1
|
Yuze Ma, Liu N, Shao X, Shi T, Lin J, Liu B, Shen T, Guo B, Jiang Q. Mechanical loading on osteocytes regulates thermogenesis homeostasis of brown adipose tissue by influencing osteocyte-derived exosomes. J Orthop Translat 2024; 48:39-52. [PMID: 39087139 PMCID: PMC11287067 DOI: 10.1016/j.jot.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.
Collapse
Affiliation(s)
- Yuze Ma
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyan Shao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Tianshu Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaquan Lin
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tao Shen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Karnik SJ, Margetts TJ, Wang HS, Movila A, Oblak AL, Fehrenbacher JC, Kacena MA, Plotkin LI. Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health. Curr Osteoporos Rep 2024; 22:165-176. [PMID: 38285083 PMCID: PMC10912190 DOI: 10.1007/s11914-023-00847-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE OF REVIEW This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population. RECENT FINDINGS Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tyler J Margetts
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hannah S Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexandru Movila
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Department of Radiology & Imaging Sciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Ross RD, Olali AZ, Shi Q, Hoover DR, Sharma A, Weber KM, French AL, McKay H, Tien PC, Yin MT, Rubin LH. Brief Report: Undercarboxylated Osteocalcin Is Associated With Cognition in Women With and Without HIV. J Acquir Immune Defic Syndr 2022; 91:162-167. [PMID: 36094482 PMCID: PMC9470989 DOI: 10.1097/qai.0000000000003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/03/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bone loss and cognitive impairment are common in women living with HIV (WLWH) and are exacerbated by menopause. Bone-derived undercarboxylated osteocalcin (ucOCN) and sclerostin appear to influence cognition. The current study investigated whether the circulating levels of these 2 proteins are associated with cognition in midlife WLWH and demographically similar HIV seronegative women. METHODS Plasma samples from women enrolled in a musculoskeletal substudy within the Women's Interagency HIV Study were used to measure ucOCN and sclerostin. A neuropsychological (NP) test battery assessing executive function, processing speed, attention/working memory, learning, memory, verbal fluency, and motor function was administered within 6 months of musculoskeletal enrollment and every 2 years after (1-4 follow-up visits per participant). A series of generalized estimating equations were conducted to examine the association between biomarkers and NP performance at the initial assessment and over time in the total sample and in WLWH only. Primary predictors included biomarkers, time, and biomarker by time interactions. If the interaction terms were not significant, models were re-run without interactions. RESULTS Neither biomarker predicted changes in NP performance over time in the total sample or in WLWH. ucOCN was positively associated with executive function in the total sample and in WLWH and with motor skills in WLWH. ucOCN was negatively associated with attention/working memory in the total sample. There were no significant associations between sclerostin and NP performance. CONCLUSION The current study suggests an association between bone-derived ucOCN and cognition in women with and without HIV infection.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Arnold Z. Olali
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Qiuhu Shi
- New York Medical College, Valhalla, NY
| | - Donald R. Hoover
- Department of Statistics and Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, NJ
| | | | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Chicago, IL
| | - Heather McKay
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA
| | | | - Leah H. Rubin
- Department of Neurology, Psychiatry, and Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|