1
|
Genius P, Calle ML, Rodríguez‐Fernández B, Minguillon C, Cacciaglia R, Garrido‐Martin D, Esteller M, Navarro A, Gispert JD, Vilor‐Tejedor N. Compositional brain scores capture Alzheimer's disease-specific structural brain patterns along the disease continuum. Alzheimers Dement 2025; 21:e14490. [PMID: 39868465 PMCID: PMC11848177 DOI: 10.1002/alz.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Traditional multivariate methods for neuroimaging studies overlook the interdependent relationship between brain features. This study addresses this gap by analyzing relative brain volumetric patterns to capture how Alzheimer's disease (AD) and genetics influence brain structure along the disease continuum. METHODS This study analyzed data from participants across the AD continuum from the Alzheimer's and Families (ALFA) and Alzheimer's Disease Neuroimaging Initiative (ADNI) studies. Compositional data analysis (CoDA) was exploited to examine relative brain volumetric variations that (1) were linked to different AD stages compared to cognitively unimpaired amyloid-β-negative (CU A-) individuals and (2) varied by AD genetic risk. RESULTS Disease stage-specific compositional brain scores were identified, differentiating CU A- individuals from those in more advanced stages. Genetic risk-stratified models revealed a broader genetic landscape affecting brain morphology in AD, beyond the well-known apolipoprotein E ε4 allele. DISCUSSION CoDA emerges as an alternative multivariate framework to deepen understanding of AD-related structural changes and support targeted interventions for those at higher genetic risk. HIGHLIGHTS Compositional data analysis (CoDA) revealed the relative variation of brain region volumes, captured in compositional brain scores, capable of discerning between cognitively unimpaired amyloid-β-negative individuals and subjects within other disease-stage groups along the Alzheimer's disease (AD) continuum. CoDA also uncovered the genetic vulnerability of specific brain regions at each stage of the disease along the continuum. CoDA is capable of integrating magnetic resonance imaging data from two different cohorts without stringent requirements for harmonization. This translates as an advantage, compared to traditional methods, and strengthens the reliability of cross-study comparisons by standardizing the data despite different labeling agreements, facilitating collaborative and large-scale research. The algorithm is sensitive to AD-specific effects, as the main compositional brain scores display little overlap with the age-specific compositional brain score. CoDA provides a more accurate analysis of brain imaging data addressing its compositional nature, which can influence the development of targeted approaches, opening new avenues for enhancing brain health.
Collapse
Affiliation(s)
- Patricia Genius
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Doctoral SchoolPhD programme in BioinformaticsUniversity of Vic–Central University of Catalonia (UVic‐UCC)VicSpain
| | - M. Luz Calle
- Biosciences DepartmentFaculty of SciencesTechnology and EngineeringUniversity of Vic–Central University of CataloniaVicSpain
| | - Blanca Rodríguez‐Fernández
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
| | - Diego Garrido‐Martin
- Department of Genetics, Microbiology and StatisticsUniversity of Barcelona (UB)BarcelonaSpain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC)Ctra de Can RutiCamí de les EscolesBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of Barcelona (UB)BarcelonaSpain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC)MadridSpain
| | - Arcadi Navarro
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Pompeu Fabra UniversityBarcelonaSpain
- Institute of Evolutionary Biology (CSIC‐UPF)Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centro de Investigación Biomédica en Red BioingenieríaBiomateriales y NanomedicinaInstituto de Salud Carlos IIIMadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Natalia Vilor‐Tejedor
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Research Institute, Barcelona, Spain.BarcelonaSpain
- Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | | | | |
Collapse
|
2
|
Li JM, Bai YZ, Zhang SQ. Advances and challenges in serine in the central nervous system: physicochemistry, physiology, and pharmacology. Metab Brain Dis 2024; 39:1637-1647. [PMID: 39186223 DOI: 10.1007/s11011-024-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Neurological disorders are the primary cause of human disability and mortality globally, however, current medications slightly alleviate some symptoms of degenerative diseases. Serine is an important amino acid for the brain function and involved in a variety of biosynthetic pathways and signal transduction processes. The imbalance of serine metabolism is associated with neurodegeneration, including neuroinflammation, oxidative stress and apoptosis. Altered activities of serine metabolizing enzymes and accumulation of serine metabolites affect the survival and function of nerve cells. Abnormal serine levels are observed in animal models with neurological diseases, but not all human studies, therefore, the maintenance of serine homeostasis is a potentially therapeutic strategy for neurological disorders. To date, physiological and pharmacological roles of serine in neurological diseases have not been systemically recapitulated, and the association between serine and neurological diseases is controversial. In this review, we summarize physicochemical properties of serine, biological processes of serine in the brain (source, biotransformation, and transport), and the application of serine in neurological diseases including Alzheimer's disease, schizophrenia, and depression. Here, we highlight physicochemistry, physiology, pharmacology, and therapeutic potentials of serine in the prevention and treatment of neurological dysfunction. Our work provides valuable hints for future investigation that will lead to a comprehensive understanding of serine and its metabolism in cellular physiology and pharmacology. Although broad by necessity, the review helps researchers to understand great potentials of serine in the prevention and treatment of neurological dysfunction.
