1
|
Ye Y, Lu Y, Su H, Tian Y, Jin S, Li G, Yang Y, Jiang L, Zhou Z, Wei X, Tao TH, Sun L. A hybrid bioelectronic retina-probe interface for object recognition. Biosens Bioelectron 2025; 279:117408. [PMID: 40147085 DOI: 10.1016/j.bios.2025.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Retina converts light stimuli into spike firings, encoding abundant visual information critical for both fundamental studies of the visual system and therapies for visual diseases. However, probing these spikes directly from the retina is hindered by limited recording channels, insufficient contact between the retina and electrodes, and short operational lifetimes. In this study, we developed a perforated and flexible microelectrode array to achieve a robust retina-probe interface, ensuring high-quality detection of spike firings from hundreds of neurons. Leveraging the retina's natural light-sensing ability, we created a hybrid bioelectronic system that enables image recognition through machine learning integration. We systematically explored the system's spatial resolution, and demonstrated its capability to recognize different colors and light intensities. Importantly, due to the perforated structure, the hybrid system maintained over 94 % accuracy in distinguishing light on/off conditions for 9 h ex vivo. Finally, inspired by the eye's configuration, we developed a bioelectronic mimic eye capable of recognizing objects in real environments. This work demonstrated that the hybrid bioelectronic retina-probe interface is effective not only for light sensing but also for efficient image and object recognition.
Collapse
Affiliation(s)
- Yifei Ye
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yunxiao Lu
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Haoyang Su
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tian
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Jin
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Gen Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingkang Yang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyue Jiang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhitao Zhou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoling Wei
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200020, China.
| | - Liuyang Sun
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
2
|
Xu Q, Liu S, Ran X, Li Y, Shen J, Tang H, Liu JK, Pan G, Zhang Q. Robust Sensory Information Reconstruction and Classification With Augmented Spikes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:7462-7471. [PMID: 38833393 DOI: 10.1109/tnnls.2024.3404021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Sensory information recognition is primarily processed through the ventral and dorsal visual pathways in the primate brain visual system, which exhibits layered feature representations bearing a strong resemblance to convolutional neural networks (CNNs), encompassing reconstruction and classification. However, existing studies often treat these pathways as distinct entities, focusing individually on pattern reconstruction or classification tasks, overlooking a key feature of biological neurons, the fundamental units for neural computation of visual sensory information. Addressing these limitations, we introduce a unified framework for sensory information recognition with augmented spikes. By integrating pattern reconstruction and classification within a single framework, our approach not only accurately reconstructs multimodal sensory information but also provides precise classification through definitive labeling. Experimental evaluations conducted on various datasets including video scenes, static images, dynamic auditory scenes, and functional magnetic resonance imaging (fMRI) brain activities demonstrate that our framework delivers state-of-the-art pattern reconstruction quality and classification accuracy. The proposed framework enhances the biological realism of multimodal pattern recognition models, offering insights into how the primate brain visual system effectively accomplishes the reconstruction and classification tasks through the integration of ventral and dorsal pathways.
Collapse
|
3
|
Yu Z, Bu T, Zhang Y, Jia S, Huang T, Liu JK. Robust Decoding of Rich Dynamical Visual Scenes With Retinal Spikes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:3396-3409. [PMID: 38265909 DOI: 10.1109/tnnls.2024.3351120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Sensory information transmitted to the brain activates neurons to create a series of coping behaviors. Understanding the mechanisms of neural computation and reverse engineering the brain to build intelligent machines requires establishing a robust relationship between stimuli and neural responses. Neural decoding aims to reconstruct the original stimuli that trigger neural responses. With the recent upsurge of artificial intelligence, neural decoding provides an insightful perspective for designing novel algorithms of brain-machine interface. For humans, vision is the dominant contributor to the interaction between the external environment and the brain. In this study, utilizing the retinal neural spike data collected over multi trials with visual stimuli of two movies with different levels of scene complexity, we used a neural network decoder to quantify the decoded visual stimuli with six different metrics for image quality assessment establishing comprehensive inspection of decoding. With the detailed and systematical study of the effect and single and multiple trials of data, different noise in spikes, and blurred images, our results provide an in-depth investigation of decoding dynamical visual scenes using retinal spikes. These results provide insights into the neural coding of visual scenes and services as a guideline for designing next-generation decoding algorithms of neuroprosthesis and other devices of brain-machine interface.
