1
|
Khan F, Khan S, Nabeka H, Mimuro H, Nishizono A, Hamada F, Matsuda S. Neurotoxic stimulation alters prosaposin levels in the salivary systems of rats. Cell Tissue Res 2024; 395:159-169. [PMID: 38082139 DOI: 10.1007/s00441-023-03847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.
Collapse
Affiliation(s)
- Farzana Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan.
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
| | - Hiroaki Nabeka
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
- Department of Physiological Chemistry, College of Pharmaceutical Sciences, School of Clinical Pharmacy, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Hitomi Mimuro
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
| | - Akira Nishizono
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Seiji Matsuda
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Yamamiya K, Li X, Nabeka H, Khan S, Khan F, Wakisaka H, Saito S, Hamada F, Matsuda S. Tracking of Prosaposin, a Saposin Precursor, in Rat Testis. J Histochem Cytochem 2023; 71:537-554. [PMID: 37728096 PMCID: PMC10546980 DOI: 10.1369/00221554231198570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
We tracked prosaposin (PSAP), a trophic factor, using an antibody specific to its proteolytic portion and an antibody to sortilin that traffics PSAP only to the lysosome. Immunostaining revealed that PSAP was distributed mainly on the basal side of seminiferous tubules, where many Sertoli cells and pachytene spermatocytes contained PSAP and its distribution differed depending on the stage of the spermatogenic cycle. The PSAP-sortilin complex was sorted to large lysosomes in the basal cytoplasm of Sertoli cells, where it may be processed into saposins. In contrast, in the thinner apical cytoplasm of Sertoli cells, PSAP in small lysosomes was transported to the apical side around sperm heads or into the lumen for secretion. The results of in situ hybridization analyses suggested that immature tubular cells in young animals produce PSAP to self-stimulate proliferation. However, in adults, not only Sertoli cells but also pachytene spermatocytes produce and secrete PSAP around germ cells or into the tubular lumen to stimulate cell proliferation or differentiation in a paracrine or autocrine manner. In summary, PSAP is not only a precursor of lysosomal enzymes but also a pivotal trophic factor in organogenesis in the immature testis and spermatogenesis in the mature testis.
Collapse
Affiliation(s)
| | - Xuan Li
- Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Prosaposin, a neurotrophic factor, protects neurons against kainic acid-induced neurotoxicity. Anat Sci Int 2021; 96:359-369. [PMID: 33534127 DOI: 10.1007/s12565-021-00605-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/16/2021] [Indexed: 01/30/2023]
Abstract
Prosaposin (PS) is the precursor of four sphingolipid activator proteins, saposin A-D. PS is both a precursor protein and a neuroprotective factor, and is up-regulated in response to excitotoxicity induced by kainic acid (KA), a glutamate analogue. Excess glutamate release induces neuropathological disorders such as ischemia and seizure. Our group's research revealed that PS immunoreactivity (IR) increased significantly in the hippocampal and cortical neurons on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, as detected by immunoblotting, suggests that the increase in PS-IR after KA injection was not caused by an increase in saposins acting as lysosomal enzymes after neuronal damage but, rather, by an increase in PS as a neurotrophic factor to improve neuronal survival. An 18-mer peptide (PS18) derived from the PS neurotrophic region significantly protected hippocampal neurons against KA-induced destruction. Furthermore, parvalbumin-positive GABAergic inhibitory interneurons and their axons exhibited intense PS expression. These results suggest that axonally transported PS protects damaged hippocampal pyramidal neurons from KA-induced neurotoxicity. Further in vitro studies that include the transfection of the PS gene will help with clarifying the mechanisms underlying the transport and secretion of PS.
