1
|
Ayeldeen G, Shaker OG, Gomaa M, Magdy MM, Elsamaloty N, Kamel AS, Senousy MA. Association of Epistatic Effects of lncRNA GAS5, miR-146a, IRAK-1, and miR-155 Genetic Variants with Multiple Sclerosis Risk and Severity. Mol Neurobiol 2025:10.1007/s12035-025-04876-8. [PMID: 40234289 DOI: 10.1007/s12035-025-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The complex genetic architecture of heritability in multiple sclerosis (MS) remains undisclosed mainly. Epistasis (gene-gene interaction) substantially impacts MS; however, it is largely unexplored, especially among the non-coding RNA genes and their targets. The long non-coding RNA GAS5 exacerbates demyelination and sponges miR-146a and miR-155, impeccable contributors to MS pathogenesis. miR-146a negatively regulates the immune responses by targeting IRAK-1. We investigated the association of epistatic effects and haplotypes of five single nucleotide polymorphisms (SNPs), GAS5 rs2067079, miR-146a rs2910164 and rs57095329, IRAK-1 rs3027898, and miR-155 rs767649, with the risk of MS and its phenotypes. The expression quantitative trait locus (eQTL) associated with these variants was explored through bioinformatics analysis. The study enrolled 116 MS patients and 120 healthy controls. No strong linkage disequilibrium (D' ≥ 0.8) was detected among the studied SNPs. SNP-SNP interactions overlaid an overall magnified risk of MS and its phenotypes compared to the single-locus effects. After adjustment for multiple comparisons, the most significant interactions associated with the risk of overall MS and secondary-progressive MS were rs2067079-rs2910164, rs2910164-rs57095329, and rs3027898-rs767649. The last two former SNP-SNP interactions were highly associated with relapsing-remitting MS risk. The same pattern of interactions, as observed in association with MS risk, was female-specific. The CCAAA haplotype (alleles in the order of rs2067079, rs2910164, rs57095329, rs3027898, and rs767649) was protective against MS risk (CCAAA vs. CGAAT, adjusted OR = 0.14, 95% CI = 0.03-0.69, P = 0.009). Among MS patients, harboring the CGACT and CGAAT haplotypes was more prevalent in females and males, respectively. MS patients having EDSS ≥ 6 had a significantly higher frequency of the CCGCA haplotype than those with EDSS < 6. Functional analysis revealed rs2067079, rs57095329, and rs767649 as strong cis-eQTL regulating multiple genes, particularly in the brain and immune system. We propose that a magnified combined effect of GAS5, miR-146a, IRAK-1, and miR-155 genetic variants via epistatic interactions might impact the risk of MS and its phenotypes and could help in the risk stratification of MS patients.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Gomaa
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mostafa M Magdy
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nourhan Elsamaloty
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez St, Cairo, PO 11786, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Tian R, Ghosh S. Mechanisms and functions of lncRNAs linked to autoimmune disease risk alleles. Adv Immunol 2024; 161:1-15. [PMID: 38763698 DOI: 10.1016/bs.ai.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Recent advances in human genomics technologies have helped uncover genetic risk alleles for many complex autoimmune diseases. Intriguingly, over 90% of genome-wide association study (GWAS) risk alleles reside within the non-coding regions of the genome. An emerging new frontier of functional and mechanistic studies have shed light on the functional relevance of risk alleles that lie within long noncoding RNAs (lncRNAs). Here, we review the mechanisms and functional implications of five evolutionarily conserved lncRNAs that display risk allele association with highly prevalent autoimmune diseases.