Collapse
|
4
|
Yin X, Wu Z, Wang H. A novel DRL-guided sparse voxel decoding model for reconstructing perceived images from brain activity. J Neurosci Methods 2024; 412:110292. [PMID: 39299579 DOI: 10.1016/j.jneumeth.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Due to the sparse encoding character of the human visual cortex and the scarcity of paired training samples for {images, fMRIs}, voxel selection is an effective means of reconstructing perceived images from fMRI. However, the existing data-driven voxel selection methods have not achieved satisfactory results. NEW METHOD Here, a novel deep reinforcement learning-guided sparse voxel (DRL-SV) decoding model is proposed to reconstruct perceived images from fMRI. We innovatively describe voxel selection as a Markov decision process (MDP), training agents to select voxels that are highly involved in specific visual encoding. RESULTS Experimental results on two public datasets verify the effectiveness of the proposed DRL-SV, which can accurately select voxels highly involved in neural encoding, thereby improving the quality of visual image reconstruction. COMPARISON WITH EXISTING METHODS We qualitatively and quantitatively compared our results with the state-of-the-art (SOTA) methods, getting better reconstruction results. We compared the proposed DRL-SV with traditional data-driven baseline methods, obtaining sparser voxel selection results, but better reconstruction performance. CONCLUSIONS DRL-SV can accurately select voxels involved in visual encoding on few-shot, compared to data-driven voxel selection methods. The proposed decoding model provides a new avenue to improving the image reconstruction quality of the primary visual cortex.
Collapse
Affiliation(s)
- Xu Yin
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhengping Wu
- School of Innovations, Sanjiang University, China; School of Electronic Science and Engineering, Nanjing University, China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
5
|
Chen Y, Beech P, Yin Z, Jia S, Zhang J, Yu Z, Liu JK. Decoding dynamic visual scenes across the brain hierarchy. PLoS Comput Biol 2024; 20:e1012297. [PMID: 39093861 PMCID: PMC11324145 DOI: 10.1371/journal.pcbi.1012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/14/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding the computational mechanisms that underlie the encoding and decoding of environmental stimuli is a crucial investigation in neuroscience. Central to this pursuit is the exploration of how the brain represents visual information across its hierarchical architecture. A prominent challenge resides in discerning the neural underpinnings of the processing of dynamic natural visual scenes. Although considerable research efforts have been made to characterize individual components of the visual pathway, a systematic understanding of the distinctive neural coding associated with visual stimuli, as they traverse this hierarchical landscape, remains elusive. In this study, we leverage the comprehensive Allen Visual Coding-Neuropixels dataset and utilize the capabilities of deep learning neural network models to study neural coding in response to dynamic natural visual scenes across an expansive array of brain regions. Our study reveals that our decoding model adeptly deciphers visual scenes from neural spiking patterns exhibited within each distinct brain area. A compelling observation arises from the comparative analysis of decoding performances, which manifests as a notable encoding proficiency within the visual cortex and subcortical nuclei, in contrast to a relatively reduced encoding activity within hippocampal neurons. Strikingly, our results unveil a robust correlation between our decoding metrics and well-established anatomical and functional hierarchy indexes. These findings corroborate existing knowledge in visual coding related to artificial visual stimuli and illuminate the functional role of these deeper brain regions using dynamic stimuli. Consequently, our results suggest a novel perspective on the utility of decoding neural network models as a metric for quantifying the encoding quality of dynamic natural visual scenes represented by neural responses, thereby advancing our comprehension of visual coding within the complex hierarchy of the brain.
Collapse
Affiliation(s)
- Ye Chen
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Peter Beech
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Ziwei Yin
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Shanshan Jia
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhaofei Yu
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the nonlemniscal inferior colliculus. J Neurophysiol 2024; 131:842-864. [PMID: 38505907 PMCID: PMC11381119 DOI: 10.1152/jn.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's nonlemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and nonprimary auditory cortices, forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here, we use two-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset was highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ∼0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.NEW & NOTEWORTHY The IC's shell layers originate a "nonlemniscal" pathway important for perceiving vocalization sounds. However, prior studies suggest that individual shell IC neurons are broadly tuned and have high response thresholds, implying a limited reliability of efferent signals. Using Ca2+ imaging, we show that amplitude modulation is accurately represented in the population activity of shell IC neurons. Thus, downstream targets can read out sounds' temporal envelopes from distributed rate codes transmitted by populations of broadly tuned neurons.
