1
|
Dong J, Xia R, Zhang Z, Xu C. lncRNA MEG3 aggravated neuropathic pain and astrocyte overaction through mediating miR-130a-5p/CXCL12/CXCR4 axis. Aging (Albany NY) 2021; 13:23004-23019. [PMID: 34609952 PMCID: PMC8544300 DOI: 10.18632/aging.203592] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) exert a critical function in mediating neuropathic pain (NP). MEG3, a novel lncRNA, contributes to astrocyte activation and inflammation. However, its role in NP remains unclear. METHODS The chronic constriction injury (CCI) method was employed to construct an NP rat model. Astrocyte activation was induced by lipopolysaccharide (LPS). The profiles of MEG3, microRNA (miR)-130a-5p, CXC motif chemokine receptor 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4), and the Rac1/NF-κB pathway in CCI rats' spinal cord tissues and astrocytes were monitored by reverse transcription-quantitative PCR (RT-qPCR) and western blot (WB). Pain scores of CCI rats were assessed. Enzyme-linked immunosorbent assay (ELISA) was adopted to monitor neuroinflammation alteration. The glial fibrillary acidic protein (GFAP)-labeled astrocytes were tested by immunohistochemistry (IHC). Bioinformatics, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were utilized to verify the molecular mechanism between MEG3 and miR-130a-3p. RESULTS MEG3, CXCL12 and CXCR4 were overexpressed and miR-130a-5p was knocked down in CCI rats and LPS-induced astrocytes. Up-regulating MEG3 aggravated NP, enhanced inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6) expression and release in CCI rats and LPS-induced astrocytes. Up-regulating miR-130-5p repressed LPS-induced inflammation in astrocytes. AS verified by the dual-luciferase reporter assay and RIP assay, MEG3 sponged miR-130a-5p as a competitive endogenous RNA (ceRNA). What's more, miR-130a-5p up-regulation weakened the MEG3-induced proinflammatory effects on LPS-induced astrocytes. CONCLUSIONS MEG3 aggravates NP and astrocyte activation via the miR-130a-5p/CXCL12/CXCR4 axis, which is a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Jiacai Dong
- Department of Anesthesiology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang 433100, Hubei, China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Zhonggui Zhang
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Cheng Xu
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| |
Collapse
|
2
|
Cao Y, Chen X, Liu Y, Zhang X, Zou Y, Li J. PIM1 inhibition attenuated endotoxin-induced acute lung injury through modulating ELK3/ICAM1 axis on pulmonary microvascular endothelial cells. Inflamm Res 2021; 70:89-98. [PMID: 33185705 DOI: 10.1007/s00011-020-01420-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/26/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE The dysfunction of pulmonary microvascular endothelial cells (PMVECs) is one of the critical characteristics of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) induced by severe infection. PIM1 is a constitutively active serine/threonine kinase that is involved in multiple biological processes. However, the underlying correlation between PIM1 and PMVECs injury remains unclear. The main purpose of this study was to reveal roles of PIM1 and explore the potential mechanisms during the development of endotoxin-induced ALI induced by intraperitoneal LPS administration. MATERIALS AND METHODS PIM1 level in the lung tissues of endotoxin-induced ALI mice or plasma derived from cardiopulmonary bypass (CPB)-induced ALI patients were measured. The protective roles of PIM1 specific inhibitor SMI-4a on endotoxin-induced lung injuries were evaluated through histological, permeability, neutrophil infiltration and survival assessment. The relationship between PIM1 and ELK3/ICAM-1 axis was validated in vivo and vitro. The correlation between plasma PIM1 and indicative vascular endothelium injury biomarkers (PaO2/FiO2 ratio, Ang-II, E-selectin and PAI-1) levels derived from CPB-induced ALI patient were analyzed. RESULTS PIM1 expression in the lung tissues was increased in the mice of endotoxin-induced ALI. The PIM1 specific inhibitor SMI-4a administration relieved the severity of endotoxin-induced ALI. More importantly, PIM1 modulates ICAM1 expression through regulating transcription factor ELK3 expression in vitro. Eventually, plasma PIM1 level was positively correlated with Ang-II and PAI-1 levels but negatively correlated with SpO2/FiO2 ratio among CPB induced ALI patients. CONCLUSION Our results indicated that PIM1 inhibition carried a protective role against endotoxin-induced ALI by modulating the ELK3/ICAM1 axis on PMVECs. PIM1 may be a potential therapeutic target for endotoxin-induced ALI.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xia Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xingyi Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yun Zou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