Collapse
Affiliation(s)
- Ruxiao Tian
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
GAS5/METTL14/ESR1 genetic variants are related to the susceptibility of coronary heart disease. Funct Integr Genomics 2022; 22:341-357. [PMID: 35235104 DOI: 10.1007/s10142-022-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
The prevention and treatment of coronary heart disease (CHD) is a difficult problem to be solved urgently. Genetic factors play a crucial role in CHD development. This study aimed to investigate the association of GAS5/METTL14/ESR1 polymorphisms with CHD susceptibility. We carried out a case-control study that included 506 patients and 506 healthy subjects to detect the correlation between GAS5/METTL14/ESR1 polymorphisms and CHD risk in a Chinese population. Odds ratios (OR) and 95% confidence intervals (CI) were computed to assess the associations. Our study showed that GAS5 rs17359906 (OR 2.32, p = 0.020) and rs75315904 (OR 0.41, p = 0.039) were related to the risk of CHD in females. ESR1 rs6927072 (OR 1.76, p = 0.007) and rs4870061 (OR 0.74, p = 0.036) correlated with CHD risk in age ≤ 60 years. GAS5 rs17359906 (OR 0.10, p = 0.032) and ESR1 rs3020308 (OR 2.73, p = 0.041) were associated with an increased susceptibility to CHD in smokers. We also found that METTL14 rs4834698 (OR 1.57, p = 0.044) and ESR1 rs4870061 (OR 0.62, p = 0.040) were associated with CHD susceptibility in non-drinkers. Besides, METTL14 rs17050450 (OR 0.48, p = 0.029) and ESR1 rs3853248 (OR 1.61, p = 0.018) had the susceptibility of CHD patients with diabetes. Our study indicated that GAS5/METTL14/ESR1 polymorphisms were associated with CHD risk, which might provide a new understanding of CHD in a Chinese population.
Collapse
|
5
|
Xiang X, Chen L, He J, Ma G, Li Y. LncRNA GAS5 rs145204276 Polymorphism Reduces Renal Cell Carcinoma Susceptibility in Southern Chinese Population. J Inflamm Res 2022; 15:1147-1158. [PMID: 35210817 PMCID: PMC8863339 DOI: 10.2147/jir.s348628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Methods Results Conclusions
Collapse
Affiliation(s)
- Xiaoyao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Linfa Chen
- Department of NeUrology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China
- Correspondence: Guoda Ma, Maternal and Children’s Health Research Institute, Shunde Maternal and Children’s Hospital, Guangdong Medical University, Shunde, 528300, People’s Republic of China, Email
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- You Li, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China, Email
| |
Collapse
|
6
|
Jalaiei A, Asadi MR, Sabaie H, Dehghani H, Gharesouran J, Hussen BM, Taheri M, Ghafouri-Fard S, Rezazadeh M. Long Non-Coding RNAs, Novel Offenders or Guardians in Multiple Sclerosis: A Scoping Review. Front Immunol 2021; 12:774002. [PMID: 34950142 PMCID: PMC8688805 DOI: 10.3389/fimmu.2021.774002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system, is one of the most common neurodegenerative diseases worldwide. MS results in serious neurological dysfunctions and disability. Disturbances in coding and non-coding genes are key components leading to neurodegeneration along with environmental factors. Long non-coding RNAs (lncRNAs) are long molecules in cells that take part in the regulation of gene expression. Several studies have confirmed the role of lncRNAs in neurodegenerative diseases such as MS. In the current study, we performed a systematic analysis of the role of lncRNAs in this disorder. In total, 53 studies were recognized as eligible for this systematic review. Of the listed lncRNAs, 52 lncRNAs were upregulated, 37 lncRNAs were downregulated, and 11 lncRNAs had no significant expression difference in MS patients compared with controls. We also summarized some of the mechanisms of lncRNA functions in MS. The emerging role of lncRNAs in neurodegenerative diseases suggests that their dysregulation could trigger neuronal death via still unexplored RNA-based regulatory mechanisms. Evaluation of their diagnostic significance and therapeutic potential could help in the design of novel treatments for MS.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Dehghani
