1
|
Foddis M, Blumenau S, Mueller S, Messerschmidt C, Rocca C, Pagnamenta AT, Winek K, Endres M, Meisel A, Tucci A, Bras J, Guerreiro R, Beule D, Dirnagl U, Sassi C. Ide Copy Number Variant Does Not Influence Stroke Severity in 2 C57BL/6J Mouse Models nor in Humans: An Exploratory Study. Stroke 2025; 56:725-736. [PMID: 39866114 PMCID: PMC7617642 DOI: 10.1161/strokeaha.124.049575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning Ide locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory. Given IDE critical role in vascular plasticity, we hypothesized Ide CNV may have explained PcomA variability in C57BL/6J inbred mice. METHODS We applied a combination of techniques (T2-weighted magnetic resonance imaging, time-of-flight angiography, cerebral blood flow imaging, and histology) to characterize the collaterome in 77 C57BL/6J bilateral common carotid artery stenosis, middle cerebral artery occlusion, naive, and sham mice and performed on these Taqman genotyping, exome sequencing, and RNA sequencing. We then investigated the hypothesis that IDE structural variants (CNVs, gain/loss of function mutations) may have influenced the cerebrovascular phenotype in a large cohort of 454 040 cases and controls (UK Biobank, Genomics England). RESULTS We detected an Ide CNV in a bilateral common carotid artery stenosis mouse with 2 patent PcomAs (minor allele frequency, 1.3%), not segregating with the PcomA patency phenotype. In addition, 2 heterozygous IDE CNVs, resulting in loss of function were found in 1 patient with hereditary ataxia, a patient with hereditary congenital heart disease, and 2 healthy individuals (minor allele frequency 9×10-6). Moreover, we report 4 IDE loss of function point mutations (p.Leu5X, p.Met394ValfsX29, p.Pro14SerfsX26, p.Leu889X, minor allele frequency 0.02%) present also in controls or inherited from healthy parents. CONCLUSIONS Ide CNV and loss of function variants are rare, do not crucially influence PcomA variability in C57BL/6J inbred mice, and do not cause a vascular phenotype in humans.
Collapse
Affiliation(s)
- Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonja Blumenau
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | | | - Clarissa Rocca
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Katarzyna Winek
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI49503, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI49503, USA
| | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Leddy E, Attachaipanich T, Chattipakorn N, Chattipakorn SC. Investigating the effect of metformin on chemobrain: Reports from cells to bedside. Exp Neurol 2025; 385:115129. [PMID: 39733854 DOI: 10.1016/j.expneurol.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Chemobrain can be defined as the development of cognitive side effects following chemotherapy, which is increasingly reported in cancer survivor patients. Chemobrain leads to reduced patients' quality of life by causing different symptoms ranging from strokes and seizures to memory loss and mood disorders. Metformin, an antidiabetic drug, has been proposed as a potential treatment to improve the symptoms of chemotherapy-induced cognitive dysfunction. Several benefits of metformin on chemobrain have been suggested, including anti-inflammation, anti-oxidative stress, restoring impaired mitochondrial function, stabilizing apoptosis, ameliorating impairments to dendritic spine density, normalizing brain senescence protein levels, and attenuating reductions in cell viability, along with reversing learning and memory deficits. These benefits occur through various pathways of metformin, including adenosine monophosphate-activated protein kinase (AMPK), TAp73, and phosphatidylinositol 3-kinase/protein kinase B (Akt) pathways. In addition, metformin can exert neuroprotective effects and restore deficits in brain homeostasis caused by chemotherapy. Furthermore, activation of AMPK following metformin therapy promotes autophagy, stimulates energy production, and improves cell survival. Metformin's interaction with Tap73 and Akt pathways allows for regulated cell proliferation in adult neural precursor cells and cell growth, respectively. Although the negative effects on cerebral function induced by chemotherapeutics have been alleviated by metformin in several instances, further studies are required to confirm its beneficial effects. This research is essential as it addresses the pressing issue of chemobrain, which is on the rise alongside global increases in cancer. Exploring metformin's potential as a neuroprotective agent offers a promising avenue for mitigating these cognitive impairments and highlights the need for further studies to validate its therapeutic mechanisms. This review comprehensively summarises evidence from both in vitro and in vivo studies to demonstrate metformin's effects on cognitive function when co-administered with chemotherapy and identifies gaps in knowledge for further investigation.