Collapse
Affiliation(s)
- Kaiwen Shi
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jordyn E Czarny
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Gogliettino AR, Cooler S, Vilkhu RS, Brackbill NJ, Rhoades C, Wu EG, Kling A, Sher A, Litke AM, Chichilnisky EJ. Modeling responses of macaque and human retinal ganglion cells to natural images using a convolutional neural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586353. [PMID: 38585930 PMCID: PMC10996505 DOI: 10.1101/2024.03.22.586353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Linear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images. Here, we train and test a CNN model on responses to natural images of the four numerically dominant RGC types in the macaque and human retina - ON parasol, OFF parasol, ON midget and OFF midget cells. Compared with the LN model, the CNN model provided substantially more accurate response predictions. Linear reconstructions of the visual stimulus were more accurate for CNN compared to LN model-generated responses, relative to reconstructions obtained from the recorded data. These findings demonstrate the effectiveness of a CNN model in capturing light responses of major RGC types in the macaque and human retinas in natural conditions.
Collapse
|
8
|
Li H, Wan B, Fang Y, Li Q, Liu JK, An L. An FPGA implementation of Bayesian inference with spiking neural networks. Front Neurosci 2024; 17:1291051. [PMID: 38249589 PMCID: PMC10796689 DOI: 10.3389/fnins.2023.1291051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Spiking neural networks (SNNs), as brain-inspired neural network models based on spikes, have the advantage of processing information with low complexity and efficient energy consumption. Currently, there is a growing trend to design hardware accelerators for dedicated SNNs to overcome the limitation of running under the traditional von Neumann architecture. Probabilistic sampling is an effective modeling approach for implementing SNNs to simulate the brain to achieve Bayesian inference. However, sampling consumes considerable time. It is highly demanding for specific hardware implementation of SNN sampling models to accelerate inference operations. Hereby, we design a hardware accelerator based on FPGA to speed up the execution of SNN algorithms by parallelization. We use streaming pipelining and array partitioning operations to achieve model operation acceleration with the least possible resource consumption, and combine the Python productivity for Zynq (PYNQ) framework to implement the model migration to the FPGA while increasing the speed of model operations. We verify the functionality and performance of the hardware architecture on the Xilinx Zynq ZCU104. The experimental results show that the hardware accelerator of the SNN sampling model proposed can significantly improve the computing speed while ensuring the accuracy of inference. In addition, Bayesian inference for spiking neural networks through the PYNQ framework can fully optimize the high performance and low power consumption of FPGAs in embedded applications. Taken together, our proposed FPGA implementation of Bayesian inference with SNNs has great potential for a wide range of applications, it can be ideal for implementing complex probabilistic model inference in embedded systems.
Collapse
Affiliation(s)
- Haoran Li
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
| | - Bo Wan
- School of Computer Science and Technology, Xidian University, Xi'an, China
- Key Laboratory of Smart Human Computer Interaction and Wearable Technology of Shaanxi Province, Xi'an, China
| | - Ying Fang
- College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
- Digital Fujian Internet-of-Thing Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou, China
| | - Qifeng Li
- Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Jian K. Liu
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Lingling An
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
9
|
Ren Z, Li J, Xue X, Li X, Yang F, Jiao Z, Gao X. Reconstructing controllable faces from brain activity with hierarchical multiview representations. Neural Netw 2023; 166:487-500. [PMID: 37574622 DOI: 10.1016/j.neunet.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Reconstructing visual experience from brain responses measured by functional magnetic resonance imaging (fMRI) is a challenging yet important research topic in brain decoding, especially it has proved more difficult to decode visually similar stimuli, such as faces. Although face attributes are known as the key to face recognition, most existing methods generally ignore how to decode facial attributes more precisely in perceived face reconstruction, which often leads to indistinguishable reconstructed faces. To solve this problem, we propose a novel neural decoding framework called VSPnet (voxel2style2pixel) by establishing hierarchical encoding and decoding networks with disentangled latent representations as media, so that to recover visual stimuli more elaborately. And we design a hierarchical visual encoder (named HVE) to pre-extract features containing both high-level semantic knowledge and low-level visual details from stimuli. The proposed VSPnet consists of two networks: Multi-branch cognitive encoder and style-based image generator. The encoder network is constructed by multiple linear regression branches to map brain signals to the latent space provided by the pre-extracted visual features and obtain representations containing hierarchical information consistent to the corresponding stimuli. We make the generator network inspired by StyleGAN to untangle the complexity of fMRI representations and generate images. And the HVE network is composed of a standard feature pyramid over a ResNet backbone. Extensive experimental results on the latest public datasets have demonstrated the reconstruction accuracy of our proposed method outperforms the state-of-the-art approaches and the identifiability of different reconstructed faces has been greatly improved. In particular, we achieve feature editing for several facial attributes in fMRI domain based on the multiview (i.e., visual stimuli and evoked fMRI) latent representations.