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ghafouri-Fard S, Honarmand Tamizkar K, Gholipour M, Abak A, Kholghi Oskooei V, Taheri M, Rakhshan A. Association analysis of GAS5 polymorphisms and psoriasis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Elamir AM, Senara S, Abdelghaffar NK, Gaber SN, El Sayed HS. Diagnostic role of lncRNA GAS5 and its genetic polymorphisms rs2067079, rs6790 and rs17359906 in rheumatoid arthritis. Biomed Rep 2021; 15:93. [PMID: 34631048 DOI: 10.3892/br.2021.1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to detect the serum levels of long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) in patients with rheumatoid arthritis (RA) and healthy controls, and determine the association between the rs2067079, rs6790, and rs17359906 single-nucleotide polymorphisms (SNPs) of lncRNA GAS5 gene with RA risk in the Egyptian population. Reverse transcription-quantitative PCR and real-time PCR were used to measure the serum levels of lncRNA GAS5 and genotype the two distinct alleles at the SNP sites of lncRNA GAS5 gene in 200 patients with RA and 150 controls. The mean serum levels of lncRNA GAS5 were significantly lower in the patients with RA compared with the controls (P<0.0001), and the serum levels of lncRNA GAS5 were significantly negatively associated with erythrocyte sedimentation rate, C-reactive protein levels and anti-cyclic citrullinated peptide levels in the patients with RA. The TT genotype of rs2067079 SNP was significantly associated with a decreased risk of RA [TT vs. CC: Odds ratio (OR)=2.358; 95% confidence interval (CI), 1.114-5.131; P=0.045) and the risk of rs2067079 SNP reduced with a recessive pattern (TT vs. TC + CC: OR=2.374; 95% CI, 1.091-5.123; P=0.037). rs6790 SNP was associated with RA risk in the recessive model (AA vs. GA + GG: OR=2.55; 95% CI=1.39-5.32; P=0.02). No significant associations were noted between the rs17359906 SNP and RA risk (P>0.05) or between the lncRNA GAS5 levels and their respective genotypes at the three SNPs in patients with RA (all P>0.05). Based on the results of the present study, lncRNA GAS5 may serve as a biomarker for the early detection of RA. The TT genotype of rs2067079 SNP was significantly associated with a decreased risk of RA, and a reduced risk of rs2067079 SNP was observed with a recessive pattern. rs6790 SNP was associated with RA risk in the recessive model.
Collapse
Affiliation(s)
- Azza M Elamir
- Medical Biochemistry Department, Faculty of Medicine, Fayoum University, Fayoum 63616, Egypt
| | - Soha Senara
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum 63616, Egypt
| | | | - Sylvana N Gaber
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum 63616, Egypt
| | - Hassan Salem El Sayed
- Medical Biochemistry Department, Faculty of Medicine, Fayoum University, Fayoum 63616, Egypt
| |
Collapse
|
9
|
GAS5 rs2067079 and miR-137 rs1625579 functional SNPs and risk of chronic hepatitis B virus infection among Egyptian patients. Sci Rep 2021; 11:20014. [PMID: 34625583 PMCID: PMC8501054 DOI: 10.1038/s41598-021-99345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a significant health issue worldwide.. We attempted to fulfill the molecular mechanisms of epigenetic and genetic factors associated with chronic HBV (CHBV). Expression levels of the lncRNA growth arrest-specific 5 (GAS5) and miR-137 and their corresponding SNPs, rs2067079 (C/T) and rs1625579 (G/T) were analyzed in 117 CHBV patients and 120 controls to investigate the probable association between these biomarkers and CHBV pathogenesis in the Egyptian population. Serum expression levels of GAS5 and miR-137 were significantly down-regulated in cases vs controls. Regarding GAS5 (rs2067079), the mutant TT genotype showed an increased risk of CHBV (p < 0.001), while the dominant CC was a protective factor (p = 0.004). Regarding miR-137 rs1625579, the mutant genotype TT was reported as a risk factor for CHBV (p < 0.001) and the normal GG genotype was a protective factor, p < 0.001. The serum GAS5 was significantly higher in the mutant TT genotype of GAS5 SNP as compared to the other genotypes (p = 0.007). Concerning miR-137 rs1625579, the mutant TT genotype was significantly associated with a lower serum expression level of miR-137 (p = 0.018). We revealed the dysregulated expression levels of GAS5 and miR-137 linked to their functioning SNPs were associated with CHBV risk and might act as potential therapeutic targets.
