1
|
Werner LM, Schnitzler A, Hirschmann J. Subthalamic Nucleus Deep Brain Stimulation in the Beta Frequency Range Boosts Cortical Beta Oscillations and Slows Down Movement. J Neurosci 2025; 45:e1366242024. [PMID: 39788738 PMCID: PMC11867002 DOI: 10.1523/jneurosci.1366-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Recordings from Parkinson's disease (PD) patients show strong beta-band oscillations (13-35 Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100 Hz) ameliorates motor symptoms and reduces beta activity in the basal ganglia and motor cortex, the effects of low-frequency DBS (<30 Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal. Here, we investigated how subthalamic nucleus (STN) beta-band DBS affects cortical beta oscillations and motor performance. We recorded the magnetoencephalogram of 14 PD patients (nine males) with DBS implants while on their usual medication. Following a baseline recording (DBS OFF), we applied bipolar DBS at beta frequencies (10, 16, 20, 26, and 30 Hz) via the left electrode in a cyclic fashion, turning stimulation on (5 s) and off (3 s) repeatedly. Cyclic stimulation was applied at rest and during right-hand finger tapping. In the baseline recording, we observed a negative correlation between the strength of hemispheric beta power lateralization and the tap rate. Importantly, beta-band DBS accentuated the lateralization and reduced the tap rate proportionally. The change in lateralization was specific to the alpha/beta range (8-26 Hz), outlasted stimulation, and did not depend on the stimulation frequency, suggesting a remote-induced response rather than entrainment. Our study demonstrates that cortical beta oscillations can be manipulated by STN beta-band DBS. This manipulation has consequences for motor performance, supporting a causal role of beta oscillations.
Collapse
Affiliation(s)
- Lucy M Werner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Park J, Ho RLM, Wang WE, Chiu SY, Shin YS, Coombes SA. Age-related changes in neural oscillations vary as a function of brain region and frequency band. Front Aging Neurosci 2025; 17:1488811. [PMID: 40040743 PMCID: PMC11876397 DOI: 10.3389/fnagi.2025.1488811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced aging is associated with robust changes in neural activity. In addition to the well-established age-related slowing of the peak alpha frequency, there is a growing body of evidence showing that older age is also associated with changes in alpha power and beta power. Despite the important progress that has been made, the interacting effects of age and frequency band have not been directly tested in sensor and source space while controlling for aperiodic components. In the current study we address these limitations. We recruited 54 healthy younger and older adults and measured neural oscillations using a high-density electroencephalogram (EEG) system during resting-state with eyes closed. After preprocessing the EEG data and controlling for aperiodic components, we computed alpha and beta power in both sensor and source space. Permutation two-way ANOVAs between frequency band and age group were performed across all electrodes and across all dipoles. Our findings revealed significant interactions in sensorimotor, parietal, and occipital regions. The pattern driving the interaction varied across regions, with older age associated with a progressive decrease in alpha power and a progressive increase in beta power from parietal to sensorimotor regions. Our findings demonstrate that age-related changes in neural oscillations vary as a function of brain region and frequency band. We interpret our findings in the context of clinical and preclinical evidence of age effects on the cholinergic circuit and the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
Collapse
Affiliation(s)
- Jinhan Park
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachel L. M. Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Y. Chiu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Young Seon Shin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephen A. Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
4
|