Collapse
Affiliation(s)
- Evelyn Leddy
- School of Biological Sciences, The University of Manchester, Greater Manchester M13 9PL, United Kingdom; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Zhang Y, Liao X, Xu J, Yin J, Li S, Li M, Shi X, Zhang S, Li C, Xu W, Yu X, Yang Y. The Promising Potency of Sodium-Glucose Cotransporter 2 Inhibitors in the Prevention of and as Treatment for Cognitive Impairment Among Type 2 Diabetes Patients. Biomedicines 2024; 12:2783. [PMID: 39767690 PMCID: PMC11673520 DOI: 10.3390/biomedicines12122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for the majority of diabetes mellitus prevalence, is associated with an increased risk of cognition decline and deterioration of cognition function in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2), located in the renal proximal tubule, plays a role in urine glucose reabsorption. SGLT2 inhibitors (SGLT2i), have shown potential benefits beyond cardiac and renal improvement in preventing and treating cognitive impairment (CI), including mild cognitive impairment, Alzheimer's disease and vascular dementia in T2DM patients. Studies suggest that SGLT2i may ameliorate diabetic CI through metabolism pathways, inflammation, oxidative stress, neurotrophic factors and AChE inhibition. Clinical trials and meta-analyses have reported significant and insignificant results. Given their vascular effects, SGLT2i may offer unique protection against vascular CI. This review compiles mechanisms and clinical evidence, emphasizing the need for future analysis, evaluation, trials and meta-analyses to verify and recommend optimal SGLT2i selection and dosage for specific patients.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Chunyu Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
4
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
5
|
Yin J, Huang Y, Wang K, Zhong Q, Liu Y, Ji Z, Liao Y, Ma Z, Bei W, Wang W. Ginseng extract improves pancreatic islet injury and promotes β-cell regeneration in T2DM mice. Front Pharmacol 2024; 15:1407200. [PMID: 38989151 PMCID: PMC11234855 DOI: 10.3389/fphar.2024.1407200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Panax ginseng C. A. Mey. (Araliaceae; Ginseng Radix et Rhizoma), a traditional plant commonly utilized in Eastern Asia, has demonstrated efficacy in treating neuro-damaging diseases and diabetes mellitus. However, its precise roles and mechanism in alleviating type 2 diabetes mellitus (T2DM) need further study. The objective of this study is to explore the pharmacological effects of ginseng extract and elucidate its potential mechanisms in protecting islets and promoting β-cell regeneration. Methods The T2DM mouse model was induced through streptozotocin combined with a high-fat diet. Two batches of mice were sacrificed on the 7th and 28th days following ginseng extract administration. Body weight, fasting blood glucose levels, and glucose tolerance were detected. Morphological changes in the pancreatic islets were examined via H & E staining. Levels of serum insulin, glucagon, GLP-1, and inflammatory factors were measured using ELISA. The ability of ginseng extract to promote pancreatic islet β-cell regeneration was evaluated through insulin & PCNA double immunofluorescence staining. Furthermore, the mechanism behind β-cells regeneration was explored through insulin & glucagon double immunofluorescence staining, accompanied by immunohistochemical staining and western blot analyses. Results and Discussion The present research revealed that ginseng extract alleviates symptoms of T2DM in mice, including decreased blood glucose levels and improved glucose tolerance. Serum levels of insulin, GLP-1, and IL-10 increased following the administration of ginseng extract, while levels of glucagon, TNF-α, and IL-1β decreased. Ginseng extract preserved normal islet morphology, increased nascent β-cell population, and inhibited inflammatory infiltration within the islets, moreover, it decreased α-cell proportion while increasing β-cell proportion. Mechanistically, ginseng extract might inhibit ARX and MAFB expressions, increase MAFA level to aid in α-cell to β-cell transformation, and activate AKT-FOXM1/cyclin D2 to enhance β-cell proliferation. Our study suggests that ginseng extract may be a promising therapy in treating T2DM, especially in those with islet injury.
