1
|
Kolomeets NS, Uranova NA. Deficit of satellite oligodendrocytes of neurons in the rostral part of the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025; 275:813-822. [PMID: 39073446 DOI: 10.1007/s00406-024-01869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Increasing evidence implicates compromised myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal networks in schizophrenia. We previously reported a deficiency of myelinating oligodendrocytes (OL), oligodendrocyte progenitors (OP) and satellite oligodendrocytes of neurons (Sat-OL) in the prefrontal cortex and the inferior parietal cortex - cortical hubs of the frontoparietal cognitive network and default mode network (DMN) altered in schizophrenia. Deficiency of OL and OP was also detected in the head of the caudate nucleus (HCN), which accumulates cortical projections from the associative cortex and is the central node of these networks. However, the number of Sat-Ol per neuron in schizophrenia has not been studied in the HCN. In the current study we estimated the number of Sat-Ol per neuron in the rostral part of the HCN in schizophrenia (n = 18) compared to healthy controls (n = 18) in the same section collection that was previously used to study the number Ol and OP. We found a significant decrease of the number of Sat-Ol per neuron (- 50%, p < 0.001) in schizophrenia as compared to normal controls. Considering that the rostral part of the HCN is an individual network-specific projection zone of the DMN, the deficit of Sat-Ol found in schizophrenia may be related to the dysfunctional DMN-HCN connections, which has been repeatedly described in schizophrenia. The dramatic decrease of the number of Sat-Ol per neuron may be partially related to a pronounced excess of dopamine concentration in the rostral part of the HCN in schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia.
| |
Collapse
|
2
|
Pfeiffer F, Boshans LL, Jukkola P, Beebe M, Akinlaja Y, Aksoy EB, Sun Y, Baez CBR, Hedrich UBS, Arbelo U, Nishiyama A. Oligodendrocyte precursor cells establish regulatory contacts with the soma of active neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646001. [PMID: 40236059 PMCID: PMC11996299 DOI: 10.1101/2025.03.28.646001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Oligodendrocyte precursor cells (OPCs) can generate myelinating oligodendrocytes life-long, a process that is dependent on neuronal activity. However, it is possible that OPCs have additional functions, influencing neuronal functions directly. We have used a mouse genetic model of juvenile seizures and chemical induction of neuronal activity to examine the morphological and molecular changes in OPCs around activated principal neurons. We found an increase in process extension of OPCs specifically toward the soma of activated neurons. Moreover, we found that the close proximity of OPC processes around neurons expressing the immediate early gene c-Fos decreased the calcium transients in these neurons, indicating a regulative function of OPCs. Analyses of transcriptome and chromatin accessibility revealed significant changes in genes involved in transforming growth factor beta (TGFβ) signaling. Extracellular matrix genes, particularly those encoding type VI collagen, an established binding partner for the OPC surface protein NG2, was increased around active neurons. Our findings indicate that OPCs are an integral part of the neural network and may help to decrease the activity of neurons that have previously been over-excited, in order to protect these neurons.
Collapse
|
3
|
Li J, Fiore F, Monk KR, Agarwal A. Spatiotemporal calcium dynamics orchestrate oligodendrocyte development and myelination. Trends Neurosci 2025:S0166-2236(25)00052-9. [PMID: 40155271 DOI: 10.1016/j.tins.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Oligodendrocyte lineage cells (OLCs), comprising oligodendrocyte precursor cells (OPCs) and oligodendrocytes, are pivotal in sculpting central nervous system (CNS) architecture and function. OPCs mature into oligodendrocytes, which enwrap axons with myelin sheaths that are critical for enhancing neural transmission. Notably, OLCs actively respond to neuronal activity, modulating neural circuit functions. Understanding neuron-OLC interactions is key to unraveling how OLCs contribute to CNS health and pathology. This review highlights insights from zebrafish and mouse models, revealing how synaptic and extrasynaptic pathways converge to shape spatiotemporal calcium (Ca2+) dynamics within OLCs. We explore how Ca2+ signal integration across spatial and temporal scales acts as a master regulator of OLC fate determination and myelin plasticity.