Spooner RK, Hizli BJ, Bahners BH, Schnitzler A, Florin E. Modulation of DBS-induced cortical responses and movement by the directionality and magnitude of current administered. NPJ Parkinsons Dis 2024; 10:53. [PMID: 38459031 PMCID: PMC10923868 DOI: 10.1038/s41531-024-00663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Subthalamic deep brain stimulation (STN-DBS) is an effective therapy for alleviating motor symptoms in people with Parkinson's disease (PwP), although some may not receive optimal clinical benefits. One potential mechanism of STN-DBS involves antidromic activation of the hyperdirect pathway (HDP), thus suppressing cortical beta synchrony to improve motor function, albeit the precise mechanisms underlying optimal DBS parameters are not well understood. To address this, 18 PwP with STN-DBS completed a 2 Hz monopolar stimulation of the left STN during MEG. MEG data were imaged in the time-frequency domain using minimum norm estimation. Peak vertex time series data were extracted to interrogate the directional specificity and magnitude of DBS current on evoked and induced cortical responses and accelerometer metrics of finger tapping using linear mixed-effects models and mediation analyses. We observed increases in evoked responses (HDP ~ 3-10 ms) and synchronization of beta oscillatory power (14-30 Hz, 10-100 ms) following DBS pulse onset in the primary sensorimotor cortex (SM1), supplementary motor area (SMA) and middle frontal gyrus (MFG) ipsilateral to the site of stimulation. DBS parameters significantly modulated neural and behavioral outcomes, with clinically effective contacts eliciting significant increases in medium-latency evoked responses, reductions in induced SM1 beta power, and better movement profiles compared to suboptimal contacts, often regardless of the magnitude of current applied. Finally, HDP-related improvements in motor function were mediated by the degree of SM1 beta suppression in a setting-dependent manner. Together, these data suggest that DBS-evoked brain-behavior dynamics are influenced by the level of beta power in key hubs of the basal ganglia-cortical loop, and this effect is exacerbated by the clinical efficacy of DBS parameters. Such data provides novel mechanistic and clinical insight, which may prove useful for characterizing DBS programming strategies to optimize motor symptom improvement in the future.
Collapse
Affiliation(s)
- Rachel K Spooner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Baccara J Hizli
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Özkurt TE. Abnormally low sensorimotor α band nonlinearity serves as an effective EEG biomarker of Parkinson's disease. J Neurophysiol 2024; 131:435-445. [PMID: 38230880 DOI: 10.1152/jn.00272.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Biomarkers obtained from the neurophysiological signals of patients with Parkinson's disease (PD) have objective value in assessing their motor condition for effective diagnosis, monitoring, and clinical intervention. Prominent cortical biomarkers of PD have typically been derived from various β band wave features. This study approached the topic from an alternative perspective and attempted to estimate a recently suggested measure representing α band nonlinear autocorrelative memory from a publicly available EEG dataset that involves 15 patients with earlier-stage PD (dopaminergic medication OFF and ON states) and 16 age-matched healthy controls. The cortical nonlinearity was elevated for the PD ON state compared with the OFF state for bilateral sensorimotor channels C3 and C4 (n = 26; P = 0.003). A similar statistical difference was also identified between PD OFF state and healthy subjects (n = 26; P = 0.049). Analysis over all channels revealed that the α band nonlinearity induced upon medication was constrained to sensorimotor regions. The α nonlinearity measure was compared with a well-accepted cortical biomarker of β-γ phase-amplitude coupling (PAC). They were in moderate negative correlation (r = -0.412; P = 0.036) for only healthy subjects, but not for the patients. The nonlinearity measure was found to be insusceptible to the nonstationary variations within the particular data. Our study provides further evidence that the α band nonlinearity measure can serve as a promising cortical biomarker of PD. The suggested measure can be estimated from a noninvasive low-resolution single scalp EEG channel of patients with relatively early-stage PD, who did not yet need to undergo deep brain stimulation operation.NEW & NOTEWORTHY This study suggests a nonlinearity measure that differentiates Parkinson's disease (PD) dopamine OFF-state scalp EEG data from those of dopamine ON-state patients and healthy subjects. Unlike typical PD cortical biomarkers based on β band activity, this metric shows elevation upon dopaminergic medication in the α band. We provide evidence supporting its potential as an early-stage promising PD biomarker that can be estimated from noninvasive EEG recordings with low resolution and SNR.