Collapse
Affiliation(s)
- Ziqi Ren
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Xuetong Xue
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Xin Li
- Group 42 (G42), Abu Dhabi, United Arab Emirates
| | - Fan Yang
- Group 42 (G42), Abu Dhabi, United Arab Emirates
| | - Zhicheng Jiao
- The Warren Alpert Medical School, Brown University, RI, USA; Department of Diagnostic Imaging, Rhode Island Hospital, RI, USA
| | - Xinbo Gao
- School of Electronic Engineering, Xidian University, Xi'an 710071, China.
| |
Collapse
|
10
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the non-lemniscal Inferior Colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553263. [PMID: 37645904 PMCID: PMC10461978 DOI: 10.1101/2023.08.14.553263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.
Collapse
Affiliation(s)
- Kaiwen Shi
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Gunnar L. Quass
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Meike M. Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Alexander N. Ford
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Jordyn E. Czarny
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
11
|
Gogliettino AR, Madugula SS, Grosberg LE, Vilkhu RS, Brown J, Nguyen H, Kling A, Hottowy P, Dąbrowski W, Sher A, Litke AM, Chichilnisky EJ. High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina. J Neurosci 2023; 43:4625-4641. [PMID: 37188516 PMCID: PMC10286946 DOI: 10.1523/jneurosci.1091-22.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
Collapse
Affiliation(s)
- Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Stanford School of Medicine, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Ramandeep S Vilkhu
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Jeff Brown
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alexandra Kling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Władysław Dąbrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
| |
Collapse
|
12
|
Li W, Zheng S, Liao Y, Hong R, He C, Chen W, Deng C, Li X. The brain-inspired decoder for natural visual image reconstruction. Front Neurosci 2023; 17:1130606. [PMID: 37205046 PMCID: PMC10185745 DOI: 10.3389/fnins.2023.1130606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
The visual system provides a valuable model for studying the working mechanisms of sensory processing and high-level consciousness. A significant challenge in this field is the reconstruction of images from decoded neural activity, which could not only test the accuracy of our understanding of the visual system but also provide a practical tool for solving real-world problems. Although recent advances in deep learning have improved the decoding of neural spike trains, little attention has been paid to the underlying mechanisms of the visual system. To address this issue, we propose a deep learning neural network architecture that incorporates the biological properties of the visual system, such as receptive fields, to reconstruct visual images from spike trains. Our model outperforms current models and has been evaluated on different datasets from both retinal ganglion cells (RGCs) and the primary visual cortex (V1) neural spikes. Our model demonstrated the great potential of brain-inspired algorithms to solve a challenge that our brain solves.
Collapse
Affiliation(s)
- Wenyi Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zheng
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufan Liao
- Clinical Medicine Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongqi Hong
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenggang He
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Illinois Institute of Technology, Chicago, IL, United States
| | - Weiliang Chen
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunshan Deng
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojian Li
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xiaojian Li
| |
Collapse
|
13
|
Zhang YJ, Yu ZF, Liu JK, Huang TJ. Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches. MACHINE INTELLIGENCE RESEARCH 2022. [PMCID: PMC9283560 DOI: 10.1007/s11633-022-1335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vision plays a peculiar role in intelligence. Visual information, forming a large part of the sensory information, is fed into the human brain to formulate various types of cognition and behaviours that make humans become intelligent agents. Recent advances have led to the development of brain-inspired algorithms and models for machine vision. One of the key components of these methods is the utilization of the computational principles underlying biological neurons. Additionally, advanced experimental neuroscience techniques have generated different types of neural signals that carry essential visual information. Thus, there is a high demand for mapping out functional models for reading out visual information from neural signals. Here, we briefly review recent progress on this issue with a focus on how machine learning techniques can help in the development of models for contending various types of neural signals, from fine-scale neural spikes and single-cell calcium imaging to coarse-scale electroencephalography (EEG) and functional magnetic resonance imaging recordings of brain signals.