Collapse
Affiliation(s)
- Jiaxing Li
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Frederic Fiore
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Fitzgerald JC, Sun Y, Reinecke F, Bauer E, Garaschuk O, Kahle PJ, Pfeiffer F. Interactions of Oligodendrocyte Precursor Cells and Dopaminergic Neurons in the Mouse Substantia Nigra. J Neurochem 2025; 169:e16298. [PMID: 39871627 PMCID: PMC11773302 DOI: 10.1111/jnc.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia. We sought to investigate the distribution of OPCs with regard to the myelination state in the mouse substantia nigra (SN) by high-resolution imaging to provide a morphological assessment of OPC-dopaminergic neuron interactions and quantification of cell numbers across different age groups. OPCs are evenly distributed in the midbrain throughout the lifespan and they physically interact with both the soma and axons of dopaminergic neurons. The presence of OPCs and their interaction with dopaminergic neurons does not correlate with the distribution of myelin. Myelination is sparse in the SNpc, including dopaminergic fibers originating from the SNpc and projecting through the substantia nigra pars reticulata (SNpr). We report that OPCs and dopaminergic neurons exist in a 1:1 ratio in the SNpc, with OPCs accounting for 15%-16% of all cells in the region across all age groups. This description of OPC-dopaminergic neuron interaction in the midbrain provides a first look at their longitudinal distribution in mice, suggesting additional functions of OPCs beyond their differentiation into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Julia C Fitzgerald
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ying Sun
- Institute for Physiology, University of Tübingen, Tübingen, Germany
| | | | - Elisabeth Bauer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute for Physiology, University of Tübingen, Tübingen, Germany
| | - Philipp J Kahle
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- The German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
5
|
Brusman LE, Sadino JM, Fultz AC, Kelberman MA, Dowell RD, Allen MA, Donaldson ZR. Single nucleus RNA-sequencing reveals transcriptional synchrony across different relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587112. [PMID: 39605537 PMCID: PMC11601461 DOI: 10.1101/2024.03.27.587112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As relationships mature, partners share common goals, improve their ability to work together, and experience coordinated emotions. However, the neural underpinnings responsible for this unique, pair-specific experience remain largely unexplored. Here, we used single nucleus RNA-sequencing to examine the transcriptional landscape of the nucleus accumbens (NAc) in socially monogamous prairie voles in peer or mating-based relationships. We show that, regardless of pairing type, prairie voles exhibit transcriptional synchrony with a partner. Further, we identify genes expressed in oligodendrocyte progenitor cells that are synchronized between partners, correlated with dyadic behavior, and sensitive to partner separation. Together, our data indicate that the pair-specific social environment profoundly shapes transcription in the NAc. This provides a potential biological mechanism by which shared social experience reinforces and strengthens relationships.
Collapse
Affiliation(s)
- Liza E. Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Allison C. Fultz
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Michael A. Kelberman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Robin D. Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Mary A. Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Biofrontiers Institute, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| |
Collapse
|
6
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Ahuja K, Vandenabeele M, Nami F, Lefevere E, Van Hoecke J, Bergmans S, Claes M, Vervliet T, Neyrinck K, Burg T, De Herdt D, Bhaskar P, Zhu Y, Looser ZJ, Loncke J, Gsell W, Plaas M, Agostinis P, Swinnen JV, Van Den Bosch L, Bultynck G, Saab AS, Wolfs E, Chai YC, Himmelreich U, Verfaillie C, Moons L, De Groef L. A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome. Acta Neuropathol Commun 2024; 12:140. [PMID: 39198924 PMCID: PMC11351506 DOI: 10.1186/s40478-024-01851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1∆exon8 mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.
Collapse
Affiliation(s)
- K Ahuja
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Vandenabeele
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - F Nami
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - E Lefevere
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Van Hoecke
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - S Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - M Claes
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - T Vervliet
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - K Neyrinck
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - T Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - D De Herdt
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - P Bhaskar
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Y Zhu
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Z J Looser
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Loncke
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - W Gsell
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - M Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - P Agostinis
- Laboratory for Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, Leuven Center for Cancer Biology, VIB-KU, Leuven Cancer Institute, VIB-KU Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - G Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - A S Saab
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - E Wolfs
- Laboratory for Functional Imaging and Research on Stem Cells, BIOMED, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Y C Chai
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - L Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Pachetti M, Palandri A, de Castro Reis F, Recupero L, Ballerini L. Exploring Ca 2+ Dynamics in Myelinating Oligodendrocytes through rAAV-Mediated jGCaMP8s Expression in Developing Spinal Cord Organ Cultures. eNeuro 2024; 11:ENEURO.0540-23.2024. [PMID: 38744490 PMCID: PMC11151195 DOI: 10.1523/eneuro.0540-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Oligodendrocytes, the myelin-producing glial cells of the central nervous system (CNS), crucially contribute to myelination and circuit function. An increasing amount of evidence suggests that intracellular calcium (Ca2+) dynamics in oligodendrocytes mediates activity-dependent and activity-independent myelination. Unraveling how myelinating oligodendrocytes orchestrate and integrate Ca2+ signals, particularly in relation to axonal firing, is crucial for gaining insights into their role in the CNS development and function, both in health and disease. In this framework, we used the recombinant adeno-associated virus/Olig001 capsid variant to express the genetically encoded Ca2+ indicator jGCaMP8s, under the control of the myelin basic protein promoter. In our study, this tool exhibits excellent tropism and selectivity for myelinating and mature oligodendrocytes, and it allows monitoring Ca2+ activity in myelin-forming cells, both in isolated primary cultures and organotypic spinal cord explants. By live imaging of myelin Ca2+ events in oligodendrocytes within organ cultures, we observed a rapid decline in the amplitude and duration of Ca2+ events across different in vitro developmental stages. Active myelin sheath remodeling and growth are modulated at the level of myelin-axon interface through Ca2+ signaling, and, during early myelination in organ cultures, this phase is finely tuned by the firing of axon action potentials. In the later stages of myelination, Ca2+ events in mature oligodendrocytes no longer display such a modulation, underscoring the involvement of complex Ca2+ signaling in CNS myelination.