Collapse
Affiliation(s)
- Tolga Esat Özkurt
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
7
|
Boon LI, Potters WV, Hillebrand A, de Bie RMA, Bot M, Richard Schuurman P, van den Munckhof P, Twisk JW, Stam CJ, Berendse HW, van Rootselaar AF. Magnetoencephalography to measure the effect of contact point-specific deep brain stimulation in Parkinson's disease: A proof of concept study. Neuroimage Clin 2023; 38:103431. [PMID: 37187041 PMCID: PMC10197095 DOI: 10.1016/j.nicl.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/26/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for disabling fluctuations in motor symptoms in Parkinson's disease (PD) patients. However, iterative exploration of all individual contact points (four in each STN) by the clinician for optimal clinical effects may take months. OBJECTIVE In this proof of concept study we explored whether magnetoencephalography (MEG) has the potential to noninvasively measure the effects of changing the active contact point of STN-DBS on spectral power and functional connectivity in PD patients, with the ultimate aim to aid in the process of selecting the optimal contact point, and perhaps reduce the time to achieve optimal stimulation settings. METHODS The study included 30 PD patients who had undergone bilateral DBS of the STN. MEG was recorded during stimulation of each of the eight contact points separately (four on each side). Each stimulation position was projected on a vector running through the longitudinal axis of the STN, leading to one scalar value indicating a more dorsolateral or ventromedial contact point position. Using linear mixed models, the stimulation positions were correlated with band-specific absolute spectral power and functional connectivity of i) the motor cortex ipsilateral tot the stimulated side, ii) the whole brain. RESULTS At group level, more dorsolateral stimulation was associated with lower low-beta absolute band power in the ipsilateral motor cortex (p = .019). More ventromedial stimulation was associated with higher whole-brain absolute delta (p = .001) and theta (p = .005) power, as well as higher whole-brain theta band functional connectivity (p = .040). At the level of the individual patient, switching the active contact point caused significant changes in spectral power, but the results were highly variable. CONCLUSIONS We demonstrate for the first time that stimulation of the dorsolateral (motor) STN in PD patients is associated with lower low-beta power values in the motor cortex. Furthermore, our group-level data show that the location of the active contact point correlates with whole-brain brain activity and connectivity. As results in individual patients were quite variable, it remains unclear if MEG is useful in the selection of the optimal DBS contact point.
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurology, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands.
| | - Wouter V Potters
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maarten Bot
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Richard Schuurman
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jos W Twisk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, De Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Henk W Berendse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Neurology, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC location University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Bosch TJ, Cole RC, Bezchlibnyk Y, Flouty O, Singh A. Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson's Disease Patients. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225113. [PMID: 37092236 DOI: 10.3233/jpd-225113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson's disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG-and PDFOG+). RESULTS Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG-and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band.
Collapse
Affiliation(s)
- Taylor J Bosch
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Yarema Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
9
|
Shabanpour M, Kaboodvand N, Iravani B. Parkinson's disease is characterized by sub-second resting-state spatio-oscillatory patterns: A contribution from deep convolutional neural network. Neuroimage Clin 2022; 36:103266. [PMID: 36451369 PMCID: PMC9723309 DOI: 10.1016/j.nicl.2022.103266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Deep convolutional neural network (DCNN) provides a multivariate framework to detect relevant spatio-oscillatory patterns in the data beyond common mass-univariate statistics. Yet, its practical application is limited due to the low interpretability of the results beyond accuracy. We opted to use DCNN with a minimalistic architecture design and large penalized terms to yield a generalizable and clinically relevant network model. Our network was trained based on the scalp topology of the electroencephalography (EEG) from an open access dataset, constituting our primary sample of healthy controls (n = 25) and Parkinson's disease (PD) patients (n = 25), with and without medication. Next, we validated the model on another independent, yet comparable open access EEG dataset (healthy controls (n = 20) and PD patients (n = 20)), which was unseen to the network. We applied Gradient-weighted Class Activation Mapping (Grad-CAM) interpretability technique to create a localization map exhibiting the key network predictors, based on the gradients of the classification score flowing into the last convolutional layer. Accordingly, our results indicated that a sub-second of intrinsic oscillatory power pattern in the beta band over the occipitoparietal, gamma band over the left motor cortex as well as theta band over the frontoparietal cluster, had the largest impact on the network score for dissociating the PD patients from age- and gender-matched healthy controls, across the two datasets. We further found that the off-medication motor symptoms were related to the occipitoparietal off-medication beta power whereas the disease duration was associated with the off-medication beta power of the motor cortex. The on-medication theta power of the frontoparietal was related to the improvement of the motor symptoms. In conclusion, our method enabled us to characterize PD patho-electrophysiology according to the multivariate topographic analysis approach, where both spatial and frequency aspects of the oscillations were simultaneously considered. Moreover, our approach was free from common reference problem of the EEG data analyses.