Collapse
|
5
|
Kunihiro J, Nabeka H, Wakisaka H, Unuma K, Khan MSI, Shimokawa T, Islam F, Doihara T, Yamamiya K, Saito S, Hamada F, Matsuda S. Prosaposin and its receptors GRP37 and GPR37L1 show increased immunoreactivity in the facial nucleus following facial nerve transection. PLoS One 2020; 15:e0241315. [PMID: 33259479 PMCID: PMC7707515 DOI: 10.1371/journal.pone.0241315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Neurotrophic factor prosaposin (PS) is a precursor for saposins A, B, C, and D, which are activators for specific sphingolipid hydrolases in lysosomes. Both saposins and PS are widely contained in various tissues. The brain, skeletal muscle, and heart cells predominantly contain unprocessed PS rather than saposins. PS and PS-derived peptides stimulate neuritogenesis and increase choline acetyltransferase activity in neuroblastoma cells and prevent programmed cell death in neurons. We previously detected increases in PS immunoactivity and its mRNA in the rat facial nucleus following facial nerve transection. PS mRNA expression increased not only in facial motoneurons, but also in microglia during facial nerve regeneration. In the present study, we examined the changes in immunoreactivity of the PS receptors GPR37 and GPR37L1 in the rat facial nucleus following facial nerve transection. Following facial nerve transection, many small Iba1- and glial fibrillary acidic protein (GFAP)-positive cells with strong GPR37L1 immunoreactivity, including microglia and astrocytes, were observed predominately on the operated side. These results indicate that GPR37 mainly works in neurons, whereas GPR37L1 is predominant in microglia or astrocytes, and suggest that increased PS in damaged neurons stimulates microglia or astrocytes via PS receptor GPR37L1 to produce neurotrophic factors for neuronal recovery.
Collapse
Affiliation(s)
- Joji Kunihiro
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Hiroyuki Wakisaka
- Department of Otorhinolaryngology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kana Unuma
- Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Md. Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
6
|
Islam F, Khan MSI, Nabeka H, Saito S, Li X, Shimokawa T, Yamamiya K, Kobayashi N, Matsuda S. Prosaposin and its receptors are differentially expressed in the salivary glands of male and female rats. Cell Tissue Res 2018; 373:439-457. [PMID: 29656342 DOI: 10.1007/s00441-018-2835-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Salivary glands produce various neurotrophins that are thought to regulate salivary function during normal and pathological conditions. Prosaposin (PSAP) is a potent neurotrophin found in several tissues and various biological fluids and may play roles in the regulation of salivary function. However, little is known about PSAP in salivary glands. As the functions of salivary glands are diverse based on age and sex, this study examines whether PSAP and its receptors, G protein-coupled receptor 37 (GPR37) and GPR37L1, are expressed in the salivary glands of rats and whether sex and aging affect their expression. Immunohistochemical analysis revealed that PSAP and its receptors were expressed in the major salivary glands of rats, although their expression varied considerably based on the type of gland, acinar cells, age and sex. In fact, PSAP, GPR37 and GPR37L1 were predominantly expressed in granular convoluted tubule cells of the submandibular gland and the intensity of their immunoreactivity was higher in young adult female rats than age-matched male rats, which was more prominent at older ages (mature adult to menopause). On the other hand, weak PSAP, GPR37 and GPR37L1 immunoreactivity was observed mainly in the basal layer of mucous cells of the sublingual gland. Triple label immunofluorescence analysis revealed that PSAP, GPR37 and GPR37L1 were co-localized in the basal layer of acinar and ductal cells in the major salivary glands. The present findings indicate that PSAP and its receptors, GPR37 and GPR37L1, are expressed in the major salivary glands of rats and their immunoreactivities differ considerably with age and sex.
