1
|
Hauptman JS, Antonios J, Mathern GW, Levine MS, Cepeda C. Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex. Cells 2025; 14:79. [PMID: 39851507 PMCID: PMC11764219 DOI: 10.3390/cells14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism.
Collapse
Affiliation(s)
- Jason S. Hauptman
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Joseph Antonios
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Gary W. Mathern
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| |
Collapse
|
2
|
Nussinov R, Jang H, Cheng F. Ras, RhoA, and vascular pharmacology in neurodevelopment and aging. Neurochem Int 2024; 181:105883. [PMID: 39427854 PMCID: PMC11614691 DOI: 10.1016/j.neuint.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Small GTPases Ras, Rac, and RhoA are crucial regulators of cellular functions. They also act in dysregulated cell proliferation and transformation. Multiple publications have focused on illuminating their roles and mechanisms, including in immune system pathologies. Their functions in neurology-related diseases, neurodegeneration and neurodevelopment, are also emerging, as well as their potential as pharmacological targets in both pathologies. Observations increasingly suggest that these pathologies may relate to activation (or suppression) of signaling by members of the Ras superfamily, especially Ras, Rho, and Rac isoforms, and components of their signaling pathways. Germline (or embryonic) mutations that they harbor are responsible for neurodevelopmental disorders, such as RASopathies, autism spectrum disorder, and dilated cardiomyopathy. In aging, they promote neurodegenerative diseases, with Rho GTPase featuring in their pharmacology, as in the case of Alzheimer's disease (AD). Significantly, drugs with observed anti-AD activity, particularly those involved in cardiovascular systems, are associated with the RhoA signaling, as well as cerebral vasculature in brain development and aging. This leads us to suggest that anti-AD drugs could inform neurodevelopmental disorders, including pediatric low-grade gliomas pharmacology. Neurodevelopmental disorders associated with RhoA, like autism, are also connected with vascular systems, thus could be targets of vascular system-connected drugs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
3
|
Yang Y, Chen J, Li T, Dai Y. PX-478 Alleviated the Autism Spectrum Disorder Progression of Offspring Rats Induced by Prenatal Hypoxia. J Integr Neurosci 2024; 23:165. [PMID: 39344236 DOI: 10.31083/j.jin2309165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction, communication, repetitive behaviors, and narrow interests. This study aimed to investigate the impact of the Hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor (PX-478) on ASD-like behaviors in rat offspring exposed to prenatal hypoxia (PH). METHODS Pregnant rats were randomly assigned to control or PH groups, with the latter experiencing six hours of hypoxia on the 17th day of gestation. Offspring were further treated with PX-478 treatment initiated at one week (+1 w) or three weeks (+3 w) after birth. Hippocampal histology was assessed using hematoxylin and eosin (HE) staining, while protein levels of HIF-1α and phosphatase and tensin homolog (PTEN) were analyzed via western blotting. The concentration of vascular endothelial growth factor (VEGF) was measured using an Enzyme-Linked Immunosorbent Assay (ELISA) kit. RESULTS PX-478 treatment significantly improved spatial memory, learning, and social ability, while reducing anxiety-like behavior in PH-exposed offspring rats. HE staining revealed that PX-478 treatment decreased the number of hippocampal neurons necrosis in offspring. However, PX-478 treatment at one week post-birth led to decreased body weight and elevated levels of alkaline phosphatase (ALP) and Alanine aminotransferase (ALT) in offspring rats, whereas no significant effect was observed after three weeks of treatment. Additionally, PX-478 treatment resulted in reduced HIF-1α protein levels in the hippocampus and VEGF concentration in the serum of PH-exposed offspring rats, along with elevated PTEN protein levels. CONCLUSIONS The findings suggest that PX-478 treatment attenuated autism-like behavior in offspring. HIF-1α might play an important role in autism-like behavior induced by prenatal hypoxia, which may be realized by inhibiting PTEN activity.
Collapse
Affiliation(s)
- Ying Yang
- Department of Child Health Care, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, 400010 Chongqing, China
| | - Jie Chen
- Department of Child Health Care, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, 400010 Chongqing, China
| | - Tingyu Li
- Department of Child Health Care, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, 400010 Chongqing, China
| | - Ying Dai
- Department of Child Health Care, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, 400010 Chongqing, China
| |
Collapse
|
4
|
Ohki CMY, Benazzato C, van der Linden V, França JV, Toledo CM, Machado RRG, Araujo DB, Oliveira DBL, Neris RS, Assunção-Miranda I, de Oliveira Souza IN, Nogueira CO, Leite PEC, van der Linden H, Figueiredo CP, Durigon EL, Clarke JR, Russo FB, Beltrão-Braga PCB. Zika virus infection impairs synaptogenesis, induces neuroinflammation, and could be an environmental risk factor for autism spectrum disorder outcome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167097. [PMID: 38408544 DOI: 10.1016/j.bbadis.2024.167097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.
