1
|
Bukatova S, Bacova Z, Osacka J, Bakos J. Mini review of molecules involved in altered postnatal neurogenesis in autism. Int J Neurosci 2024; 134:1429-1443. [PMID: 37815399 DOI: 10.1080/00207454.2023.2269304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
2
|
Bukatova S, Reichova A, Bacova Z, Bakos J. Neonatal oxytocin treatment alters levels of precursor and mature BDNF forms and modifies the expression of neuronal markers in the male rat hippocampus. Neuropeptides 2023; 102:102384. [PMID: 37741113 DOI: 10.1016/j.npep.2023.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Neuropeptide oxytocin appears to be involved in the formation of hippocampal circuitry, underlying social memory and behaviour. Recent studies point to the role of oxytocin in regulating the levels of nerve growth factors that could influence neurogenesis and neuritogenesis during the early stages of brain development. Therefore, the aim of the present study was to evaluate the early developmental effect of oxytocin administration (P2 and P3 days, two doses, 5 μg/pup, s.c.) on the expression of 1) brain-derived neurotrophic factor (BDNF) isoforms and 2) GABAergic and glutamatergic markers in the male rat hippocampus. Furthermore, we evaluated the branching of dendrites of primary hippocampal GABAergic and glutamatergic neurons in response to incubation with oxytocin (1 μM). We found that after oxytocin administration, levels of proBDNF increased on P5 and mBDNF on P7 in the CA1 hippocampal region. We also observed a reduction in the expression of glutamatergic marker (VGluT2) on P7 compared to P5 in control and oxytocin treated rats. During the early developmental stages (P5, P7, P9) the expression of GABAergic markers (Gad65 and Gad67) decreased regardless of oxytocin treatment. Incubation in a presence of oxytocin reduced branching of glutamatergic hippocampal neurons and the opposite stimulatory effect of oxytocin was observed in GABAergic neurons. These findings suggest that oxytocin affects neurotrophin isoforms in the male rat hippocampus in the early stages of development, which could explain changes in glutamatergic neurons and their morphology.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Reichova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Department of Neuroscience, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
3
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Wei F, Deng X, Ma B, Li W, Chen Y, Zhao L, Zhang Y, Zheng T, Xian D, He Y, Zhang L, Jing Y. Experiences Shape Hippocampal Neuron Morphology and the Local Levels of CRHR1 and OTR. Cell Mol Neurobiol 2023; 43:2129-2147. [PMID: 36239833 PMCID: PMC11412178 DOI: 10.1007/s10571-022-01292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/26/2022] [Indexed: 11/03/2022]
Abstract
The dorsal hippocampus is involved in behavioral avoidance regulation. It is unclear how experiences such as the neonatal stress of maternal deprivation (MD) and post-weaning environmental enrichment (EE) affect avoidance behavior and the dorsal hippocampal parameters, including neuronal morphology, corticotrophin-releasing hormone (CRH) signaling, and oxytocin receptor (OTR) level. In male BALB/c mice, we found that MD impaired avoidance behavior in the step-on test compared to non-MD and EE rearing conditions could alleviate that partially. MD increased neuronal branches in the CA1 but decreased synaptic connection levels in the CA2, CA3, and DG. Meanwhile, MD increased the CA1's OTR levels, which negatively correlated with nucleus densities. MD also increased the CA1's and CA2's CRH levels, which positively correlated with CRHR1 levels. However, MD statistically elevated the CA3's CRH receptor 1 (CRHR1) levels, which negatively correlated with nucleus densities and, probably, synaptic connection levels in the CA3. The additive effects of MD and EE maintained similar CRH levels and CRHR1 levels as well as OTR levels in the hippocampal areas as the additive of non-MD and non-EE. However, the presence of MD and EE still decreased the CA1's neuronal branches and the CA2's and DG's synaptic connection levels. The study illustrates how MD and EE affect avoidance behaviors, hippocampal neuron morphology, and CRH and OTR levels. The results indicate that the late-life environmental improvement partially restores the alterations in dorsal hippocampal areas induced by early life stress.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yajie Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Long Zhao
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Tingjuan Zheng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Donghua Xian
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yunqing He
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
5
|
Wei F, Xian D, He Y, Yan Z, Deng X, Chen Y, Zhao L, Zhang Y, Li W, Ma B, Zhang J, Jing Y. Effects of maternal deprivation and environmental enrichment on anxiety-like and depression-like behaviors correlate with oxytocin system and CRH level in the medial-lateral habenula. Peptides 2022; 158:170882. [PMID: 36150631 DOI: 10.1016/j.peptides.2022.170882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
The medial-lateral habenula (LHbM)'s role in anxiety and depression behaviors in female mice remains unclear. Here, we used neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) to treat female BALB/c offspring and checked anxiety-like and depression-like behaviors as well as the corticotropin-releasing hormone (CRH), oxytocin receptor (OTR), estrogen receptor-beta (ERβ) levels in their LHbM at adulthood. We found that MD enhanced state anxiety-like behaviors in the elevated plus-maze test, and EE caused trait anxiety-like behaviors in the open field test and depression-like behaviors in the tail suspension test. The immunochemistry showed that MD reduced OT immunoreactive neuron numbers in the hypothalamic paraventricular nucleus but increased OTR levels in the LHbM; EE increased CRH levels in the LHbM but decreased OTR levels in the LHbM. The additive effects of EE and MD maintained the behavioral parameters, OT-ir neuronal numbers, CRH levels, and OTR levels similar to the additive of non-MD and non-EE. The correlation analysis showed that CRH levels correlated with synaptic connection levels, OTR levels correlated with nucleus densities, and ERβ levels correlated with Nissl body levels and body weights in female mice. Neither MD nor EE affected ERβ levels in the LHbM. Together, the study revealed the relationships between behaviors and neuroendocrine and neuronal alterations in female LHbM and the effects of experiences including MD and EE on them.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Donghua Xian
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yunqing He
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ziqing Yan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajie Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Long Zhao
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Junfeng Zhang
- Department of Human Anatomy & Shanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shanxi, 710021, PR China.