Collapse
Affiliation(s)
- Jia-Meng Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
3
|
Bean L, Bose PK, Rani A, Kumar A. Serine racemase expression profile in the prefrontal cortex and hippocampal subregions during aging in male and female rats. Aging (Albany NY) 2024; 16:8402-8416. [PMID: 38761177 PMCID: PMC11164512 DOI: 10.18632/aging.205841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 05/20/2024]
Abstract
Aging is associated with a decrease in N-methyl-D-aspartate (NMDA) receptor function, which is critical for maintaining synaptic plasticity, learning, and memory. Activation of the NMDA receptor requires binding of the neurotransmitter glutamate and also the presence of co-agonist D-serine at the glycine site. The enzymatic conversion of L-serine to D-serine is facilitated by the enzyme serine racemase (SR). Subsequently, SR plays a pivotal role in regulating NMDA receptor activity, thereby impacting synaptic plasticity and memory processes in the central nervous system. As such, age-related changes in the expression of SR could contribute to decreased NMDA receptor function. However, age-associated changes in SR expression levels in the medial and lateral prefrontal cortex (mPFC, lPFC), and in the dorsal hippocampal subfields, CA1, CA3, and dentate gyrus (DG), have not been thoroughly elucidated. Therefore, the current studies were designed to determine the SR expression profile, including protein levels and mRNA, for these regions in aged and young male and female Fischer-344 rats. Our results demonstrate a significant reduction in SR expression levels in the mPFC and all hippocampal subfields of aged rats compared to young rats. No sex differences were observed in the expression of SR. These findings suggest that the decrease in SR levels may play a role in the age-associated reduction of NMDA receptor function in brain regions crucial for cognitive function and synaptic plasticity.
Collapse
Affiliation(s)
- Linda Bean
- Department of Anatomy, Cell Biology, and Physiology, IU School of Medicine, Indianapolis, IN 46201, USA
| | - Prodip K. Bose
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32607, USA
- Department of Anesthesiology and Department of Neurology at the College of Medicine, University of Florida, FL 32607, USA
| | - Asha Rani
- Department of Neuroscience, The McKnight Brain Institute, University of Florida, Gainesville, FL 32607, USA
| | - Ashok Kumar
- Department of Neuroscience, The McKnight Brain Institute, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
4
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Arizanovska D, Emodogo JA, Lally AP, Palavicino-Maggio CB, Liebl DJ, Folorunso OO. Cross species review of the physiological role of D-serine in translationally relevant behaviors. Amino Acids 2023; 55:1501-1517. [PMID: 37833512 PMCID: PMC10689556 DOI: 10.1007/s00726-023-03338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, such as glutamate receptor subtype N-methyl-D-aspartate receptor (NMDAR) hypofunction, have been shown to contribute to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzheimer's disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require the binding of a co-agonist D-serine or glycine to the GluN1 subunit to open. D-serine, which is racemized from L-serine by the neuronal enzyme serine racemase (SRR), and both SRR and D-serine are enriched in cortico-limbic brain regions. D-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and release has been implicated in many pathological conditions. In this review, we explore the role of D-serine in behaviors that are translationally relevant to multiple psychiatric and neurological disorders in different models across species.