Collapse
Affiliation(s)
| | - Cecília Benazzato
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Julia V França
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen M Toledo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Romulo S Neris
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Clara O Nogueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Emilio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, Brazil
| | | | - Claudia P Figueiredo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Julia R Clarke
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
5
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Zhang Y, Tan YT, Wang MJ, Li L, Huang JF, Wang SC. Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration. Front Aging Neurosci 2024; 16:1390324. [PMID: 38586827 PMCID: PMC10995293 DOI: 10.3389/fnagi.2024.1390324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism. Although several studies have shown that PTEN is involved in the development and degenerative processes of the nervous system, there is still a lack of in-depth studies that summarize and analyse patterns of cooperation between authors, institutions, countries, and journals, as well as research hotspots and trends in this important field. To identify and further visualize the cooperation and comprehend the development and trends of PTEN in the nervous system, especially in neural development and neurological diseases, we used a bibliometric analysis to identify relevant publications on this topic. We first found that the number of publications displayed a growing trend with time, but this was not stable. Universities, institutions, and authors from the United States are leading in this area of research. In addition, many cutting-edge research results have been discovered, such as key regulatory molecules and cellular mechanisms of PTEN in the nervous system, which may provide novel intervention targets and precise therapeutic strategies for related pathological injuries and diseases. Finally, the literature published within the last 5 years is discussed to identify future research trends regarding PTEN in the nervous system. Taken together, our findings, analysed using bibliometrics, may reflect research hotspots and trends, providing a reference for studying PTEN in the nervous system, especially in neural development and neurological diseases. These findings can assist new researchers in developing their research interests and gaining basic information. Moreover, our findings also may provide precise clinical guidelines and strategies for treating nervous system injuries and diseases caused by PTEN dysfunction.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ya-ting Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Bao Y, Rong W, Zhu A, Chen Y, Chen H, Hong Y, Le J, Wang Q, Naman CB, Xu Z, Liu L, Cui W, Wu X. Retinoic Acid Receptor Is a Novel Therapeutic Target for Postoperative Cognitive Dysfunction. Pharmaceutics 2023; 15:2311. [PMID: 37765280 PMCID: PMC10538227 DOI: 10.3390/pharmaceutics15092311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a clinical syndrome characterizing by cognitive impairments in the elderly after surgery. There is limited effective treatment available or clear pathological mechanisms known for this syndrome. In this study, a Connectivity Map (CMap) bioinformatics model of POCD was established by using differently expressed landmark genes in the serum samples of POCD and non-POCD patients from the only human transcriptome study. The predictability and reliability of this model were further supported by the positive CMap scores of known POCD inducers and the negative CMap scores of anti-POCD drug candidates. Most retinoic acid receptor (RAR) agonists were negatively associated with POCD in this CMap model, suggesting that RAR might be a novel target for POCD. Most importantly, acitretin, a clinically used RAR agonist, significantly inhibited surgery-induced cognitive impairments and prevented the reduction in RARα and RARα-target genes in the hippocampal regions of aged mice. The study denotes a reliable CMap bioinformatics model of POCD for future use and establishes that RAR is a novel therapeutic target for treating this clinical syndrome.
Collapse
Affiliation(s)
- Yongjie Bao
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Wenni Rong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - An Zhu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yuan Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jingyang Le
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Qiyao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - C. Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Zhipeng Xu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
| | - Lin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
| | - Wei Cui
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (Y.B.)
| |
Collapse
|
8
|
The interaction between intestinal bacterial metabolites and phosphatase and tensin homolog in autism spectrum disorder. Mol Cell Neurosci 2023; 124:103805. [PMID: 36592799 DOI: 10.1016/j.mcn.2022.103805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.
Collapse
|
9
|
Abstract
Immunity could be viewed as the common factor in neurodevelopmental disorders and cancer. The immune and nervous systems coevolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. Neurodevelopmental disorders and cancer share similarities. In neurodevelopmental disorders, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, and Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in neurodevelopmental disorders and cancer. Although there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Finally, we discuss drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Song M, Liu J, Yang Y, Lv L, Li W, Luo XJ. Genome-Wide Meta-Analysis Identifies Two Novel Risk Loci for Epilepsy. Front Neurosci 2021; 15:722592. [PMID: 34456681 PMCID: PMC8397525 DOI: 10.3389/fnins.2021.722592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy (affects about 70 million people worldwide) is one of the most prevalent brain disorders and imposes a huge economic burden on society. Epilepsy has a strong genetic component. In this study, we perform the largest genome-wide meta-analysis of epilepsy (N = 8,00,869 subjects) by integrating four large-scale genome-wide association studies (GWASs) of epilepsy. We identified three genome-wide significant (GWS) (p < 5 × 10–8) risk loci for epilepsy. The risk loci on 7q21.11 [lead single nucleotide polymorphism (SNP) rs11978015, p = 9.26 × 10–9] and 8p23.1 (lead SNP rs28634186, p = 4.39 × 10–8) are newly identified in the present study. Of note, rs11978015 resides in upstream of GRM3, which encodes glutamate metabotropic receptor 3. GRM3 has pivotal roles in neurotransmission and is involved in most aspects of normal brain function. In addition, we also identified three genes (TTC21B, RP11-375N15.2, and TNKS) whose cis-regulated expression level are associated with epilepsy, indicating that risk variants may confer epilepsy risk through regulating the expression of these genes. Our study not only provides new insights into genetic architecture of epilepsy but also prioritizes potential molecular targets (including GRM3 and TTC21B) for development of new drugs and therapeutics for epilepsy.
Collapse
Affiliation(s)
- Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|