Collapse
Affiliation(s)
| | - Neda Kaboodvand
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neurology and Neurological Science, Stanford University, Stanford, United States
| | - Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neurology and Neurological Science, Stanford University, Stanford, United States,Corresponding author at: Full postal address: K8 Klinisk neurovetenskap, K8 Neuro Fransson, 171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
Valkonen K, Mäkelä JP, Airaksinen K, Nurminen J, Kivisaari R, Renvall H, Pekkonen E. Deep brain stimulation of subthalamic nucleus modulates cortical auditory processing in advanced Parkinson’s Disease. PLoS One 2022; 17:e0264333. [PMID: 35202426 PMCID: PMC8870490 DOI: 10.1371/journal.pone.0264333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) has proven its clinical efficacy in Parkinson’s disease (PD), but its exact mechanisms and cortical effects continue to be unclear. Subthalamic (STN) DBS acutely modifies auditory evoked responses, but its long-term effect on auditory cortical processing remains ambiguous. We studied with magnetoencephalography the effect of long-term STN DBS on auditory processing in patients with advanced PD. DBS resulted in significantly increased contra-ipsilateral auditory response latency difference at ~100 ms after stimulus onset compared with preoperative state. The effect is likely due to normalization of neuronal asynchrony in the auditory pathways. The present results indicate that STN DBS in advanced PD patients has long-lasting effects on cortical areas outside those confined to motor processing. Whole-head magnetoencephalography provides a feasible tool to study motor and non-motor neural networks in PD, and to track possible changes related to cortical reorganization or plasticity induced by DBS.
Collapse
Affiliation(s)
- Kati Valkonen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Jyrki P. Mäkelä
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Katja Airaksinen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jussi Nurminen
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Renvall
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- * E-mail:
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Finland and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Muthuraman M, Palotai M, Jávor-Duray B, Kelemen A, Koirala N, Halász L, Erőss L, Fekete G, Bognár L, Deuschl G, Tamás G. Frequency-specific network activity predicts bradykinesia severity in Parkinson's disease. Neuroimage Clin 2021; 32:102857. [PMID: 34662779 PMCID: PMC8526781 DOI: 10.1016/j.nicl.2021.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Bradykinesia has been associated with beta and gamma band interactions in the basal ganglia-thalamo-cortical circuit in Parkinson's disease. In this present cross-sectional study, we aimed to search for neural networks with electroencephalography whose frequency-specific actions may predict bradykinesia. METHODS Twenty Parkinsonian patients treated with bilateral subthalamic stimulation were first prescreened while we selected four levels of contralateral stimulation (0: OFF, 1-3: decreasing symptoms to ON state) individually, based on kinematics. In the screening period, we performed 64-channel electroencephalography measurements simultaneously with electromyography and motion detection during a resting state, finger tapping, hand grasping tasks, and pronation-supination of the arm, with the four levels of contralateral stimulation. We analyzed spectral power at the low (13-20 Hz) and high (21-30 Hz) beta frequency bands and low (31-60 Hz) and high (61-100 Hz) gamma frequency bands using the dynamic imaging of coherent sources. Structural equation modelling estimated causal relationships between the slope of changes in network beta and gamma activities and the slope of changes in bradykinesia measures. RESULTS Activity in different subnetworks, including predominantly the primary motor and premotor cortex, the subthalamic nucleus predicted the slopes in amplitude and speed while switching between stimulation levels. These subnetwork dynamics on their preferred frequencies predicted distinct types and parameters of the movement only on the contralateral side. DISCUSSION Concurrent subnetworks affected in bradykinesia and their activity changes in the different frequency bands are specific to the type and parameters of the movement; and the primary motor and premotor cortex are common nodes.