Collapse
|
14
|
Jia S, Yu Z, Onken A, Tian Y, Huang T, Liu JK. Neural System Identification With Spike-Triggered Non-Negative Matrix Factorization. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4772-4783. [PMID: 33400673 DOI: 10.1109/tcyb.2020.3042513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina with a relatively simple neuronal circuit. A retinal ganglion cell (GC) receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required to decipher these components in a systematic manner. Recently a method called spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using retinal GCs as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells (BCs), including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a GC into a few subsets of spikes, where each subset is contributed by one presynaptic BC. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.
Collapse
|
15
|
Xu Q, Shen J, Ran X, Tang H, Pan G, Liu JK. Robust Transcoding Sensory Information With Neural Spikes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:1935-1946. [PMID: 34665741 DOI: 10.1109/tnnls.2021.3107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural coding, including encoding and decoding, is one of the key problems in neuroscience for understanding how the brain uses neural signals to relate sensory perception and motor behaviors with neural systems. However, most of the existed studies only aim at dealing with the continuous signal of neural systems, while lacking a unique feature of biological neurons, termed spike, which is the fundamental information unit for neural computation as well as a building block for brain-machine interface. Aiming at these limitations, we propose a transcoding framework to encode multi-modal sensory information into neural spikes and then reconstruct stimuli from spikes. Sensory information can be compressed into 10% in terms of neural spikes, yet re-extract 100% of information by reconstruction. Our framework can not only feasibly and accurately reconstruct dynamical visual and auditory scenes, but also rebuild the stimulus patterns from functional magnetic resonance imaging (fMRI) brain activities. More importantly, it has a superb ability of noise immunity for various types of artificial noises and background signals. The proposed framework provides efficient ways to perform multimodal feature representation and reconstruction in a high-throughput fashion, with potential usage for efficient neuromorphic computing in a noisy environment.
Collapse
|
16
|
Zhang Y, Bu T, Zhang J, Tang S, Yu Z, Liu JK, Huang T. Decoding Pixel-Level Image Features from Two-Photon Calcium Signals of Macaque Visual Cortex. Neural Comput 2022; 34:1369-1397. [PMID: 35534008 DOI: 10.1162/neco_a_01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240.,Department of Computer Science and Technology, Peking University, Peking 100871, P.R.C.
| | - Tong Bu
- Department of Computer Science and Technology, Peking University, Beijing 100871, P.R.C.
| | - Jiyuan Zhang
- Department of Computer Science and Technology, Peking University, Beijing 100871, P.R.C.
| | - Shiming Tang
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R.C.
| | - Zhaofei Yu
- Department of Computer Science and Technology and In stitute for Artificial Intelligence, Peking University, Beijing 100871, P.R.C.
| | - Jian K Liu
- School of Computing, University of Leeds, Leeds LS2 9JT, U.K.
| | - Tiejun Huang
- Department of Computer Science and Technology and Institute for Artificial Intelligence, Peking University, Beijing 100871, P.R.C.,Beijing Academy of Artificial Intelligence, Beijing 100190, P.R.C.