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
6
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
7
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
8
|
Fan X, Shi G, He X, Li X, Wan Y, Jian L. Oxytocin prevents cue-induced reinstatement of oxycodone seeking: Involvement of DNA methylation in the hippocampus. Addict Biol 2021; 26:e13025. [PMID: 33609013 DOI: 10.1111/adb.13025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
Oxycodone is one of the most commonly used analgesics in the clinic. However, long-term use can contribute to drug dependence. Accumulating evidence of changes in DNA methylation after opioid relapse has provided insight into mechanisms underlying drug-associated memory. The neuropeptide oxytocin is reported to be a potential treatment for addiction. The present study sought to identify changes in global and synaptic gene methylation after cue-induced reinstatement of oxycodone conditioned place preference (CPP) and the effect of oxytocin. We analyzed hippocampal mRNA of synaptic genes and also synaptic density in response to oxycodone CPP. We determined the mRNA levels of DNA methyltransferases (Dnmts) and ten-eleven translocations (Tets), observed global 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels, and measured DNA methylation status of four synaptic genes implicated in learning and memory (Arc, Dlg1, Dlg4, and Syn1). Both synaptic density and the transcription of 15 hippocampal synaptic genes significantly increased following cue-induced reinstatement of oxycodone CPP. Oxycodone relapse was also related to markedly decreased 5-mC levels and decreased transcription of Dnmt1, Dnmt3a, and Dnmt3b; in contrast, 5-hmC levels and the transcription of Tet1 and Tet3 were increased. Oxycodone exposure induced DNA hypomethylation at the exons of the Arc, Dlg1, Dlg4, and Syn1 genes. Intracerebroventricular (ICV) administration of oxytocin (2.5 μg/μl) specifically blocked oxycodone relapse, possibly by inhibition of Arc, Dlg1, Dlg4, and Syn1 hypomethylation in oxycodone-treated rats. Together, these data indicate the occurrence of epigenetic changes in the hippocampus following oxycodone relapse and the potential role of oxytocin in oxycodone addiction.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Guang Shi
- Department of Neurology, People's Hospital of Liaoning Province Shenyang China
| | - Xiao‐Jing He
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Xin‐Yang Li
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| | - Yu‐Xiao Wan
- Department of Anesthesiology Shengjing Hospital of China Medical University Shenyang China
| | - Ling‐Yan Jian
- Department of Pharmacy Shengjing Hospital of China Medical University Shenyang China
| |
Collapse
|
9
|
Friuli M, Eramo B, Valenza M, Scuderi C, Provensi G, Romano A. Targeting the Oxytocinergic System: A Possible Pharmacological Strategy for the Treatment of Inflammation Occurring in Different Chronic Diseases. Int J Mol Sci 2021; 22:10250. [PMID: 34638587 PMCID: PMC8508899 DOI: 10.3390/ijms221910250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unresolved inflammation represents a central feature of different human pathologies including neuropsychiatric, cardiovascular, and metabolic diseases. The epidemiologic relevance of such disorders justifies the increasing interest in further understanding the mechanisms underpinning the inflammatory process occurring in such chronic diseases to provide potential novel pharmacological approaches. The most common and effective therapies for controlling inflammation are glucocorticoids; however, a variety of other molecules have been demonstrated to have an anti-inflammatory potential, including neuropeptides. In recent years, the oxytocinergic system has seen an explosion of scientific studies, demonstrating its potential to contribute to a variety of physiological processes including inflammation. Therefore, the aim of the present review was to understand the role of oxytocin in the modulation of inflammation occurring in different chronic diseases. The criterion we used to select the diseases was based on the emerging literature showing a putative involvement of the oxytocinergic system in inflammatory processes in a variety of pathologies including neurological, gastrointestinal and cardiovascular disorders, diabetes and obesity. The evidence reviewed here supports a beneficial role of oxytocin in the control of both peripheral and central inflammatory response happening in the aforementioned pathologies. Although future studies are necessary to elucidate the mechanistic details underlying such regulation, this review supports the idea that the modulation of the endogenous oxytocinergic system might represent a new potential pharmacological approach for the treatment of inflammation.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Barbara Eramo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology of Toxicology, University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (M.F.); (B.E.); (M.V.); (C.S.)