Collapse
Affiliation(s)
- Muthuraman Muthuraman
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marcell Palotai
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | | | - Andrea Kelemen
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Nabin Koirala
- Movement Disorders, Imaging and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Haskins Laboratories, New Haven, USA
| | - László Halász
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Gábor Fekete
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Barone J, Rossiter HE. Understanding the Role of Sensorimotor Beta Oscillations. Front Syst Neurosci 2021; 15:655886. [PMID: 34135739 PMCID: PMC8200463 DOI: 10.3389/fnsys.2021.655886] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Beta oscillations have been predominantly observed in sensorimotor cortices and basal ganglia structures and they are thought to be involved in somatosensory processing and motor control. Although beta activity is a distinct feature of healthy and pathological sensorimotor processing, the role of this rhythm is still under debate. Here we review recent findings about the role of beta oscillations during experimental manipulations (i.e., drugs and brain stimulation) and their alteration in aging and pathology. We show how beta changes when learning new motor skills and its potential to integrate sensory input with prior contextual knowledge. We conclude by discussing a novel methodological approach analyzing beta oscillations as a series of transient bursting events.
Collapse
Affiliation(s)
- Jacopo Barone
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Chen Y, Gong C, Tian Y, Orlov N, Zhang J, Guo Y, Xu S, Jiang C, Hao H, Neumann WJ, Kühn AA, Liu H, Li L. Neuromodulation effects of deep brain stimulation on beta rhythm: A longitudinal local field potential study. Brain Stimul 2020; 13:1784-1792. [PMID: 33038597 DOI: 10.1016/j.brs.2020.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/15/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) holds great promise in treating various brain diseases but its chronic therapeutic mechanisms are unclear. OBJECTIVE To explore the immediate and chronic effects of DBS on brain oscillations, and understand how different sub-bands of oscillations may be related to symptom improvement in Parkinson's patients. METHODS We carried out a longitudinal study to examine the effects of DBS on local field potentials recorded by sensing-enabled neurostimulators in the subthalamic nuclei of Parkinson's patients, using a novel block-design stimulation paradigm. RESULTS DBS significantly suppressed beta activity (13-35Hz) but the suppression effect appeared to gradually attenuate during a 6-month follow-up period after surgery (p = 0.002). However, beta suppression did not attenuate after repeated stimulation over several minutes (p > 0.110), suggesting that the changes in beta suppression may reflect a slow reconfiguration of neural pathways instead of habituation. Suppression of beta was also associated with clinical symptom improvement across subjects. Importantly, symptom-relevant features fell within the high beta band at month 1 but shifted to the low beta band at month 6, indicating that the high beta and the low beta oscillations may play different functional roles and respond differently to stimulation over the long-term treatment. CONCLUSION These data may advance understanding of chronic DBS effects on beta oscillations and their association with clinical improvement, offering novel insights to the therapeutic mechanisms of DBS.
Collapse
Affiliation(s)
- Yue Chen
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Chen Gong
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Natasza Orlov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, 100032, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Changqing Jiang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, 29425, SC, USA.
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 10084, China; Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518071, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China; Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
15
|
Vinding MC, Tsitsi P, Waldthaler J, Oostenveld R, Ingvar M, Svenningsson P, Lundqvist D. Reduction of spontaneous cortical beta bursts in Parkinson's disease is linked to symptom severity. Brain Commun 2020; 2:fcaa052. [PMID: 32954303 PMCID: PMC7425382 DOI: 10.1093/braincomms/fcaa052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/13/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease is characterized by a gradual loss of dopaminergic neurons, which is associated with altered neuronal activity in the beta-band (13-30 Hz). Assessing beta-band activity typically involves transforming the time-series to get the power of the signal in the frequency domain. Such transformation assumes that the time-series can be reduced to a combination of steady-state sine- and cosine waves. However, recent studies have suggested that this approach masks relevant biophysical features in the beta-band-for example, that the beta-band exhibits transient bursts of high-amplitude activity. In an exploratory study, we used magnetoencephalography to record beta-band activity from the sensorimotor cortex, to characterize how spontaneous cortical beta bursts manifest in Parkinson's patients on and off dopaminergic medication, and compare this to matched healthy controls. We extracted the time-course of beta-band activity from the sensorimotor cortex and characterized bursts in the signal. We then compared the burst rate, duration, inter-burst interval and peak amplitude between the Parkinson's patients and healthy controls. Our results show that Parkinson's patients off medication had a 5-17% lower beta bursts rate compared to healthy controls, while both the duration and the amplitude of the bursts were the same for healthy controls and medicated state of the Parkinson's patients. These data thus support the view that beta bursts are fundamental underlying features of beta-band activity, and show that changes in cortical beta-band power in Parkinson's disease can be explained-primarily by changes in the underlying burst rate. Importantly, our results also revealed a relationship between beta burst rate and motor symptom severity in Parkinson's disease: a lower burst rate scaled with increased severity of bradykinesia and postural/kinetic tremor. Beta burst rate might thus serve as a neuromarker for Parkinson's disease that can help in the assessment of symptom severity in Parkinson's disease or in the evaluation of treatment effectiveness.