Collapse
Affiliation(s)
- Maria Pachetti
- Scuola Internazionale Superiore di Studi Avanzati, Trieste 34146, Italy
| | - Anabela Palandri
- Scuola Internazionale Superiore di Studi Avanzati, Trieste 34146, Italy
| | | | - Luca Recupero
- Scuola Internazionale Superiore di Studi Avanzati, Trieste 34146, Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati, Trieste 34146, Italy
| |
Collapse
|
9
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. Nat Neurosci 2024; 27:846-861. [PMID: 38539013 PMCID: PMC11104262 DOI: 10.1038/s41593-024-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult central nervous system is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions, suggesting that local cues drive regional differences in myelination and the capacity for regeneration. However, the layer- and region-specific regulation of oligodendrocyte populations is unclear due to the inability to monitor deep brain structures in vivo. Here we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of the entire cortical column and subcortical white matter in adult mice. We find that cortical oligodendrocyte populations expand at a higher rate in the adult brain than those of the white matter. Following demyelination, oligodendrocyte replacement is enhanced in the white matter, while the deep cortical layers show deficits in regenerative oligodendrogenesis and the restoration of transcriptional heterogeneity. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory L Futia
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael E Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel A Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Baris Ozbay
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations, Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
11
|
Frankowska M, Surówka P, Gawlińska K, Borczyk M, Korostyński M, Filip M, Smaga I. A maternal high-fat diet during pregnancy and lactation induced depression-like behavior in offspring and myelin-related changes in the rat prefrontal cortex. Front Mol Neurosci 2024; 16:1303718. [PMID: 38235150 PMCID: PMC10791940 DOI: 10.3389/fnmol.2023.1303718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
In accordance with the developmental origins of health and disease, early-life environmental exposures, such as maternal diet, can enhance the probability and gravity of health concerns in their offspring in the future. Over the past few years, compelling evidence has emerged suggesting that prenatal exposure to a maternal high-fat diet (HFD) could trigger neuropsychiatric disorders in the offspring, such as depression. The majority of brain development takes place before birth and during lactation. Nevertheless, our understanding of the impact of HFD on myelination in the offspring's brain during both gestation and lactation remains limited. In the present study, we investigated the effects of maternal HFD (60% energy from fat) on depressive-like and myelin-related changes in adolescent and adult rat offspring. Maternal HFD increased immobility time during the forced swimming test in both adolescent and adult offspring. Correspondingly, the depressive-like phenotype in offspring correlated with dysregulation of several genes and proteins in the prefrontal cortex, especially of myelin-oligodendrocyte glycoprotein (MOG), myelin and lymphocyte protein (MAL), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), kallikrein 6, and transferrin in male offspring, as well as of MOG and kallikrein 6 in female offspring, which persist even into adulthood. Maternal HFD also induced long-lasting adaptations manifested by the reduction of immature and mature oligodendrocytes in the prefrontal cortex in adult offspring. In summary, maternal HFD-induced changes in myelin-related genes are correlated with depressive-like behavior in adolescent offspring, which persists even to adulthood.
Collapse
Affiliation(s)
- Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Paulina Surówka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
12
|
Pérez-Montes C, Jiménez-Cubides JP, Velasco A, Arévalo R, Santos-Ledo A, García-Macia M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants (Basel) 2023; 12:2026. [PMID: 38136146 PMCID: PMC10740785 DOI: 10.3390/antiox12122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Zebrafish (Danio rerio) present continuous growth and regenerate many parts of their body after an injury. Fish oligodendrocytes, microglia and astrocytes support the formation of new connections producing effective regeneration of the central nervous system after a lesion. To understand the role of oligodendrocytes and the signals that mediate regeneration, we use the well-established optic nerve (ON) crush model. We also used sox10 fluorescent transgenic lines to label fully differentiated oligodendrocytes. To quench the effect of reactive oxygen species (ROS), we used the endogenous antioxidant melatonin. Using these tools, we measured ROS production by flow cytometry and explored the regeneration of the optic tectum (OT), the response of oligodendrocytes and their mitochondria by confocal microscopy and Western blot. ROS are produced by oligodendrocytes 3 h after injury and JNK activity is triggered. Concomitantly, there is a decrease in the number of fully differentiated oligodendrocytes in the OT and in their mitochondrial population. By 24 h, oligodendrocytes partially recover. Exposure to melatonin blocks the changes observed in these oligodendrocytes at 3 h and increases their number and their mitochondrial populations after 24 h. Melatonin also blocks JNK upregulation and induces aberrant neuronal differentiation in the OT. In conclusion, a proper balance of ROS is necessary during visual system regeneration and exposure to melatonin has a detrimental impact.