Collapse
Affiliation(s)
- Jianying Yin
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuanfeng Huang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ke Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qin Zhong
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuan Liu
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zirui Ji
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yiwen Liao
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhiyuan Ma
- Baishan Institute of Science and Technology, Baishan, Jilin, China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Kullenberg H, Rossen J, Johansson UB, Hagströmer M, Nyström T, Kumlin M, Svedberg MM. Correlations between insulin-degrading enzyme and metabolic markers in patients diagnosed with type 2 diabetes, Alzheimer's disease, and healthy controls: a comparative study. Endocrine 2024; 84:450-458. [PMID: 37980298 PMCID: PMC11076361 DOI: 10.1007/s12020-023-03603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE This study aimed to explore correlations between insulin-degrading enzyme (IDE) and markers of metabolic function in a group of patients diagnosed with type 2 diabetes mellitus (T2DM) or Alzheimer's disease (AD) and metabolically healthy volunteers. METHOD We included 120 individuals (47 with T2DM, 9 with AD, and 64 healthy controls). Serum levels of IDE were measured with commercial kits for ELISA. Differences in IDE levels between groups were analyzed with non-parametric ANCOVA, and correlations were analyzed with Spearman's rank correlations. We also investigated the influence of age, sex, and the use of insulin on the correlation using a non-parametric version of partial correlation. RESULTS Patients diagnosed with T2DM had higher IDE levels than patients diagnosed with AD and healthy controls after adjustment for age and sex. IDE was increasingly associated with body mass index (BMI), fasting blood glucose, C-peptide, hemoglobin A1c (HbA1c), insulin resistance, and triglycerides. In stratified analyses, we found a decreasing partial correlation between IDE and HbA1c in patients diagnosed with AD and a decreasing partial correlation between IDE and C-peptide in healthy controls. In patients diagnosed with T2DM, we found no partial correlations. CONCLUSION These results indicate that IDE is essential in metabolic function and might reflect metabolic status, although it is not yet a biomarker that can be utilized in clinical practice. Further research on IDE in human blood may provide crucial insights into the full function of the enzyme.
Collapse
Affiliation(s)
- Helena Kullenberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden.
| | - Jenny Rossen
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Unn-Britt Johansson
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Maria Hagströmer
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Marie M Svedberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
7
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
8
|
Ruthirakuhan M, Swardfager W, Xiong L, MacIntosh BJ, Rabin JS, Lanctôt KL, Ottoy J, Ramirez J, Keith J, Black SE. Investigating the impact of hypertension with and without diabetes on Alzheimer's disease risk: A clinico-pathological study. Alzheimers Dement 2024; 20:2766-2778. [PMID: 38425134 PMCID: PMC11032528 DOI: 10.1002/alz.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Hypertension and diabetes are common cardiovascular risk factors that increase Alzheimer's disease (AD) risk. However, it is unclear whether AD risk differs in hypertensive individuals with and without diabetes. METHODS Cognitively normal individuals (N = 11,074) from the National Alzheimer's Coordinating Center (NACC) were categorized as having (1) hypertension with diabetes (HTN+/DM+), (2) hypertension without diabetes (HTN+/DM-), or (3) neither (HTN-/DM-). AD risk in HTN+/DM+ and HTN+/DM- was compared to HTN-/DM-. This risk was then investigated in those with AD neuropathology (ADNP), cerebral amyloid angiopathy (CAA), cerebrovascular neuropathology (CVNP), arteriolosclerosis, and atherosclerosis. Finally, AD risk in HTN-/DM+ was compared to HTN-/DM-. RESULTS Seven percent (N = 830) of individuals developed AD. HTN+/DM+ (hazard ratio [HR] = 1.31 [1.19-1.44]) and HTN+/DM- (HR = 