Collapse
Affiliation(s)
- Mikkel C Vinding
- Department of Clinical Neuroscience, NatMEG, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Panagiota Tsitsi
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Waldthaler
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Robert Oostenveld
- Department of Clinical Neuroscience, NatMEG, Karolinska Institutet, 171 77 Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Martin Ingvar
- Department of Clinical Neuroscience, NatMEG, Karolinska Institutet, 171 77 Stockholm, Sweden
- Section of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- Department of Clinical Neuroscience, NatMEG, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Cao C, Li D, Zhan S, Zhang C, Sun B, Litvak V. L-dopa treatment increases oscillatory power in the motor cortex of Parkinson's disease patients. Neuroimage Clin 2020; 26:102255. [PMID: 32361482 PMCID: PMC7195547 DOI: 10.1016/j.nicl.2020.102255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is a movement disorder caused by dopaminergic neurodegeneration. Levodopa (L-dopa) is an effective medication for alleviating motor symptoms in PD that has been shown previously to reduce subcortical beta (13-30 Hz) oscillations. How L-dopa influences oscillations in the motor cortex is unclear. In this study, 21 PD patients were recorded with magnetoencephalography (MEG) in L-dopa ON and OFF states. Oscillatory components of resting-state power spectra were compared between the two states and the significant effect was localized using beamforming. Unified Parkinson's Disease Rating Scale (UPDRS) III akinesia and rigidity sub-scores for the most affected hemibody were correlated with source power values for the contralateral hemisphere. An L-dopa-induced power increase was found over the central sensors significant in the 18-30 Hz range (F(1,20) > 14.8, PFWE corr < 0.05, cluster size inference with P = 0.001 cluster-forming threshold). Beamforming localization of this effect revealed distinct peaks at the bilateral sensorimotor cortex. A significant correlation between the magnitude of L-dopa induced 18-30 Hz oscillatory motor-cortical power increase and the degree of improvement in contralateral akinesia and rigidity was found (F(2, 19) = 4.9, pone-tailed = 0.02, R2 = 0.2). Power in the same range was also inversely correlated with combined akinesia and rigidity scores in the L-dopa OFF state (F(2, 19) = 9.2, ptwo-tailed = 0.007, R2 = 0.33) but not in the L-dopa ON state (F(2, 19) = 0.27, ptwo-tailed = 0.6, R2 = 0.01). These results suggest that the role of motor cortical beta oscillations in PD is distinct from that of subcortical beta.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Dianyou Li
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Chencheng Zhang
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
17
|
Avecillas-Chasin JM, Honey CR. Modulation of Nigrofugal and Pallidofugal Pathways in Deep Brain Stimulation for Parkinson Disease. Neurosurgery 2020; 86:E387-E397. [PMID: 31832650 DOI: 10.1093/neuros/nyz544] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for patients with Parkinson disease (PD). OBJECTIVE To define the role of adjacent white matter stimulation in the effectiveness of STN-DBS. METHODS We retrospectively evaluated 43 patients with PD who received bilateral STN-DBS. The volumes of activated tissue were analyzed to obtain significant stimulation clusters predictive of 4 clinical outcomes: improvements in bradykinesia, rigidity, tremor, and reduction of dopaminergic medication. Tractography of the nigrofugal and pallidofugal pathways was performed. The significant clusters were used to calculate the involvement of the nigrofugal and pallidofugal pathways and the STN. RESULTS The clusters predictive of rigidity and tremor improvement were dorsal to the STN with most of the clusters outside of the STN. These clusters preferentially involved the pallidofugal pathways. The cluster predictive of bradykinesia improvement was located in the central part of the STN with an extension outside of the STN. The cluster predictive of dopaminergic medication reduction was located ventrolateral and caudal to the STN. These clusters preferentially involved the nigrofugal pathways. CONCLUSION Improvements in rigidity and tremor mainly involved the pallidofugal pathways dorsal to the STN. Improvement in bradykinesia mainly involved the central part of the STN and the nigrofugal pathways ventrolateral to the STN. Maximal reduction in dopaminergic medication following STN-DBS was associated with an exclusive involvement of the nigrofugal pathways.