Collapse
Affiliation(s)
- Cristina Pérez-Montes
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jhoana Paola Jiménez-Cubides
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
| | - Almudena Velasco
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rosario Arévalo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Adrián Santos-Ledo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Salamanca, 37007 Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), 28029 Madrid, Spain
| |
Collapse
|
13
|
Thornton MA, Futia GL, Stockton ME, Budoff SA, Ramirez AN, Ozbay B, Tzang O, Kilborn K, Poleg-Polsky A, Restrepo D, Gibson EA, Hughes EG. Long-term in vivo three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564636. [PMID: 37961298 PMCID: PMC10634963 DOI: 10.1101/2023.10.29.564636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The generation of new myelin-forming oligodendrocytes in the adult CNS is critical for cognitive function and regeneration following injury. Oligodendrogenesis varies between gray and white matter regions suggesting that local cues drive regional differences in myelination and the capacity for regeneration. Yet, the determination of regional variability in oligodendrocyte cell behavior is limited by the inability to monitor the dynamics of oligodendrocytes and their transcriptional subpopulations in white matter of the living brain. Here, we harnessed the superior imaging depth of three-photon microscopy to permit long-term, longitudinal in vivo three-photon imaging of an entire cortical column and underlying subcortical white matter without cellular damage or reactivity. Using this approach, we found that the white matter generated substantially more new oligodendrocytes per volume compared to the gray matter, yet the rate of population growth was proportionally higher in the gray matter. Following demyelination, the white matter had an enhanced population growth that resulted in higher oligodendrocyte replacement compared to the gray matter. Finally, deep cortical layers had pronounced deficits in regenerative oligodendrogenesis and restoration of the MOL5/6-positive oligodendrocyte subpopulation following demyelinating injury. Together, our findings demonstrate that regional microenvironments regulate oligodendrocyte population dynamics and heterogeneity in the healthy and diseased brain.
Collapse
Affiliation(s)
- Michael A. Thornton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | | | - Michael E. Stockton
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Samuel A. Budoff
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Alexandra N Ramirez
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Baris Ozbay
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Omer Tzang
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Alon Poleg-Polsky
- Physiology and Biophysics, University of Colorado Anschutz Medical Campus
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| | - Emily A. Gibson
- Bioengineering, University of Colorado Anschutz Medical Campus
| | - Ethan G. Hughes
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
14
|
Okamura M, Inoue T, Takamatsu Y, Maejima H. Pharmacological inhibition of histone deacetylases ameliorates cognitive impairment after intracerebral hemorrhage with epigenetic alteration in the hippocampus. J Stroke Cerebrovasc Dis 2023; 32:107275. [PMID: 37523880 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVES Post-stroke cognitive impairment (PSCI) interferes with neurorehabilitation in patients with stroke. Epigenetic regulation of the hippocampus has been targeted to ameliorate cognitive function. In particular, the acetylation level of histones is modulated by exercise, a potent therapy for patients with stroke. MATERIALS AND METHODS We examined the effects of exercise and pharmacological inhibition of histone deacetylase (HDAC) using sodium butyrate (NaB) on cognitive function and epigenetic factors in the hippocampus after intracerebral hemorrhage (ICH) to seek beneficial neuronal conditioning against PSCI. Forty rats were randomly assigned to five groups: sham, control, NaB, exercise, and NaB plus exercise groups (n=8 in each group). Except for those in the sham group, all rats underwent stereotaxic ICH surgery with a microinjection of collagenase solution. Intraperitoneal administration of NaB (300 mg/kg) and treadmill exercise (11 m/min for 30 min) were conducted for approximately 4 weeks starting 3 days post-surgery. RESULTS ICH reduced cognitive function, as detected by the object location test, accompanied by enhanced activity of HDACs. Although exercise did not modulate HDAC activity or cognitive function, repetitive NaB administration increased HDAC activity and ameliorated cognitive impairment induced by ICH. CONCLUSIONS This study suggests that pharmacological treatment with an HDAC inhibitor could potentially present an enriched epigenetic platform in the hippocampus and ameliorate PSCI for neurorehabilitation following ICH.
