receptor kinase B, the receptor for BDNF) expressions were assessed using immunofluorescence staining. Results revealed that maternal voluntary exercise enhanced learning in offspring but had little effect on memory retention. Exposure to VPA during pregnancy disturbed learning and memory in rat pups. Maternal voluntary exercise could ameliorate some aspects of cognitive deficit induced by VPA. TrkB and VEGFR2 expression were enhanced in pups from running mothers. VPA, at both doses, suppressed exercise induced expression of these two receptors. Voluntary exercise and to a much greater extent VPA administration increased hippocampal BDNF. Voluntary exercise of mothers caused an enhance expression of VEGF in rat pups as did VPA administration, although to a smaller amount.
Collapse
Affiliation(s)
- R Rahimi
- Department of Pharmacology, School of Medicine, Iran University for Medical Sciences, Tehran, Iran
| | - M M Akhavan
- Department of Pharmacology, School of Medicine, Iran University for Medical Sciences, Tehran, Iran
| | - K Kamyab
- Department of Pathology, Razi Skin Hospital, Tehran University of Medical Sciences, Iran
| | - S A Ebrahimi
- Department of Pharmacology, School of Medicine, Iran University for Medical Sciences, Tehran, Iran..
| |
Collapse
|
23
|
Tomek SE, Olive MF. Social Influences in Animal Models of Opiate Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:81-107. [PMID: 30193710 DOI: 10.1016/bs.irn.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Opiate addiction has reached an epidemic prevalence in recent years, yet social influences on the use and abuse of opiates has been widely understudied. In particular, the neurobiological substrates of opiate addiction and their modulation by social influences are largely unknown, perhaps due to the lack of widespread incorporation of social variables into animal models of opiate addiction. As reviewed here, animal models such as oral and intravenous drug self-administration, conditioned place preference, behavioral sensitization, and the effects of various stressors, have been useful in identifying some of the neurochemical circuitry that mediate social influences on opiate addiction. However, it is clear from our review that newer paradigms that incorporate various social elements are greatly needed to provide more translational insights into the neurobiological basis of opiate addiction. These elements include social and environmental enrichment, presence of conspecifics, and procedures that require subjects to exert effort to engage in prosocial behavior. A wider implementation of social variables into animal models of opiate addiction will help inform neurobehavioral strategies to increase the efficacy of treatment.
Collapse
Affiliation(s)
- Seven E Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
24
|
Sanches EF, Van de Looij Y, Toulotte A, da Silva AR, Romero J, Sizonenko SV. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats. Front Neurol 2018; 9:480. [PMID: 29988536 PMCID: PMC6026645 DOI: 10.3389/fneur.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI) in very immature rats. Methods: Female pregnant Wistar rats were divided into swimming (SW) or sedentary (SE) groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3), rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI), the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified. Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests. Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost-benefits. HIGHLIGHTS- Prematurity is a major cause of neurodevelopmental impairments; - Swimming during pregnancy reduces brain damage after HI injury; - Pregnancy is an important but underestimated preventive window.
Collapse
Affiliation(s)
- Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Yohan Van de Looij
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Analina R da Silva
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacqueline Romero
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Jang Y, Lee B, Kim EK, Shim WS, Yang YD, Kim SM. Involuntary swimming exercise in pregnant rats disturbs ERK1/2 signaling in embryonic neurons through increased cortisol in the amniotic fluid. Biochem Biophys Res Commun 2018; 495:1208-1213. [DOI: 10.1016/j.bbrc.2017.11.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
|