Collapse
Affiliation(s)
- Dena Arizanovska
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jada A Emodogo
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Anna P Lally
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA, USA
| | - Caroline B Palavicino-Maggio
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Neurobiological Mechanisms of Aggression Laboratory, McLean Hospital, Belmont, MA, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oluwarotimi O Folorunso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
6
|
Padulo C, Sestieri C, Punzi M, Picerni E, Chiacchiaretta P, Tullo MG, Granzotto A, Baldassarre A, Onofrj M, Ferretti A, Delli Pizzi S, Sensi SL. Atrophy of specific amygdala subfields in subjects converting to mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12436. [PMID: 38053753 PMCID: PMC10694338 DOI: 10.1002/trc2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Introduction Accumulating evidence indicates that the amygdala exhibits early signs of Alzheimer's disease (AD) pathology. However, it is still unknown whether the atrophy of distinct subfields of the amygdala also participates in the transition from healthy cognition to mild cognitive impairment (MCI). Methods Our sample was derived from the AD Neuroimaging Initiative 3 and consisted of 97 cognitively healthy (HC) individuals, sorted into two groups based on their clinical follow-up: 75 who remained stable (s-HC) and 22 who converted to MCI within 48 months (c-HC). Anatomical magnetic resonance (MR) images were analyzed using a semi-automatic approach that combines probabilistic methods and a priori information from ex vivo MR images and histology to segment and obtain quantitative structural metrics for different amygdala subfields in each participant. Spearman's correlations were performed between MR measures and baseline and longitudinal neuropsychological measures. We also included anatomical measurements of the whole amygdala, the hippocampus, a key target of AD-related pathology, and the whole cortical thickness as a test of spatial specificity. Results Compared with s-HC individuals, c-HC subjects showed a reduced right amygdala volume, whereas no significant difference was observed for hippocampal volumes or changes in cortical thickness. In the amygdala subfields, we observed selected atrophy patterns in the basolateral nuclear complex, anterior amygdala area, and transitional area. Macro-structural alterations in these subfields correlated with variations of global indices of cognitive performance (measured at baseline and the 48-month follow-up), suggesting that amygdala changes shape the cognitive progression to MCI. Discussion Our results provide anatomical evidence for the early involvement of the amygdala in the preclinical stages of AD. Highlights Amygdala's atrophy marks elderly progression to mild cognitive impairment (MCI).Amygdala's was observed within the basolateral and amygdaloid complexes.Macro-structural alterations were associated with cognitive decline.No atrophy was found in the hippocampus and cortex.
Collapse
Affiliation(s)
- Caterina Padulo
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Department of HumanitiesUniversity of Naples Federico IINaplesItaly
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies (ITAB)“G. d'Annunzio” University, Chieti‐PescaraChietiItaly
| | - Miriam Punzi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Eleonora Picerni
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐Pescara, ChietiChietiItaly
- Advanced Computing CoreCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies (ITAB)“G. d'Annunzio” University, Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | | |
Collapse
|
7
|
Ni X, Inoue R, Wu Y, Yoshida T, Yaku K, Nakagawa T, Saito T, Saido TC, Takao K, Mori H. Regional contributions of D-serine to Alzheimer's disease pathology in male AppNL-G-F/NL-G-F mice. Front Aging Neurosci 2023; 15:1211067. [PMID: 37455930 PMCID: PMC10339350 DOI: 10.3389/fnagi.2023.1211067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.
Collapse
Affiliation(s)
- Xiance Ni
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yi Wu
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
9
|
Krishnan KS, Billups B. ASC Transporters Mediate D-Serine Transport into Astrocytes Adjacent to Synapses in the Mouse Brain. Biomolecules 2023; 13:biom13050819. [PMID: 37238689 DOI: 10.3390/biom13050819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
D-serine is an important signalling molecule, which activates N-methyl D-aspartate receptors (NMDARs) in conjunction with its fellow co-agonist, the neurotransmitter glutamate. Despite its involvement in plasticity and memory related to excitatory synapses, its cellular source and sink remain a question. We hypothesise that astrocytes, a type of glial cell that surrounds synapses, are likely candidates to control the extracellular concentration of D-Serine by removing it from the synaptic space. Using in situ patch clamp recordings and pharmacological manipulation of astrocytes in the CA1 region of the mouse hippocampal brain slices, we investigated the transport of D-serine across the plasma membrane. We observed the D-serine-induced transport-associated currents upon puff-application of 10 mM D-serine on astrocytes. Further, O-benzyl-L-serine and trans-4-hydroxy-proline, known substrate inhibitors of the alanine serine cysteine transporters (ASCT), reduced D-serine uptake. These results indicate that ASCT is a central mediator of astrocytic D-serine transport and plays a role in regulating its synaptic concentration by sequestration into astrocytes. Similar results were observed in astrocytes of the somatosensory cortex and Bergmann glia in the cerebellum, indicative of a general mechanism expressed across a range of brain areas. This removal of synaptic D-serine and its subsequent metabolic degradation are expected to reduce its extracellular availability, influencing NMDAR activation and NMDAR-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Karthik Subramanian Krishnan
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|