Collapse
Affiliation(s)
- Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
15
|
Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Díaz-Yañez L, Reyes-Galindo V, Meneses-San Juan D, Vega-Rivera NM. Melatonin Prevents Depression but Not Anxiety-like Behavior Produced by the Chemotherapeutic Agent Temozolomide: Implication of Doublecortin Cells and Hilar Oligodendrocytes. Int J Mol Sci 2023; 24:13376. [PMID: 37686181 PMCID: PMC10487426 DOI: 10.3390/ijms241713376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Melatonin is a hormone synthesized by the pineal gland with neuroprotective and neurodevelopmental effects. Also, melatonin acts as an antidepressant by modulating the generation of new neurons in the dentate gyrus of the hippocampus. The positive effects of melatonin on behavior and neural development may suggest it is used for reverting stress but also for the alterations produced by chemotherapeutic drugs influencing behavior and brain plasticity. In this sense, temozolomide, an alkylating/anti-proliferating agent used in treating brain cancer, is associated with decreased cognitive functions and depression. We hypothesized that melatonin might prevent the effects of temozolomide on depression- and anxiety-like behavior by modulating some aspects of the neurogenic process in adult Balb/C mice. Mice were treated with temozolomide (25 mg/kg) for three days of two weeks, followed by melatonin (8 mg/kg) for fourteen days. Temozolomide produced short- and long-term decrements in cell proliferation (Ki67-positive cells: 54.89% and 53.38%, respectively) and intermediate stages of the neurogenic process (doublecortin-positive cells: 68.23% and 50.08%, respectively). However, melatonin prevented the long-term effects of temozolomide with the increased number of doublecortin-positive cells (47.21%) and the immunoreactivity of 2' 3'-Cyclic-nucleotide-3 phosphodiesterase (CNPase: 82.66%), an enzyme expressed by mature oligodendrocytes, in the hilar portion of the dentate gyrus. The effects of melatonin in the temozolomide group occurred with decreased immobility in the forced swim test (45.55%) but not anxiety-like behavior. Thus, our results suggest that melatonin prevents the harmful effects of temozolomide by modulating doublecortin cells, hilar oligodendrocytes, and depression-like behavior tested in the forced swim test. Our study could point out melatonin's beneficial effects for counteracting temozolomide's side effects.
Collapse
Affiliation(s)
- Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Lizeth Díaz-Yañez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Verónica Reyes-Galindo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David Meneses-San Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico (D.M.-S.J.)
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neurpsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Calzada Mexico-Xochimilco 101, Ciudad de México 14370, Mexico;
| |
Collapse
|
16
|
Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol 2023; 11:1221890. [PMID: 37564376 PMCID: PMC10410458 DOI: 10.3389/fcell.2023.1221890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
This article reviews the role of neuronal activity in myelin regeneration and the related neural signaling pathways. The article points out that neuronal activity can stimulate the formation and regeneration of myelin, significantly improve its conduction speed and neural signal processing ability, maintain axonal integrity, and support axonal nutrition. However, myelin damage is common in various clinical diseases such as multiple sclerosis, stroke, dementia, and schizophrenia. Although myelin regeneration exists in these diseases, it is often incomplete and cannot promote functional recovery. Therefore, seeking other ways to improve myelin regeneration in clinical trials in recent years is of great significance. Research has shown that controlling neuronal excitability may become a new intervention method for the clinical treatment of demyelinating diseases. The article discusses the latest research progress of neuronal activity on myelin regeneration, including direct or indirect stimulation methods, and the related neural signaling pathways, including glutamatergic, GABAergic, cholinergic, histaminergic, purinergic and voltage-gated ion channel signaling pathways, revealing that seeking treatment strategies to promote myelin regeneration through precise regulation of neuronal activity has broad prospects.
Collapse
Affiliation(s)
| | - Jing Zhang
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
18
|
Masson MA, Nait-Oumesmar B. Emerging concepts in oligodendrocyte and myelin formation, inputs from the zebrafish model. Glia 2023; 71:1147-1163. [PMID: 36645033 DOI: 10.1002/glia.24336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS), which are derived from OL precursor cells. Myelin insulates axons allowing the saltatory conduction of action potentials and also provides trophic and metabolic supports to axons. Interestingly, oligodendroglial cells have the capacity to sense neuronal activity, which regulates myelin sheath formation via the vesicular release of neurotransmitters. Neuronal activity-dependent regulation of myelination is mediated by specialized interaction between axons and oligodendroglia, involving both synaptic and extra-synaptic modes of communications. The zebrafish has provided key advantages for the study of the myelination process in the CNS. External development and transparent larval stages of this vertebrate specie combined with the existence of several transgenic reporter lines provided key advances in oligodendroglial cell biology, axo-glial interactions and CNS myelination. In this publication, we reviewed and discussed the most recent knowledge on OL development and myelin formation, with a focus on mechanisms regulating these fundamental biological processes in the zebrafish. Especially, we highlighted the critical function of axons and oligodendroglia modes of communications and calcium signaling in myelin sheath formation and growth. Finally, we reviewed the relevance of these knowledge's in demyelinating diseases and drug discovery of pharmacological compounds favoring myelin regeneration.