| |
Collapse
|
17
|
Li W, Joseph Raj AN, Tjahjadi T, Zhuang Z. Fusion of ANNs as decoder of retinal spike trains for scene reconstruction. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Jia S, Li X, Huang T, Liu JK, Yu Z. Representing the dynamics of high-dimensional data with non-redundant wavelets. PATTERNS 2022; 3:100424. [PMID: 35510192 PMCID: PMC9058841 DOI: 10.1016/j.patter.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
A crucial question in data science is to extract meaningful information embedded in high-dimensional data into a low-dimensional set of features that can represent the original data at different levels. Wavelet analysis is a pervasive method for decomposing time-series signals into a few levels with detailed temporal resolution. However, obtained wavelets are intertwined and over-represented across levels for each sample and across different samples within one population. Here, using neuroscience data of simulated spikes, experimental spikes, calcium imaging signals, and human electrocorticography signals, we leveraged conditional mutual information between wavelets for feature selection. The meaningfulness of selected features was verified to decode stimulus or condition with high accuracy yet using only a small set of features. These results provide a new way of wavelet analysis for extracting essential features of the dynamics of spatiotemporal neural data, which then enables to support novel model design of machine learning with representative features. WCMI can extract meaningful information from high-dimensional data Extracted features from neural signals are non-redundant Simple decoders can read out these features with superb accuracy
One of the essential questions in data science is to extract meaningful information from high-dimensional data. A useful approach is to represent data using a few features that maintain the crucial information. The leading property of spatiotemporal data is foremost ever-changing dynamics in time. Wavelet analysis, as a classical method for disentangling time series, can capture temporal dynamics with detail. Here, we leveraged conditional mutual information between wavelets to select a small subset of non-redundant features. We demonstrated the efficiency and effectiveness of features using various types of neuroscience data with different sampling frequencies at the level of the single cell, cell population, and coarse-scale brain activity. Our results shed new insights into representing the dynamics of spatiotemporal data using a few fundamental features extracted by wavelet analysis, which may have wide implications to other types of data with rich temporal dynamics.
Collapse
|
19
|
She X, Berger TW, Song D. A Double-Layer Multi-Resolution Classification Model for Decoding Spatiotemporal Patterns of Spikes With Small Sample Size. Neural Comput 2021; 34:219-254. [PMID: 34758485 DOI: 10.1162/neco_a_01459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
We build a double-layer, multiple temporal-resolution classification model for decoding single-trial spatiotemporal patterns of spikes. The model takes spiking activities as input signals and binary behavioral or cognitive variables as output signals and represents the input-output mapping with a double-layer ensemble classifier. In the first layer, to solve the underdetermined problem caused by the small sample size and the very high dimensionality of input signals, B-spline functional expansion and L1-regularized logistic classifiers are used to reduce dimensionality and yield sparse model estimations. A wide range of temporal resolutions of neural features is included by using a large number of classifiers with different numbers of B-spline knots. Each classifier serves as a base learner to classify spatiotemporal patterns into the probability of the output label with a single temporal resolution. A bootstrap aggregating strategy is used to reduce the estimation variances of these classifiers. In the second layer, another L1-regularized logistic classifier takes outputs of first-layer classifiers as inputs to generate the final output predictions. This classifier serves as a meta-learner that fuses multiple temporal resolutions to classify spatiotemporal patterns of spikes into binary output labels. We test this decoding model with both synthetic and experimental data recorded from rats and human subjects performing memory-dependent behavioral tasks. Results show that this method can effectively avoid overfitting and yield accurate prediction of output labels with small sample size. The double-layer, multi-resolution classifier consistently outperforms the best single-layer, single-resolution classifier by extracting and utilizing multi-resolution spatiotemporal features of spike patterns in the classification.
Collapse
Affiliation(s)
- Xiwei She
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering and Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| |
Collapse
|
20
|
Zheng Y, Jia S, Yu Z, Liu JK, Huang T. Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks. PATTERNS (NEW YORK, N.Y.) 2021; 2:100350. [PMID: 34693375 PMCID: PMC8515013 DOI: 10.1016/j.patter.2021.100350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells.
Collapse
Affiliation(s)
- Yajing Zheng
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
| | - Shanshan Jia
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
| | - Zhaofei Yu
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
- Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Tiejun Huang
- Department of Computer Science and Technology, National Engineering Laboratory for Video Technology, Peking University, Beijing 100871, China
- Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Kim YJ, Brackbill N, Batty E, Lee J, Mitelut C, Tong W, Chichilnisky EJ, Paninski L. Nonlinear Decoding of Natural Images From Large-Scale Primate Retinal Ganglion Recordings. Neural Comput 2021; 33:1719-1750. [PMID: 34411268 DOI: 10.1162/neco_a_01395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 11/04/2022]
Abstract
Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons.