Collapse
Affiliation(s)
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Boon LI, Hillebrand A, Potters WV, de Bie RMA, Prent N, Bot M, Schuurman PR, Stam CJ, van Rootselaar AF, Berendse HW. Motor effects of deep brain stimulation correlate with increased functional connectivity in Parkinson's disease: An MEG study. Neuroimage Clin 2020; 26:102225. [PMID: 32120294 PMCID: PMC7049661 DOI: 10.1016/j.nicl.2020.102225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established symptomatic treatment in Parkinson's disease, yet its mechanism of action is not fully understood. Locally in the STN, stimulation lowers beta band power, in parallel with symptom relief. Therefore, beta band oscillations are sometimes referred to as "anti-kinetic". However, in recent studies functional interactions have been observed beyond the STN, which we hypothesized to reflect clinical effects of DBS. Resting-state, whole-brain magnetoencephalography (MEG) recordings and assessments on motor function were obtained in 18 Parkinson's disease patients with bilateral STN-DBS, on and off stimulation. For each brain region, we estimated source-space spectral power and functional connectivity with the rest of the brain. Stimulation led to an increase in average peak frequency and a suppression of absolute band power (delta to low-beta band) in the sensorimotor cortices. Significant changes (decreases and increases) in low-beta band functional connectivity were observed upon stimulation. Improvement in bradykinesia/rigidity was significantly related to increases in alpha2 and low-beta band functional connectivity (of sensorimotor regions, the cortex as a whole, and subcortical regions). By contrast, tremor improvement did not correlate with changes in functional connectivity. Our results highlight the distributed effects of DBS on the resting-state brain and suggest that DBS-related improvements in rigidity and bradykinesia, but not tremor, may be mediated by an increase in alpha2 and low-beta functional connectivity. Beyond the local effects of DBS in and around the STN, functional connectivity changes in these frequency bands might therefore be considered as "pro-kinetic".
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Wouter V Potters
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rob M A de Bie
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Naomi Prent
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maarten Bot
- Amsterdam UMC, University of Amsterdam, Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Amsterdam UMC, University of Amsterdam, Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Neurophysiology and Magnetoencephalography Centre, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Boon LI, Geraedts VJ, Hillebrand A, Tannemaat MR, Contarino MF, Stam CJ, Berendse HW. A systematic review of MEG-based studies in Parkinson's disease: The motor system and beyond. Hum Brain Mapp 2019; 40:2827-2848. [PMID: 30843285 PMCID: PMC6594068 DOI: 10.1002/hbm.24562] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is accompanied by functional changes throughout the brain, including changes in the electromagnetic activity recorded with magnetoencephalography (MEG). An integrated overview of these changes, its relationship with clinical symptoms, and the influence of treatment is currently missing. Therefore, we systematically reviewed the MEG studies that have examined oscillatory activity and functional connectivity in the PD‐affected brain. The available articles could be separated into motor network‐focused and whole‐brain focused studies. Motor network studies revealed PD‐related changes in beta band (13–30 Hz) neurophysiological activity within and between several of its components, although it remains elusive to what extent these changes underlie clinical motor symptoms. In whole‐brain studies PD‐related oscillatory slowing and decrease in functional connectivity correlated with cognitive decline and less strongly with other markers of disease progression. Both approaches offer a different perspective on PD‐specific disease mechanisms and could therefore complement each other. Combining the merits of both approaches will improve the setup and interpretation of future studies, which is essential for a better understanding of the disease process itself and the pathophysiological mechanisms underlying specific PD symptoms, as well as for the potential to use MEG in clinical care.