Collapse
|
10
|
Nociti V, Santoro M. What do we know about the role of lncRNAs in multiple sclerosis? Neural Regen Res 2021; 16:1715-1722. [PMID: 33510060 PMCID: PMC8328773 DOI: 10.4103/1673-5374.306061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis is a chronic, inflammatory and degenerative disease of the central nervous system of unknown aetiology although well-defined evidence supports an autoimmune pathogenesis. So far, the exact mechanisms leading to autoimmune diseases are still only partially understood. We know that genetic, epigenetic, molecular, and cellular factors resulting in pathogenic inflammatory responses are certainly involved. Long non-coding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides that play an important role in both innate and acquired immunity, so there is great interest in lncRNAs involved in autoimmune diseases. The research on multiple sclerosis has been enriched with many studies on the molecular role of lncRNAs in the pathogenesis of the disease and their potential application as diagnostic and prognostic biomarkers. In particular, many multiple sclerosis fields of research are based on the identification of lncRNAs as possible biomarkers able to predict the onset of the disease, its activity degree, its progression phase and the response to disease-modifying drugs. Last but not least, studies on lncRNAs can provide a new molecular target for new therapies, missing, so far, a cure for multiple sclerosis. While our knowledge on the role of lncRNA in multiple sclerosis has recently improved, further studies are required to better understand the specific role of lncRNAs in this neurological disease. In this review, we present the most recent studies on molecular characterization of lncRNAs in multiple sclerosis disorder discussing their clinical relevance as biomarkers for diagnosis and treatments.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
11
|
Liu CH, Lu YL, Huang HT, Wang CF, Luo HC, Wei GJ, Lei M, Tan T, Wang Y, Huang YY, Wei YS, Lan Y. Association of LncRNA-GAS5 gene polymorphisms and PBMC LncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population. J Cell Mol Med 2021; 25:3548-3559. [PMID: 33728802 PMCID: PMC8034459 DOI: 10.1111/jcmm.16438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Growth arrest‐specific 5 (GAS5) is a kind of long non‐coding RNAs (lncRNAs). Previous studies showed that down‐regulation of LncRNA‐GAS5 was involved in the development of systemic lupus erythematosus (SLE). However, the regulatory mechanism of down‐expressed LncRNA‐GAS5 in SLE remains obscure. In this study, we aimed to investigate the association of LncRNA‐GAS5 polymorphism with SLE risk. And further explore how LncRNA‐GAS5 is involved in the occurrence of SLE. Here, we evaluated the relationship between the risk for the development of SLE and the 5‐base pair (AGGCA/‐) insertion/deletion (I/D) polymorphism (rs145204276) in the LncRNA‐GAS5 promoter region. A custom 36‐Plex SNPscan kit was used for genotyping the LncRNA‐GAS5 polymorphisms. The LncRNA‐GAS5 and miR‐21 target prediction was performed using bioinformatics software. Enzyme‐linked immunosorbent assay (ELISA) and quantitative real‐time PCR (qRT‐PCR) were performed to assess GAS5 and miR‐21 mRNA expression and PTEN protein expression. The results revealed that rs145204276 resulted in a decreased risk of SLE (DD genotypes vs II genotypes: adjusted OR = 0.538, 95% CI, 0.30‐0.97, P = .039; ID genotypes vs II genotypes: adjusted OR = 0.641, 95% CI, 0.46‐0.89, P = .007; ID/DD genotypes vs II genotypes: adjusted OR = 0.621, 95% CI, 0.46‐0.84, P = .002; D alleles vs I alleles: adjusted OR = 0.680, 95% CI, 0.53‐0.87, P = .002). A reduced incidence of renal disorders in SLE was found to be related to ID/DD genotypes and D alleles (ID/DD genotypes vs II genotypes: OR = 0.57, 95% CI, 0.36‐0.92, P = .020; D alleles vs I alleles: OR = 0.63, 95% CI, 0.43‐0.93, P = .019). However, no significant association of rs2235095, rs6790, rs2067079 and rs1951625 polymorphisms with SLE risk was observed (P > .05). Additionally, haplotype analysis showed that a decreased SLE risk resulted from the A‐A‐C‐G‐D haplotype (OR = 0.67, 95% CI, 0.49‐0.91, P = .010). Also, patients in the SLE group showed a down‐regulated expression of LncRNA‐GAS5 and PTEN than the healthy volunteers; however, patients with rs145204276 ID/DD genotypes showed up‐regulated expression of LncRNA‐GAS5 and PTEN compared with patients carrying the II genotype. Furthermore, the miR‐21 levels were considerably up‐regulated in the SLE group than the healthy volunteers, and patients with rs145204276 ID/DD genotype had lower miR‐21 levels than the ones with the II genotype. Thus, we found that the LncRNA‐GAS5/miR‐21/PTEN signalling pathway was involved in the development of SLE, where LncRNA‐GAS5 acted as an miR‐21 target, and miR‐21 regulated the expression of PTEN. These findings indicated that the rs145204276 ID/DD genotypes in the LncRNA‐GAS5 gene promoter region may be protected against SLE by up‐regulating the expression of LncRNA‐GAS5, which consecutively regulated miR‐21 and PTEN levels.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Lan Lu