Collapse
Affiliation(s)
- Mary-Amélie Masson
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Brahim Nait-Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
19
|
Yang C, Zhang W, Liu J, Yao L, Bishop JR, Lencer R, Gong Q, Yang Z, Lui S. Disrupted subcortical functional connectome gradient in drug-naïve first-episode schizophrenia and the normalization effects after antipsychotic treatment. Neuropsychopharmacology 2023; 48:789-796. [PMID: 36496508 PMCID: PMC10066388 DOI: 10.1038/s41386-022-01512-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Antipsychotics are thought to improve schizophrenia symptoms through the antagonism of dopamine D2 receptors, which are abundant mainly in subcortical regions. By introducing functional gradient, a novel approach to identify hierarchy alterations by capturing the similarity of whole brain fucntional connectivity (FC) profiles between two voxels, the present study aimed to characterize how the subcortical gradient is associated with treatment effects and response in first-episode schizophrenia in vivo. Two independent samples of first-episode schizophrenia (FES) patients with matched healthy controls (HC) were obtained: the discovery dataset included 71 patients (FES0W) and 64 HC at baseline, and patients were re-scanned after either 6 weeks (FES6W, N = 33) or 12 months (FES12M, N = 57) of antipsychotic treatment, of which 19 patients finished both 6-week and 12-month evaluation. The validation dataset included 22 patients and 24 HC at baseline and patients were re-scanned after 6 weeks. Gradient metrics were calculated using BrainSpace Toolbox. Voxel-based gradient values were generated and group-averaged gradient values were further extracted across all voxels (global), three systems (thalamus, limbic and striatum) and their subcortical subfields. The comparisons were conducted separately between FES0W and HC for investigating illness effects, and between FES6W/FES12M and FES0W for treatment effects. Correlational analyses were then conducted between the longitudinal gradient alterations and the improvement of clinical ratings. Before treatment, schizophrenia patients exhibited an expanded range of global gradient scores compared to HC which indicated functional segregation within subcortical systems. The increased gradient in limbic system and decreased gradient in thalamic and striatal system contributed to the baseline abnormalities and led to the disruption of the subcortical functional integration. After treatment, these disruptions were normalized and the longitudinal changes of gradient scores in limbic system were significantly associated with symptom improvement. Similar illness and treatment effects were also observed in the validation dataset. By measuring functional hierarchy of subcortical organization, our findings provide a novel imaging marker that is sensitive to treatment effects and may make a promising indicator of treatment response in schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiajun Liu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
20
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
21
|
Mattingly Z, Chetty S. Generation of Oligodendrocytes from Human Pluripotent and Embryonic Stem Cells. Methods Mol Biol 2023; 2683:89-101. [PMID: 37300769 DOI: 10.1007/978-1-0716-3287-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes (OLs) can be generated using human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). By manipulating culture conditions, pluripotent cell types are serially guided through intermediary cell types, developing first into neural progenitor cells (NPCs) then OPCs before maturing as CNS-specific OLs. This procedure is conducted under adherent, feeder-free conditions to derive mature OLs in as few as 28 days.
Collapse
Affiliation(s)
- Zoe Mattingly
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sundari Chetty
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Oprea L, Desjardins N, Jiang X, Sareen K, Zheng JQ, Khadra A. Characterizing spontaneous Ca 2+ local transients in OPCs using computational modeling. Biophys J 2022; 121:4419-4432. [PMID: 36352783 PMCID: PMC9748374 DOI: 10.1016/j.bpj.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous Ca2+ local transients (SCaLTs) in isolated oligodendrocyte precursor cells are largely regulated by the following fluxes: store-operated Ca2+ entry (SOCE), Na+/Ca2+ exchange, Ca2+ pumping through Ca2+-ATPases, and Ca2+-induced Ca2+-release through ryanodine receptors and inositol-trisphosphate receptors. However, the relative contributions of these fluxes in mediating fast spiking and the slow baseline oscillations seen in SCaLTs remain incompletely understood. Here, we developed a stochastic spatiotemporal computational model to simulate SCaLTs in a homogeneous medium with ionic flow between the extracellular, cytoplasmic, and endoplasmic-reticulum compartments. By simulating the model and plotting both the histograms of SCaLTs obtained experimentally and from the model as well as the standard deviation of inter-SCaLT intervals against inter-SCaLT interval averages of multiple model and experimental realizations, we revealed the following: (1) SCaLTs exhibit very similar characteristics between the two data sets, (2) they are mostly random, (3) they encode information in their frequency, and (4) their slow baseline oscillations could be due to the stochastic slow clustering of inositol-trisphosphate receptors (modeled as an Ornstein-Uhlenbeck noise process). Bifurcation analysis of a deterministic temporal version of the model showed that the contribution of fluxes to SCaLTs depends on the parameter regime and that the combination of excitability, stochasticity, and mixed-mode oscillations are responsible for irregular spiking and doublets in SCaLTs. Additionally, our results demonstrated that blocking each flux reduces SCaLTs' frequency and that the reverse (forward) mode of Na+/Ca2+ exchange decreases (increases) SCaLTs. Taken together, these results provide a quantitative framework for SCaLT formation in oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Xiaoyu Jiang
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kushagra Sareen
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - James Q Zheng
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
23
|