1.24 [1.17-1.32]) increased AD risk compared to HTN-/DM-. AD risk was greater in HTN+/DM+ with ADNP (HR = 2.10 [1.16-3.79]) and CAA (HR = 1.52 [1.09-2.12]), and in HTN+/DM- with CVNP (HR = 1.54 [1.17-2.03]). HTN-/DM+ also increased AD risk (HR = 1.88 [1.30-2.72]) compared to HTN-/DM-. DISCUSSION HTN+/DM+ and HTN+/DM- increased AD risk compared to HTN-/DM-, but pathological differences between groups suggest targeted therapies may be warranted based on cardiovascular risk profiles. HIGHLIGHTS AD risk was studied in hypertensive (HTN+) individuals with/without diabetes (DM+/-). HTN+/DM+ and HTN+/DM- both had an increased risk of AD compared to HTN-/DM-. Post mortem analysis identified neuropathological differences between HTN+/DM+ and HTN+/DM-. In HTN+/DM+, AD risk was greater in those with AD neuropathology and CAA. In HTN+/DM-, AD risk was greater in those with cerebrovascular neuropathology.
Collapse
Affiliation(s)
- Myuri Ruthirakuhan
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Walter Swardfager
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Lisa Xiong
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Bradley J. MacIntosh
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Jennifer S. Rabin
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteTorontoOntarioCanada
| | - Krista L. Lanctôt
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatrySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Julie Ottoy
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
| | - Julia Keith
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Department of Anatomic PathologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Sandra E. Black
- Dr. Sandra Black Centre for Brain Resilience and RecoveryHurvitz Brain Sciences Research ProgramSunnybrook Research InstituteTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
| |
Collapse
|
9
|
Alnaaim SA, Al‐kuraishy HM, Al‐Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J Cell Mol Med 2023; 27:3953-3965. [PMID: 37737447 PMCID: PMC10747420 DOI: 10.1111/jcmm.17965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Saud A. Alnaaim
- Clinical Neurosciences Department, College of MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
10
|
Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH, Kang JH. Repositioning of Anti-Diabetic Drugs against Dementia: Insight from Molecular Perspectives to Clinical Trials. Int J Mol Sci 2023; 24:11450. [PMID: 37511207 PMCID: PMC10380685 DOI: 10.3390/ijms241411450] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aβ production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Keren Esther Kristina Mantik
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr 2023; 15:101. [PMID: 37173803 PMCID: PMC10182652 DOI: 10.1186/s13098-023-01082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human Islet amyloid polypeptide (hIAPP) from pancreatic β cells in the islet of Langerhans has different physiological functions including inhibiting the release of insulin and glucagon. Type 2 diabetes mellitus (T2DM) is an endocrine disorder due to relative insulin insufficiency and insulin resistance (IR) is associated with increased circulating hIAPP. Remarkably, hIAPP has structural similarity with amyloid beta (Aβ) and can engage in the pathogenesis of T2DM and Alzheimer's disease (AD). Therefore, the present review aimed to elucidate how hIAPP acts as a link between T2DM and AD. IR, aging and low β cell mass increase expression of hIAPP which binds cell membrane leading to the aberrant release of Ca2+ and activation of the proteolytic enzymes leading to a series of events causing loss of β cells. Peripheral hIAPP plays a major role in the pathogenesis of AD, and high circulating hIAPP level increase AD risk in T2DM patients. However, there is no hard evidence for the role of brain-derived hIAPP in the pathogenesis of AD. Nevertheless, oxidative stress, mitochondrial dysfunction, chaperon-mediated autophagy, heparan sulfate proteoglycan (HSPG), immune response, and zinc homeostasis in T2DM could be the possible mechanisms for the induction of the aggregation of hIAPP which increase AD risk. In conclusion, increasing hIAPP circulating levels in T2DM patients predispose them to the development and progression of AD. Dipeptidyl peptidase 4 (DPP4) inhibitors and glucagon-like peptide-1 (GLP-1) agonists attenuate AD in T2DM by inhibiting expression and deposition of hIAP.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961 Saudi Arabia