Collapse
|
22
|
Chen R, Zhao S, Wu W, Sun Z, Wang J, Wang H, Han G. A convolutional neural network algorithm for breast tumor detection with magnetic detection electrical impedance tomography. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064701. [PMID: 34243519 DOI: 10.1063/5.0041423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Breast cancer is a malignant tumor disease for which early detection, diagnosis, and treatment are of paramount significance in prolonging the life of patients. Magnetic Detection Electrical Impedance Tomography (MDEIT) based on the Convolutional Neural Network (CNN), which aims to realize non-invasive, high resolution detection of breast tumors, is proposed. First, the MDEIT forward problem of the coronal and horizontal planes of the breast was simulated and solved using the Finite Element Method to obtain sample datasets of different lesions. Then, the CNN was built and trained to predict the conductivity distribution in different orientations of the breast model. Finally, noise and phantom experiments were performed in order to assess the anti-noise performance of the CNN algorithm and its feasibility of detecting breast tumors in practical applications. The simulation results showed that the reconstruction relative error with the CNN algorithm can be reduced to 10%, in comparison with the truncated singular value decomposition algorithm and back propagation algorithm. The CNN algorithm had better stability in the anti-noise performance test. When the noise of 60 dB was added, the shape of the breast tumor could still be restored by the CNN algorithm. The phantom experimental results showed that through the CNN based reconstruction algorithm, the reconstruction conductivity distribution image was legible and the position of the breast tumor could be determined. It is reasonable to conclude that the MDEIT reconstruction method proposed in this study has practical importance for the early and non-invasive detection of breast tumors.
Collapse
Affiliation(s)
- Ruijuan Chen
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Songsong Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Weiwei Wu
- School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Zhihui Sun
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jinhai Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Guang Han
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
23
|
Brackbill N, Rhoades C, Kling A, Shah NP, Sher A, Litke AM, Chichilnisky EJ. Reconstruction of natural images from responses of primate retinal ganglion cells. eLife 2020; 9:e58516. [PMID: 33146609 PMCID: PMC7752138 DOI: 10.7554/elife.58516] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial receptive field, but in principle also depends on the responses of other RGCs and natural image statistics. This possibility was explored by linear reconstruction of natural images from responses of the four numerically-dominant macaque RGC types. Reconstructions were highly consistent across retinas. The optimal reconstruction filter for each RGC - its visual message - reflected natural image statistics, and resembled the receptive field only when nearby, same-type cells were included. ON and OFF cells conveyed largely independent, complementary representations, and parasol and midget cells conveyed distinct features. Correlated activity and nonlinearities had statistically significant but minor effects on reconstruction. Simulated reconstructions, using linear-nonlinear cascade models of RGC light responses that incorporated measured spatial properties and nonlinearities, produced similar results. Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results are relevant for natural vision.
Collapse
Affiliation(s)
- Nora Brackbill
- Department of Physics, Stanford UniversityStanfordUnited States
| | - Colleen Rhoades
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Alexandra Kling
- Department of Neurosurgery, Stanford School of MedicineStanfordUnited States
- Department of Ophthalmology, Stanford UniversityStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Nishal P Shah
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa CruzSanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa CruzSanta CruzUnited States
| | - EJ Chichilnisky
- Department of Neurosurgery, Stanford School of MedicineStanfordUnited States
- Department of Ophthalmology, Stanford UniversityStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| |
Collapse
|
24
|
Shah NP, Chichilnisky EJ. Computational challenges and opportunities for a bi-directional artificial retina. J Neural Eng 2020; 17:055002. [PMID: 33089827 DOI: 10.1088/1741-2552/aba8b1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A future artificial retina that can restore high acuity vision in blind people will rely on the capability to both read (observe) and write (control) the spiking activity of neurons using an adaptive, bi-directional and high-resolution device. Although current research is focused on overcoming the technical challenges of building and implanting such a device, exploiting its capabilities to achieve more acute visual perception will also require substantial computational advances. Using high-density large-scale recording and stimulation in the primate retina with an ex vivo multi-electrode array lab prototype, we frame several of the major computational problems, and describe current progress and future opportunities in solving them. First, we identify cell types and locations from spontaneous activity in the blind retina, and then efficiently estimate their visual response properties by using a low-dimensional manifold of inter-retina variability learned from a large experimental dataset. Second, we estimate retinal responses to a large collection of relevant electrical stimuli by passing current patterns through an electrode array, spike sorting the resulting recordings and using the results to develop a model of evoked responses. Third, we reproduce the desired responses for a given visual target by temporally dithering a diverse collection of electrical stimuli within the integration time of the visual system. Together, these novel approaches may substantially enhance artificial vision in a next-generation device.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America. Department of Neurosurgery, Stanford University, Stanford, CA, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|