Lei D, Li W, Tallman MJ, Strakowski SM, DelBello MP, Rodrigo Patino L, Fleck DE, Lui S, Gong Q, Sweeney JA, Strawn JR, Nery FG, Welge JA, Rummelhoff E, Adler CM. Changes in the structural brain connectome over the course of a nonrandomized clinical trial for acute mania. Neuropsychopharmacology 2022; 47:1961-1968. [PMID: 35585125 PMCID: PMC9485114 DOI: 10.1038/s41386-022-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Disrupted topological organization of brain functional networks has been widely reported in bipolar disorder. However, the potential clinical implications of structural connectome abnormalities have not been systematically investigated. The present study included 109 unmedicated subjects with acute mania who were assigned to 8 weeks of treatment with quetiapine or lithium and 60 healthy controls. High resolution 3D-T1 weighted magnetic resonance images (MRI) were collected from both groups at baseline, week 1 and week 8. Brain networks were constructed based on the similarity of morphological features across brain regions and analyzed using graph theory approaches. At baseline, individuals with bipolar disorder illness showed significantly lower clustering coefficient (Cp) (p = 0.012) and normalized characteristic path length (λ) (p = 0.004) compared to healthy individuals, as well as differences in nodal centralities across multiple brain regions. No baseline or post-treatment differences were identified between drug treatment conditions, so change after treatment were considered in the combined treatment groups. Relative to healthy individuals, differences in Cp, λ and cingulate gyrus nodal centrality were significantly reduced with treatment; changes in these parameters correlated with changes in Young Mania Rating Scale scores. Baseline structural connectome matrices significantly differentiated responder and non-responder groups at 8 weeks with 74% accuracy. Global and nodal network alterations evident at baseline were normalized with treatment and these changes associated with symptomatic improvement. Further, baseline structural connectome matrices predicted treatment response. These findings suggest that structural connectome abnormalities are clinically significant and may be useful for predicting clinical outcome of treatment and tracking drug effects on brain anatomy in bipolar disorder. CLINICAL TRIALS REGISTRATION Name: Functional and Neurochemical Brain Changes in First-episode Bipolar Mania Following Successful Treatment with Lithium or Quetiapine. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00609193. Name: Neurofunctional and Neurochemical Markers of Treatment Response in Bipolar Disorder. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00608075.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of the Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry & Behavioral Sciences, Dell Medical School of The University of Texas at Austin, Austin, 78712, TX, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
24
|
Novak G, Seeman MV. Dopamine, Psychosis, and Symptom Fluctuation: A Narrative Review. Healthcare (Basel) 2022; 10:1713. [PMID: 36141325 PMCID: PMC9498563 DOI: 10.3390/healthcare10091713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized since the 1960s that the etiology of schizophrenia is linked to dopamine. In the intervening 60 years, sophisticated brain imaging techniques, genetic/epigenetic advances, and new experimental animal models of schizophrenia have transformed schizophrenia research. The disease is now conceptualized as a heterogeneous neurodevelopmental disorder expressed phenotypically in four symptom domains: positive, negative, cognitive, and affective. The aim of this paper is threefold: (a) to review recent research into schizophrenia etiology, (b) to review papers that elicited subjective evidence from patients as to triggers and repressors of symptoms such as auditory hallucinations or paranoid thoughts, and (c) to address the potential role of dopamine in schizophrenia in general and, in particular, in the fluctuations in schizophrenia symptoms. The review also includes new discoveries in schizophrenia research, pointing to the involvement of both striatal neurons and glia, signaling pathway convergence, and the role of stress. It also addresses potential therapeutic implications. We conclude with the hope that this paper opens up novel avenues of research and new possibilities for treatment.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, 4362 Luxembourg, Luxembourg
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, Suite #605, 260 Heath St. West, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
25
|
Liu T, Wu J, Zhao Z, Li M, Lv Y, Li M, Gao F, You Y, Zhang H, Ji C, Wu D. Developmental pattern of association fibers and their interaction with associated cortical microstructures in 0-5-month-old infants. Neuroimage 2022; 261:119525. [PMID: 35908606 DOI: 10.1016/j.neuroimage.2022.119525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Li
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
26
|
Sadler GL, Lewis KN, Narayana VK, De Souza DP, Mason J, McLean C, Gonsalvez DG, Turner BJ, Barton SK. Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12060554. [PMID: 35736487 PMCID: PMC9230865 DOI: 10.3390/metabo12060554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is profoundly dysregulated in amyotrophic lateral sclerosis (ALS), yet the lipid composition of the white matter, where the myelinated axons of motor neurons are located, remains uncharacterised. We aimed to comprehensively characterise how myelin is altered in ALS by assessing its lipid and protein composition. We isolated white matter from the motor cortex from post-mortem tissue of ALS patients (n = 8 sporadic ALS cases and n = 6 familial ALS cases) and age- and sex-matched controls (n = 8) and conducted targeted lipidomic analyses, qPCR for gene expression of relevant lipid metabolising enzymes and Western blotting for myelin proteins. We also quantified myelin density by using spectral confocal reflectance microscopy (SCoRe). Whilst myelin protein composition was similar in ALS and control tissue, both the lipid levels and the expression of their corresponding enzymes were dysregulated, highlighting altered lipid metabolism in the white matter as well as a likely change in myelin composition. Altered myelin composition could contribute to motor neuron dysfunction, and this highlights how oligodendrocytes may play a critical role in ALS pathogenesis.