| | - Hayder M. Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Ali I. Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Baghdad, Box 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, Wien, 1030 Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
12
|
Marunaka Y. Molecular Mechanisms of Obesity-Induced Development of Insulin Resistance and Promotion of Amyloid-β Accumulation: Dietary Therapy Using Weak Organic Acids via Improvement of Lowered Interstitial Fluid pH. Biomolecules 2023; 13:biom13050779. [PMID: 37238649 DOI: 10.3390/biom13050779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Insulin resistance is one of the etiologies of type 2 diabetes mellitus (T2DM) and has been suggested to contribute to the development of Alzheimer's disease by promoting amyloid-β accumulation. Various causes of insulin resistance have been suggested; however, mechanisms of insulin resistance development remain to be elucidated in many respects. Elucidating the mechanisms underlying the development of insulin resistance is one of the key factors in developing methods to prevent the onset of T2DM and Alzheimer's disease. It has been suggested that the body pH environment plays an important role in the control of cellular functions by regulating the action of hormones including insulin and the activity of enzymes and neurons, thereby maintaining homeostatic conditions of the body. This review introduces: (1) Mitochondrial dysfunction through oxidative stress caused by obesity-induced inflammation. (2) Decreased pH of interstitial fluid due to mitochondrial dysfunction. (3) Development of insulin resistance due to diminution of insulin affinity to its receptor caused by the lowered interstitial fluid pH. (4) Accelerated accumulation of amyloid-β due to elevated activities of β- and γ-secretases caused by the lowered interstitial fluid pH. (5) Diet therapies for improving insulin resistance with weak organic acids that act as bases in the body to raise the pH of lowered interstitial fluid and food factors that promote absorption of weak organic acids in the gut.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
13
|
Long-term use of metformin and Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1107-1115. [PMID: 36849855 DOI: 10.1007/s10787-023-01163-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by extracellular deposition of amyloid beta (Aβ) leading to cognitive decline. Evidence from epidemiological studies has shown the association between type 2 diabetes mellitus (T2DM) and the development of AD. T2DM and peripheral insulin resistance (IR) augment the risk of AD with the development of brain IR with inhibition of neuronal insulin receptors. These changes impair clearance of Aβ, increase secretion of Aβ1-42, reduce brain glucose metabolism, and abnormal deposition of Aβ plaques. Insulin-sensitizing drug metformin inhibits aggregation of Aβ by increasing the activity of the insulin-degrading enzyme (IDE) and neprilysin (NEP) levels. Additionally, different studies raised conflicting evidence concerning long-term metformin therapy in T2DM patients, as it may increase the risk of AD or it may prevent the progression of AD. Therefore, the objective of this review was to clarify the beneficial and detrimental effects of long-term metformin therapy in T2DM patients and risk of AD. Evidence from clinical trial studies revealed the little effect of metformin on AD. Various animal studies showed that metformin increases Aβ formation by activation of amyloid precursor protein (APP)-cleaving enzymes with the generation of insoluble tau species. Of note, the metformin effect on cognitive function relative to AD pathogenesis is mostly assessed in animal model studies. The duration of metformin therapy was short in most animal studies, this finding cannot apply to the long-term duration of metformin in humans. Therefore, large-scale prospective and comparative studies involving long-term metformin therapy in both diabetic and non-diabetic patients are required to exclude the effect of T2DM-induced AD.