Collapse
Affiliation(s)
- Farzana Islam
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan. .,Department of Animal Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Xuan Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
7
|
Saito T, Tanaka Y, Morishita Y, Ishibashi K. Proteomic analysis of AQP11-null kidney: Proximal tubular type polycystic kidney disease. Biochem Biophys Rep 2017; 13:17-21. [PMID: 29204517 PMCID: PMC5709289 DOI: 10.1016/j.bbrep.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by the mutation of polycystins (PC-1 or PC-2), in which cysts start from the collecting duct to extend to all nephron segments with eventual end stage renal failure. The cyst development is attenuated by a vasopressin V2 receptor antagonist tolvaptan which, however, will not affect proximal tubule cysts devoid of V2 receptor. Aquaporin-11 (AQP11) is expressed selectively in the proximal tubule of the kidney and AQP11-null kidneys have a disruptive PC-1 trafficking to the plasma membrane to develop polycystic kidneys. Here, we analyzed AQP11-null kidneys at the beginning of cyst formation by quantitative proteomic analysis using Tandem Mass Tag (TMT). Among ~ 1200 identified proteins, 124 proteins were differently expressed by > 1.5 or < 0.8 fold change. A pancreatic stone inhibitor or a growth factor, lithostathine-1 (Reg1) was most enhanced by 5 folds which was confirmed by western blot, while mitochondria-related proteins were downregulated. The identified proteins will be new target molecules for the treatment of proximal tubular cysts and helpful to explore the functional roles of AQP11 in the kidney. Proteomic analysis of the kidney from AQP11-null mice of proximal tubular specific ADPKD. Among ~ 1200 identified proteins, 124 proteins were differently expressed by > 1.5 or < 0.8 fold change. Mitochondrial proteins were downregulated reflecting a functional mitochondrial damage in cystic epithelia. Reg1 protein was most enhanced by 5 folds which was confirmed by western blot.
Collapse
Affiliation(s)
- Tatsuya Saito
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
- Corresponding author.
| | - Yasuko Tanaka
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yoshiyuki Morishita
- Department of Nephrology, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kenichi Ishibashi
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| |
Collapse
|
8
|
Nabeka H, Saito S, Li X, Shimokawa T, Khan MSI, Yamamiya K, Kawabe S, Doihara T, Hamada F, Kobayashi N, Matsuda S. Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO Rep 2017; 3:17-32. [PMID: 30135939 PMCID: PMC6084830 DOI: 10.1016/j.ibror.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
PS increased mainly in the axons of PV positive interneurons after kainic acid (KA) injection. Electron microscopy revealed PS containing vesicles in PV positive axons. PS is secreted with secretogranin from synapses. The increased PS in the interneurons was due to increases in PS + 0, as in the choroid plexus. Interneurons produce and secrete intact PS around the hippocampal pyramidal neurons to protect them from KA neurotoxicity.
Prosaposin (PS) is a secretory neurotrophic factor, as well as a regulator of lysosomal enzymes. We previously reported the up-regulation of PS and the possibility of its axonal transport by GABAergic interneurons after exocitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, we performed double immunostaining with PS and three calcium binding protein markers: parvalbumin (PV), calbindin, and calretinin, for the subpopulation of GABAergic interneurons, and clarified that the increased PS around the hippocampal pyramidal neurons after KA injection existed mainly in the axons of PV positive interneurons. Electron microscopy revealed PS containing vesicles in the PV positive axon. Double immunostaining with PS and secretogranin or synapsin suggested that PS is secreted with secretogranin from synapses. Based on the results from in situ hybridization with two alternative splicing forms of PS mRNA, the increase of PS in the interneurons was due to the increase of PS + 0 (mRNA without 9-base insertion) as in the choroid plexus, but not PS + 9 (mRNA with 9-base insertion). These results were similar to those from the choroid plexus, which secretes an intact form PS + 0 to the cerebrospinal fluid. Neurons, especially PV positive GABAergic interneurons, produce and secrete the intact form of PS around hippocampal pyramidal neurons to protect them against KA neurotoxicity.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Xuan Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
9
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Wang B, Yuan J, Xu J, Xie J, Wang G, Dong P. Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection. Mol Med Rep 2015; 13:1234-42. [PMID: 26677138 PMCID: PMC4732864 DOI: 10.3892/mmr.2015.4684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/19/2015] [Indexed: 11/05/2022] Open
Abstract