- Department of Medical Reproduction Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hua-Tuo Huang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chun-Fang Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hong-Cheng Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gui-Jiang Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ming Lei
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Tan Tan
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan-Yun Huang
- Department of Clinical Laboratory, People's Hospital of Baise, Baise, China
| | - Ye-Sheng Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yan Lan
- Department of Dermatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
12
|
Senousy MA, Shaker OG, Sayed NH, Fathy N, Kortam MA. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci 2020; 11:1651-1660. [PMID: 32348112 DOI: 10.1021/acschemneuro.0c00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is influenced by the interaction of genetic and epigenetic mechanisms. The long noncoding RNA GAS5 acts as a competing endogenous RNA for microRNA-137 and is involved in demyelination. We investigated the association of GAS5 and miR-137 expression and their polymorphisms with MS susceptibility. One hundred and eight MS patients and 104 healthy controls were included. Expression analysis and genotyping of GAS5-rs2067079 and miR-137-rs1625579 single nucleotide polymorphisms were performed by qPCR. Serum GAS5 was upregulated, while serum miR-137 was downregulated in MS compared with the controls. Serum miR-137 was an excellent discriminator of MS patients from the controls (AUC = 0.97) and a negative independent predictor of MS in multivariate logistic analysis. Serum GAS5 expression was positively correlated with the expanded disability status scale scores in the relapsing-remitting MS patients. The rs2067079TT minor homozygote genotype was associated with an increased MS risk, while the rs1625579G minor allele was protective. rs1625579 showed an age-specific effect, while the rs2067079 affected the MS risk in gender- and age-specific manners. In MS patients, rs2067079TT was associated with a higher serum GAS5 than other genotypes, while serum miR-137 did not differ between rs1625579 genotypes. Our results suggest serum GAS5 and miR-137 as MS biomarkers, with miR-137 as a negative predictor of MS risk and GAS5 as a marker of MS severity. We propose rs2067079 and rs1625579 as novel genetic markers of MS susceptibility, and at least, rs2067079 possibly impacts the crosstalk between GAS5 and miR-137.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Decreased H19, GAS5, and linc0597 Expression and Association Analysis of Related Gene Polymorphisms in Rheumatoid Arthritis. Biomolecules 2019; 10:biom10010055. [PMID: 31905737 PMCID: PMC7022387 DOI: 10.3390/biom10010055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) widely participate in human diseases by regulating gene transcription, modulating protein function, or acting as ceRNAs. Yet, their roles in rheumatoid arthritis (RA) remain obscure. In this study, the expression of three lncRNAs (H19, GAS5, and linc0597) in peripheral blood mononuclear cells (PBMCs) were detected in 77 RA patients and 78 controls using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The association of lncRNAs related gene polymorphisms with RA were evaluated in 828 RA patients and 780 controls using TaqMan single nucleotide polymorphism (SNP) genotyping assays. We observed that the expression levels of H19, GAS5 and linc0597 were down-regulated in PBMCs of RA patients, of which GAS5 level decreased in patients with hypocomplementemia, and negatively correlated with C-reactive protein (CRP) level in RA patients. Moreover, we highlighted two related potential functional SNPs, GAS5 rs6790 and linc0597 rs2680700 for associations with RA susceptibility. The precise roles of these lncRNAs in mechanism of RA remain to be further explored.