Collapse
Affiliation(s)
- Lennard I Boon
- Amsterdam UMC, location VUmc, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Victor J Geraedts
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, location VUmc, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, location VUmc, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Hatz F, Meyer A, Roesch A, Taub E, Gschwandtner U, Fuhr P. Quantitative EEG and Verbal Fluency in DBS Patients: Comparison of Stimulator-On and -Off Conditions. Front Neurol 2019; 9:1152. [PMID: 30687215 PMCID: PMC6333686 DOI: 10.3389/fneur.2018.01152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) ameliorates motor function in patients with Parkinson's disease and allows reducing dopaminergic therapy. Beside effects on motor function STN-DBS influences many non-motor symptoms, among which decline of verbal fluency test performance is most consistently reported. The surgical procedure itself is the likely cause of this decline, while the influence of the electrical stimulation is still controversial. STN-DBS also produces widespread changes of cortical activity as visualized by quantitative EEG. The present study aims to link an alteration in verbal fluency performance by electrical stimulation of the STN to alterations in quantitative EEG. Methods: Sixteen patients with STN-DBS were included. All patients had a high density EEG recording (256 channels) while testing verbal fluency in the stimulator on/off situation. The phonemic, semantic, alternating phonemic and semantic fluency was tested (Regensburger Wortflüssigkeits-Test). Results: On the group level, stimulation of STN did not alter verbal fluency performance. EEG frequency analysis showed an increase of relative alpha2 (10–13 Hz) and beta (13–30 Hz) power in the parieto-occipital region (p ≤ 0.01). On the individual level, changes of verbal fluency induced by stimulation of the STN were disparate and correlated inversely with delta power in the left temporal lobe (p < 0.05). Conclusion: STN stimulation does not alter verbal fluency performance in a systematic way at group level. However, when in individual patients an alteration of verbal fluency performance is produced by electrical stimulation of the STN, it correlates inversely with left temporal delta power.
Collapse
Affiliation(s)
- Florian Hatz
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Antonia Meyer
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Anne Roesch
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Ethan Taub
- Department of Neurosurgery, Hospitals of University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Peter Fuhr
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Distinct cortical responses evoked by electrical stimulation of the thalamic ventral intermediate nucleus and of the subthalamic nucleus. NEUROIMAGE-CLINICAL 2018; 20:1246-1254. [PMID: 30420259 PMCID: PMC6308824 DOI: 10.1016/j.nicl.2018.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
Abstract
Objective To investigate the spatial and temporal pattern of cortical responses evoked by deep brain stimulation (DBS) of the subthalamic nucleus (STN) and ventral intermediate nucleus of the thalamus (VIM). Methods We investigated 7 patients suffering from Essential tremor (ET) and 7 patients with Parkinson's Disease (PD) following the implantation of DBS electrodes (VIM for ET patients, STN for PD patients). Magnetoencephalography (MEG) was used to record cortical responses evoked by electric stimuli that were applied via the DBS electrode in trains of 5 Hz. Dipole fitting was applied to reconstruct the origin of evoked responses. Results Both VIM and STN DBS led to short latency cortical responses at about 1 ms. The pattern of medium and long latency cortical responses following VIM DBS consisted of peaks at 13, 40, 77, and 116 ms. The associated equivalent dipoles were localized within the central sulcus, 3 patients showed an additional response in the cerebellum at 56 ms. STN DBS evoked cortical responses peaking at 4 ms, 11 ms, and 27 ms, respectively. While most dipoles were localized in the pre- or postcentral gyrus, the distribution was less homogenous compared to VIM stimulation and partially included prefrontal brain areas. Conclusion MEG enables localization of cortical responses evoked by DBS of the VIM and the STN, especially in the sensorimotor cortex. Short latency responses of 1 ms suggest cortical modulation which bypasses synaptic transmission, i.e. antidromic activation of corticofugal fiber pathways. Cortical responses evoked by VIM or STN DBS can be precisely described using MEG. Both STN and VIM DBS primarily evoke cortical responses within the sensorimotor region. Short latency responses of 1 ms both observed in VIM and STN DBS suggest antidromic activation of corticofugal fibers.
Collapse
|