Laryngeal palsy often occurs as a result of recurrent laryngeal or vagal nerve injury during oncological surgery of the head and neck, affecting quality of life and increasing economic burden. Reinnervation following recurrent laryngeal nerve (RLN) injury is difficult despite development of techniques, such as neural anastomosis, nerve grafting and creation of a laryngeal muscle pedicle. In the present study, due to the limited availability of human nerve tissue for research, a rat model was used to investigate neurotrophin expression and laryngeal muscle pathophysiology in RLN injury. Twenty-five male Sprague-Dawley rats underwent right RLN transection with the excision of a 5-mm segment. Vocal fold movements, vocalization, histology and immunostaining were evaluated at different time-points (3, 6, 10 and 16 weeks). Although vocalization was restored, movement of the vocal fold failed to return to normal levels following RLN injury. The expression of brain‑derived neurotrophic factor and glial cell line-derived neurotrophic factor differed in the thyroarytenoid (TA) and posterior cricoarytenoid muscles. The number of axons did not increase to baseline levels over time. Furthermore, normal muscle function was unlikely with spontaneous reinnervation. During regeneration following RLN injury, differences in the expression levels of neurotrophic factors may have resulted in preferential reinnervation of the TA muscles. Data from the present study indicated that neurotrophic factors may be applied for restoring the function of the laryngeal nerve following recurrent injury.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai 200011, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Jin Xie
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Guoliang Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| |
Collapse
|
11
|
Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, Hamada F, Kobayashi N, Matsuda S. A prosaposin-derived Peptide alleviates kainic Acid-induced brain injury. PLoS One 2015; 10:e0126856. [PMID: 25993033 PMCID: PMC4436272 DOI: 10.1371/journal.pone.0126856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
12
|
Nabeka H, Uematsu K, Takechi H, Shimokawa T, Yamamiya K, Li C, Doihara T, Saito S, Kobayashi N, Matsuda S. Prosaposin overexpression following kainic acid-induced neurotoxicity. PLoS One 2014; 9:e110534. [PMID: 25461957 PMCID: PMC4251898 DOI: 10.1371/journal.pone.0110534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
Because excessive glutamate release is believed to play a pivotal role in numerous neuropathological disorders, such as ischemia or seizure, we aimed to investigate whether intrinsic prosaposin (PS), a neuroprotective factor when supplied exogenously in vivo or in vitro, is up-regulated after the excitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, PS immunoreactivity and its mRNA expression in the hippocampal and cortical neurons showed significant increases on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, detected by immunoblot analysis suggests that the increase in PS-like immunoreactivity after KA injection was not due to an increase in saposins as lysosomal enzymes after neuronal damage, but rather to an increase in PS as a neurotrophic factor to improve neuronal survival. Furthermore, several neurons with slender nuclei inside/outside of the pyramidal layer showed more intense PS mRNA expression than other pyramidal neurons. Based on the results from double immunostaining using anti-PS and anti-GABA antibodies, these neurons were shown to be GABAergic interneurons in the extra- and intra-pyramidal layers. In the cerebral cortex, several large neurons in the V layer showed very intense PS mRNA expression 3 days after KA injection. The choroid plexus showed intense PS mRNA expression even in the normal rat, and the intensity increased significantly after KA injection. The present study indicates that inhibitory interneurons as well as stimulated hippocampal pyramidal and cortical neurons synthesize PS for neuronal survival, and the choroid plexus is highly activated to synthesize PS, which may prevent neurons from excitotoxic neuronal damage. To the best of our knowledge, this is the first study that demonstrates axonal transport and increased production of neurotrophic factor PS after KA injection.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Keigo Uematsu
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroko Takechi
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Cheng Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
13
|
Meyer RC, Giddens MM, Coleman BM, Hall RA. The protective role of prosaposin and its receptors in the nervous system. Brain Res 2014; 1585:1-12. [PMID: 25130661 DOI: 10.1016/j.brainres.2014.08.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.
Collapse
Affiliation(s)
- Rebecca C Meyer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Brilee M Coleman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
14
|
Temporal changes in prosaposin expression in the rat dentate gyrus after birth. PLoS One 2014; 9:e95883. [PMID: 24871372 PMCID: PMC4037173 DOI: 10.1371/journal.pone.0095883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A–D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.
