1
|
Niepokny TD, Frey-Burkart H, Mintz EM. Temporal and spatial layout of endocannabinoid system components in the mouse suprachiasmatic nucleus. Neuroscience 2025; 564:179-193. [PMID: 39571963 DOI: 10.1016/j.neuroscience.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Environmental light serves as the main entraining signal for the central circadian pacemaker, the suprachiasmatic nucleus of the hypothalamus (SCN). To shift clock timing with the changing environment, minute adjustments are necessary and the endocannabinoid system (ECS) acts as a neuromodulatory signaling mechanism in the SCN. These systems exert bidirectional effects on one another, still, limited knowledge exists about the role of endocannabinoids in circadian rhythm regulation. Therefore, we investigated the temporal and spatial molecular layouts of the ECS in the SCN of male and female C57BL/6J mice. We utilized laser capture microdissection and quantitative RT-PCR to investigate the ECS temporal layout in the SCN, detected 13 of 19 examined ECS components, and followed up with two 24-hour time course experiments, one under 12:12 light/dark and one under constant dark conditions. All enzymatic machinery related to endocannabinoid synthesis and degradation investigated were found present; however, only cannabinoid receptor 1 (Cnr1) was detected from the 6 ECS related receptors investigated. Cosinor analysis revealed circadian rhythms in many components in both sexes and lighting conditions. Next, we investigated the spatial localization of ECS components in the SCN with RNAscope in situ hybridization. Some genes, such as Cnr1, were more highly expressed in neurons with others, such as Fabp7, were elevated in astrocytes. Cnr1 levels were highest in neurons that do not express the neuropeptides Avp or Vip, and lowest in Vip neurons. Our results support the idea that locally regulated ECS signaling through neuronal CB1 modulates circadian clock function.
Collapse
Affiliation(s)
- Timothy D Niepokny
- School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Hunter Frey-Burkart
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA.
| |
Collapse
|
2
|
Kumar D, Khan B, Okcay Y, Sis ÇÖ, Abdallah A, Murray F, Sharma A, Uemura M, Taliyan R, Heinbockel T, Rahman S, Goyal R. Dynamic endocannabinoid-mediated neuromodulation of retinal circadian circuitry. Ageing Res Rev 2024; 99:102401. [PMID: 38964508 DOI: 10.1016/j.arr.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| | - Bareera Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Çağıl Önal Sis
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Aya Abdallah
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Fiona Murray
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Ashish Sharma
- School of Medicine, Washington University, St. Louis, USA
| | - Maiko Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology Science, Pilani, Rajasthan 333301, India.
| | - Thomas Heinbockel
- Howard University College of Medicine, Department of Anatomy, Washington, DC 20059, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University, Brookings, SD, USA.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| |
Collapse
|
3
|
Niepokny TD, Mintz EM. A Cannabinoid Receptor 1 Agonist Reduces Light-induced Phase Delays in Male But Not Female Mice. J Biol Rhythms 2023:7487304231166785. [PMID: 37190758 PMCID: PMC10330025 DOI: 10.1177/07487304231166785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Animals adapt to a changing environment by synchronizing their circadian rhythms to different stimuli, the strongest and most reliable being the daily light-dark cycle. Photic information reaches the central circadian pacemaker, the suprachiasmatic nucleus (SCN), which drives rhythms in physiology and behavior throughout the brain and body. The endocannabinoid system (ECS) is a neuromodulatory system that is present within the SCN, including the primary receptor, cannabinoid receptor 1 (CB1). Exogenous cannabinoids that target CB1 inhibit the phase-shifting effects of light in hamsters, mice, and rats. Furthermore, there is evidence in cultured microglial cells that cannabidiol (CBD), a constituent of Cannabis sativa, alters core circadian clock genes, while the CB1 agonist delta-9-tetrahydrocannabinol (THC) does not. The CB1 agonist studies were conducted using male animals only, but cannabinoids exhibit sex-dependent effects in various aspects of physiology and behavior. In addition, the effects of CBD on circadian behavioral rhythms have yet to be investigated. Therefore, we decided to test the effects of acute injections of CBD or the CB1 agonist CP 55,940 on light-induced phase delays in male and female C57BL/6J mice. Animals received a single injection at circadian time (CT) 15.5, followed by a 10-min light or dark (sham) pulse at CT 16. Running-wheel activity was monitored to determine activity levels and the behavioral phase shifts from different treatments. We observed a sex difference in the magnitude of phase delay size in response to CP 55,940 administration. Males had attenuated phase delays with increasing doses of CP 55,940, while females did not differ from control. Various doses of CBD had no effect on the phase-delaying effects of light in either sex. Our results show a sex difference in the gating of photic phase shifts by CB1 activation.
Collapse
Affiliation(s)
- Timothy D Niepokny
- Department of Biological Sciences, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Eric M Mintz
- Department of Biological Sciences, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio
| |
Collapse
|
4
|
Bendová Z, Pačesová D, Novotný J. The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. J Comp Neurol 2020; 528:2471-2495. [PMID: 32170720 DOI: 10.1002/cne.24906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/12/2022]
Abstract
As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.
Collapse
Affiliation(s)
- Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|