3
|
Wu Q, Yue J, Lin L, Yu X, Zhou Y, Ying X, Chen X, Tu W, Lou X, Yang G, Zhou K, Jiang S. Electroacupuncture may alleviate neuropathic pain via suppressing P2X7R expression. Mol Pain 2021; 17:1744806921997654. [PMID: 33626989 PMCID: PMC7934063 DOI: 10.1177/1744806921997654] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain is a severe problem that is difficult to treat clinically. Reducing abnormal remodeling of dendritic spines/synapses and increasing the anti-inflammatory effects in the spinal cord dorsal horn are potential methods to treat this disease. Previous studies have reported that electroacupuncture (EA) could increase the pain threshold after peripheral nerve injury. However, the underlying mechanism is unclear. P2X7 receptors (P2X7R) mediate the activation of microglia and participate in the occurrence and development of neuropathic pain. We hypothesized that the effects of EA on relieving pain may be related to the downregulation of the P2X7R. Spinal nerve ligation (SNL) rats were used as a model in this experiment, and 2'(3')-O-(4-benzoyl)benzoyl ATP (BzATP) was used as a P2X7R agonist. We found that EA treatment decreased dendritic spine density, inhibited synaptic reconstruction and reduced inflammatory response, which is consistent with the decrease in P2X7R expression as well as the improved neurobehavioral performance. In contrast to the beneficial effects of EA, BzATP enhanced abnormal remodeling of dendritic spines/synapses and inflammation. Furthermore, the EA-mediated positive effects were reversed by BzATP, which is consistent with the increased P2X7R expression. These findings indicated that EA improves neuropathic pain by reducing abnormal dendritic spine/synaptic reconstruction and inflammation via suppressing P2X7R expression.
Collapse
Affiliation(s)
- Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Xiaolan Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Ye Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Liu JY, Wang KX, Huang LY, Wan B, Zhao GY, Zhao FY. [Expression and role of Pim1 in cultured cortical neurons with oxygen-glucose deprivation/reoxygen injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:512-518. [PMID: 32434650 PMCID: PMC7389388 DOI: 10.7499/j.issn.1008-8830.1911045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the expression and effect of Pim1 in primary cortical neurons after hypoxic-ischemic injury. METHODS Cortical neurons were isolated from 1-day-old C57BL/6 mice and cultured in neurobasal medium. On the 8th day of neuron culture, cells were subjected to oxygen-glucose deprivation/reoxygen (OGD/R) treatment to mimic in vivo hypoxic injury of neurons. Briefly, medium were changed to DMEM medium, and cells were cultured in 1% O2 for 3 hours and then changed back to normal medium and conditions. Cells were collected at 0 hour, 6 hours, 12 hours and 24 hours after OGD/R. Primary neurons were transfected with Pim1 overexpression plasmid or mock plasmid, and then were exposed to normal conditions or OGD/R treatment. They were named as Pim1 group, control group, OGD/R group and OGD/R+Pim1 group respectively. Real-time PCR was used to detect Pim1 mRNA expression. Western blot was used to detect the protein expression of Pim1 and apoptotic related protein cleaved caspase 3 (CC3). TUNEL staining was used to detect cell apoptosis. RESULTS Real-time PCR and Western blot results showed that Pim1 mRNA and protein were significantly decreased in neurons after OGD/R. They began to decrease at 0 hour after OGD/R, reached to the lowest at 12 hours after OGD/R, and remained at a lower level at 24 hours after OGD/R (P<0.01). Overexpression of Pim1 significantly upregulated the protein level of Pim1. Under OGD/R conditions, the CC3 expression and the apoptosis rate in cells of the Pim1 group were significantly lower than in un-transfected cells (P<0.01). CONCLUSIONS Hypoxic-ischemic injury may decrease Pim1 expression in neurons. Overexpressed Pim1 may inhibit apoptosis induced by OGD/R.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Neonatology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, China.
| | | | | | | | | | | |
Collapse
|