Collapse
|
14
|
Kullenberg H, Rossen J, Johansson UB, Hagströmer M, Nyström T, Kumlin M, Svedberg MM. Increased levels of insulin-degrading enzyme in patients with type 2 diabetes mellitus. Endocrine 2022; 77:561-565. [PMID: 35751775 DOI: 10.1007/s12020-022-03123-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Decreasing levels of serum insulin-degrading enzyme (IDE) have been associated with an increased risk for Alzheimer´s disease (AD) in patients with type 2 diabetes mellitus (T2DM). Research on serum IDE levels in patients with T2DM is sparse and the aim of this study was to explore serum levels of IDE in patients with T2DM. METHOD Blood serum samples were obtained from a biobank. Samples from subjects with T2DM and without metabolic disease were divided into subgroups; lifestyle treatment (n = 10), oral antidiabetic treatment (n = 17), insulin treatment (n = 20) and metabolically healthy controls (n = 18). Serum levels of IDE were analysed using specific ELISA assays. RESULTS Serum levels of IDE were elevated in subjects with T2DM compared to metabolically healthy individuals (p = 0.033). No significant differences were detected between treatment subgroups. CONCLUSION The present study indicates that patients with T2DM have increased serum IDE levels, compared to metabolically healthy individuals. However, for IDE to be clinically useful as a biomarker, its full function and possible use needs to be further elucidated in larger studies showing reproducible outcomes.
Collapse
Affiliation(s)
- Helena Kullenberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden.
| | - Jenny Rossen
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Unn-Britt Johansson
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Maria Hagströmer
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Academic Primary Health Care Centre, Region Stockholm, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Marie M Svedberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
15
|
Du MR, Gao QY, Liu CL, Bai LY, Li T, Wei FL. Exploring the Pharmacological Potential of Metformin for Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:838173. [PMID: 35557834 PMCID: PMC9087341 DOI: 10.3389/fnagi.2022.838173] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/30/2022] Open
Abstract
Metformin, one of the first-line of hypoglycemic drugs, has cardioprotective, anti-inflammatory and anticancer activities, in addition to its proven hypoglycemic effects. Furthermore, the preventive and therapeutic potential of metformin for neurodegenerative diseases has become a topic of concern. Increasing research suggests that metformin can prevent the progression of neurodegenerative diseases. In recent years, many studies have investigated the neuroprotective effect of metformin in the treatment of neurodegenerative diseases. It has been revealed that metformin can play a neuroprotective role by regulating energy metabolism, oxidative stress, inflammatory response and protein deposition of cells, and avoiding neuronal dysfunction and neuronal death. On the contrary, some have hypothesized that metformin has a two-sided effect which may accelerate the progression of neurodegenerative diseases. In this review, the results of animal experiments and clinical studies are reviewed to discuss the application prospects of metformin in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Rui Du
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Quan-You Gao
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Chen-Lin Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Lin-Ya Bai
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fei-Long Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Pharm Res 2022; 39:611-629. [PMID: 35378698 DOI: 10.1007/s11095-022-03237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE This review aims to provide a precise perceptive of the insulin-degrading enzyme (IDE) and its relationship to type 2 diabetes (T2D), Alzheimer's disease (AD), obesity, and cardiovascular diseases. The purpose of the current study was to provide clear idea of treating prevalent diseases such as T2D, and AD by molecular pharmacological therapeutics rather than conventional medicinal therapy. METHODS To achieve the aims, molecular docking was performed using several softwares such as LIGPLOT+, Python, and Protein-Ligand Interaction Profiler with corresponding tools. RESULTS The IDE is a large zinc-metalloprotease that breakdown numerous pathophysiologically important extracellular substrates, comprising amyloid β-protein (Aβ) and insulin. Recent studies demonstrated that dysregulation of IDE leads to develop AD and T2D. Specifically, IDE regulates circulating insulin in a variety of organs via a degradation-dependent clearance mechanism. IDE is unique because it was subjected to allosteric activation and mediated via an oligomer structure. CONCLUSION In this review, we summarised the factors that modulate insulin reformation by IDE and interaction of IDE and some recent reports on IDE inhibitors against AD and T2D. We also highlighted the latest signs of progress of the function of IDE and challenges in advancing IDE- targetted therapies against T2D and AD.
Collapse
Affiliation(s)
- Md Shofiul Azam
- Department of Chemical and Food Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Wahiduzzaman
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Md Reyad-Ul-Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, 250021, Shandong, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mukta Roy
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|