Collapse
Affiliation(s)
- Gemma L. Sadler
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Katherine N. Lewis
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Vinod K. Narayana
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia; (V.K.N.); (D.P.D.S.)
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Catriona McLean
- Victorian Brain Bank, Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia;
| | - David G. Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia;
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
| | - Samantha K. Barton
- Florey Institute of Neuroscience and Mental Health, Melbourne 3052, Australia; (G.L.S.); (K.N.L.); (J.M.); (B.J.T.)
- Correspondence:
| |
Collapse
|
27
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
28
|
Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 2021; 24:1508-1521. [PMID: 34711959 DOI: 10.1038/s41593-021-00917-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.
Collapse
|
29
|
Hughes EG, Stockton ME. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front Cell Dev Biol 2021; 9:714169. [PMID: 34368163 PMCID: PMC8335399 DOI: 10.3389/fcell.2021.714169] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
In the central nervous system, oligodendrocytes produce myelin sheaths that enwrap neuronal axons to provide trophic support and increase conduction velocity. New oligodendrocytes are produced throughout life through a process referred to as oligodendrogenesis. Oligodendrogenesis consists of three canonical stages: the oligodendrocyte precursor cell (OPC), the premyelinating oligodendrocyte (preOL), and the mature oligodendrocyte (OL). However, the generation of oligodendrocytes is inherently an inefficient process. Following precursor differentiation, a majority of premyelinating oligodendrocytes are lost, likely due to apoptosis. If premyelinating oligodendrocytes progress through this survival checkpoint, they generate new myelinating oligodendrocytes in a process we have termed integration. In this review, we will explore the intrinsic and extrinsic signaling pathways that influence preOL survival and integration by examining the intrinsic apoptotic pathways, metabolic demands, and the interactions between neurons, astrocytes, microglia, and premyelinating oligodendrocytes. Additionally, we will discuss similarities between the maturation of newly generated neurons and premyelinating oligodendrocytes. Finally, we will consider how increasing survival and integration of preOLs has the potential to increase remyelination in multiple sclerosis. Deepening our understanding of premyelinating oligodendrocyte biology may open the door for new treatments for demyelinating disease and will help paint a clearer picture of how new oligodendrocytes are produced throughout life to facilitate brain function.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael E Stockton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
30
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
31
|
Hughes AN. Glial Cells Promote Myelin Formation and Elimination. Front Cell Dev Biol 2021; 9:661486. [PMID: 34046407 PMCID: PMC8144722 DOI: 10.3389/fcell.2021.661486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.
Collapse
Affiliation(s)
- Alexandria N. Hughes
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, Aurora, CO, United States
| |
Collapse
|
32
|
Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures. Viruses 2021; 13:v13010091. [PMID: 33440758 PMCID: PMC7827345 DOI: 10.3390/v13010091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023] Open
Abstract
Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.
Collapse
|
33
|
Assetta B, Tang C, Bian J, O'Rourke R, Connolly K, Brickler T, Chetty S, Huang YWA. Generation of Human Neurons and Oligodendrocytes from Pluripotent Stem Cells for Modeling Neuron-Oligodendrocyte Interactions. J Vis Exp 2020. [PMID: 33226027 DOI: 10.3791/61778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Alzheimer's disease (AD) and other neurodegenerative disorders, oligodendroglial failure is a common early pathological feature, but how it contributes to disease development and progression, particularly in the gray matter of the brain, remains largely unknown. The dysfunction of oligodendrocyte lineage cells is hallmarked by deficiencies in myelination and impaired self-renewal of oligodendrocyte precursor cells (OPCs). These two defects are caused at least in part by the disruption of interactions between neuron and oligodendrocytes along the buildup of pathology. OPCs give rise to myelinating oligodendrocytes during CNS development. In the mature brain cortex, OPCs are the major proliferative cells (comprising ~5% of total brain cells) and control new myelin formation in a neural activity-dependent manner. Such neuron-to-oligodendrocyte communications are significantly understudied, especially in the context of neurodegenerative conditions such as AD, due to the lack of appropriate tools. In recent years, our group and others have made significant progress to improve currently available protocols to generate functional neurons and oligodendrocytes individually from human pluripotent stem cells. In this manuscript, we describe our optimized procedures, including the establishment of a co-culture system to model the neuron-oligodendrocyte connections. Our illustrative results suggest an unexpected contribution from OPCs/oligodendrocytes to the brain amyloidosis and synapse integrity and highlight the utility of this methodology for AD research. This reductionist approach is a powerful tool to dissect the specific hetero-cellular interactions out of the inherent complexity inside the brain. The protocols we describe here are expected to facilitate future studies on oligodendroglial defects in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Changyong Tang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University; Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Jing Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Ryan O'Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Thomas Brickler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University; Department of Neurology, Warren Alpert Medical School of Brown University; Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University;
| |
Collapse
|
34
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|