| |
Collapse
|
10
|
Cell proliferation and anti-oxidant effects of oxytocin and oxytocin receptors: role of extracellular signal-regulating kinase in astrocyte-like cells. Endocr Regul 2021; 54:172-182. [PMID: 32857718 DOI: 10.2478/enr-2020-0020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Oxytocin (OXT) participates in various physiological functions ranging from reproduction to social and non-social behaviors. Recent studies indicate that OXT affects cell growth and metabolism. Here we characterized the growth stimulating and antioxidant actions of OXT and of OXT receptors (OXTR) in a glial cell-line (U-87MG). METHODS We developed an OXTR-knockdown cell-line (U-87MG KD) to establish the receptor specificity of OXT's actions, and the impact of lacking OXTR on growth and survival in glial cells. The role Extracellular-Signal Regulated Kinases (ERK1/2) on glial cell protection against consequences of oxidative stress, and cell proliferation was investigated. RESULTS In U-87MG cells, OXT stimulated cell proliferation and increased ERK1/2 phosphorylation. The specific ERK1/2 inhibitor, PD098059, produced marked inhibition of cell proliferation, and antagonized the stimulating effect of OXT on ERK1/2 phosphorylation and on cell proliferation. Slower growth rates and lower levels of phosphorylated ERK1/2 were observed in OXTR-knockdown cells and in U-87MG cells treated with an OXTR antagonist (L-371,257). In addition to increasing cell proliferation, OXT significantly blunted the rise in reactive oxygen species induced by H2O2, and antagonized the reductions in cell viability induced by H2O2 and camptothecin. The cell protective and antioxidant actions of OXT in U-87MG cells were not observed in the OXTR-knockdown cells. CONCLUSION OXT stimulates the growth of astrocyte-like cells acting on OXTR via ERK1/2 phosphorylation. The protection against apoptosis and the antioxidant capacity of OXT may contribute to the observed increase in cell proliferation. Oxytocin and OXTR appear to be fundamental for cell growth and viability of glial cells.
Collapse
|
11
|
Lopatina OL, Panina YA, Malinovskaya NA, Salmina AB. Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior. Rev Neurosci 2020; 32:131-142. [PMID: 33550784 DOI: 10.1515/revneuro-2020-0077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.
Collapse
Affiliation(s)
- Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russia
| | - Yulia A Panina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
12
|
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 2020; 518:110924. [PMID: 32619581 DOI: 10.1016/j.mce.2020.110924] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Oxytocin has been suggested as a potential therapeutic agent in autism and other neuropsychiatric conditions. Although, the link between the deficit in "SH3 domain and ankyrin repeat containing protein 3" (SHANK3) and autism spectrum disorders is highly studied topic, developmental mechanisms are still poorly understood. In this study, we clearly confirm that SHANK3 deficiency is accompanied with abnormalities in neurite number and length, which are reversed by oxytocin treatment (1 μM, 48h) in primary hippocampal neurons. Transient silencing for the SHANK3 gene (siSHANK3) in neuron-like cell line (SH-SY5Y) revealed a significant decrease in the expression levels of Neurexins 1α, 1β, 2α and 2β. Oxytocin treatment compensated reduced levels of Synapsin I, PSD95 and Neuroligin 3 in siSHANK3 cells suggesting a marked potential of oxytocin to ameliorate defects present in conditions of SHANK3 deficiency. Further analysis of hippocampal tissue revealed that oxytocin application (0.1 μg/μl, s.c. at P2 and P3 day) affects levels of synaptic proteins and GTPases in both WT and SHANK3 deficient mice on day P5. Oxytocin stimulated the mRNA expression of RhoB and Rac1 in both WT and SHANK3 deficient mice. Our data suggest that autism relevant synaptic pathologies could be reversed by oxytocin treatment.
Collapse
Affiliation(s)
- Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Kokavcova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Meliskova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karel Frimmel
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|