Collapse
|
14
|
Long noncoding RNAs associated with phenotypic severity in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101407. [DOI: 10.1016/j.msard.2019.101407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
|
15
|
Feng S, Ji G, Ma J, Wang Z, Zhao Y, Tao C. Long noncoding RNA GAS5 does not regulate HBV replication. J Med Virol 2019; 91:1949-1959. [PMID: 31301149 DOI: 10.1002/jmv.25547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/06/2019] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection remains a severe health burden worldwide. Emerging long noncoding RNAs (lncRNAs) are hijacked to enhance virus replication or employed by the host to stimulate immune responses to clear the virus. LncRNA growth arrest-specific transcript 5 (GAS5) can regulate RNA virus by suppressing the replication of both hepatitis C virus and human immunodeficiency virus. In this study, we explored the changes of HBV replication by overexpressing or knocking down GAS5 in HepAD38 cell and HepG2 cell transfected with pHBV1.2. We found HBV can induce the expression of GAS5. However, GAS5 had no effect on extracellular HBsAg and HBeAg, nor intracellular HBV RNA and HBV DNA. In addition, GAS5 possessed similar expression levels between stable HBV-producing cell lines and hepatoma cell lines. Furthermore, GAS5 showed no difference between healthy subjects and patients with chronic HBV in multiple GEO microarray data sets by GEO2R analysis. Taken together these results, GAS5 does not modulate the replication of HBV but it inhibits cell proliferation in HepAD38. This provides insights into the possible roles of GAS5 in HBV infection.
Collapse
Affiliation(s)
- Shu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gaili Ji
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhonghao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanhua Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Rakhshan A, Esmaeili MH, Kahaei MS, Taheri M, Omrani MD, Noroozi R, Ghafouri-Fard S. A Single Nucleotide Polymorphism in GAS5 lncRNA is Associated with Risk of Bladder Cancer in Iranian Population. Pathol Oncol Res 2019; 26:1251-1254. [PMID: 31250374 DOI: 10.1007/s12253-019-00693-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Down-regulation of the long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) has a pathogenic role in bladder cancer. Moreover, genomic variants of this lncRNA have been associated with risk of diverse cancers. In the present project, we genotyped two putative functional SNPs (rs2067079 and rs6790) in 122 bladder cancer patients and 150 age- and sex-matched healthy subjects. The rs2067079 was associated risk of bladder cancer in recessive inheritance model (TT vs.CC + CT: OR (95% Confidence interval (CI)) = 2.67 (1.27-5.62), adjusted P value = 0.02). The T G haplotype (rs2067079 and rs6790) increased the risk of bladder cancer in the assessed population (OR (95% CI) = 1.73 (1.18-2.56), adjusted P value = 0.02). Consequently, in the current project we introduced a novel risk locus for bladder cancer in Iranian population.
Collapse
Affiliation(s)
- Azadeh Rakhshan
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Esmaeili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mir Salar Kahaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|