Collapse
|
15
|
Gao HL, Li C, Nabeka H, Shimokawa T, Kobayashi N, Saito S, Wang ZY, Cao YM, Matsuda S. Decrease in prosaposin in the Dystrophic mdx mouse brain. PLoS One 2013; 8:e80032. [PMID: 24244600 PMCID: PMC3828254 DOI: 10.1371/journal.pone.0080032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy caused by a mutation in the X-linked dystrophin gene induces metabolic and structural disorders in the brain. A lack of dystrophin in brain structures is involved in impaired cognitive function. Prosaposin (PS), a neurotrophic factor, is abundant in the choroid plexus and various brain regions. We investigated whether PS serves as a link between dystrophin loss and gross and/or ultrastructural brain abnormalities. METHODOLOGY/PRINCIPAL FINDINGS The distribution of PS in the brains of juvenile and adult mdx mice was investigated by immunochemistry, Western blotting, and in situ hybridization. Immunochemistry revealed lower levels of PS in the cytoplasm of neurons of the cerebral cortex, hippocampus, cerebellum, and choroid plexus in mdx mice. Western blotting confirmed that PS levels were lower in these brain regions in both juveniles and adults. Even with low PS production in the choroids plexus, there was no significant PS decrease in cerebrospinal fluid (CSF). In situ hybridization revealed that the primary form of PS mRNA in both normal and mdx mice was Pro+9, a secretory-type PS, and the hybridization signals for Pro+9 in the above-mentioned brain regions were weaker in mdx mice than in normal mice. We also investigated mitogen-activated protein kinase signalling. Stronger activation of ERK1/2 was observed in mdx mice, ERK1/2 activity was positively correlated with PS activity, and exogenous PS18 stimulated both p-ERK1/2 and PS in SH-SY5Y cells. CONCLUSIONS/SIGNIFICANCE Low levels of PS and its receptors suggest the participation of PS in some pathological changes in the brains of mdx mice.
Collapse
Affiliation(s)
- Hui-ling Gao
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Cheng Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- Department of Immunology, China Medical University, Shenyang, China
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ya-ming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
16
|
Shimokawa T, Nabeka H, Yamamiya K, Wakisaka H, Takeuchi T, Kobayashi N, Matsuda S. Distribution of prosaposin in rat lymphatic tissues. Cell Tissue Res 2013; 352:685-93. [PMID: 23420452 DOI: 10.1007/s00441-013-1575-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Prosaposin (PSAP) is as a trophic factor and an activator protein for sphingolipid hydrolase in lysosomes. We generated a specific antibody to PSAP and examined the spatiotemporal distribution of PSAP-immunoreactive (PSAP-IR) cells in the lymphatic tissues of Wistar rats. Immunoblots of tissue homogenates separated electrophoretically showed a single band for PSAP in brain but two bands in spleen. PSAP-IR cells were distributed in both the red and white pulp of the spleen, in both the cortex and medulla of the thymus and in mesenteric lymph nodes. Many PSAP-IR cells were found in the dome portion of Peyer's patches and the number of PSAP-IR cells increased with the age of the rat. To identify the PSAP-IR cells, double- and triple-immunostainings were performed with antibodies against PSAP, CD68 and CD1d. The large number of double- and triple-positive cells suggested that antigen-presenting cells contained much PSAP in these lymphatic tissues. Intense expression of PSAP mRNA, examined by in situ hybridisation, was observed in the red pulp and corona of the spleen. In rats, the PSAP gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without the insertion. We examined the expression patterns of the alternative splicing forms of PSAP mRNA in the spleen. The presence of both types of mRNA (Pro+9 and Pro+0) indicated that the spleen contains various types of prosaposin-producing and/or secreting cells. These findings suggest diverse functions for PSAP in the immune system.
Collapse
Affiliation(s)
- Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Xue B, Chen J, Gao H, Saito S, Kobayashi N, Shimokawa T, Nabeka H, Sano A, Matsuda S. Chronological changes in prosaposin in the developing rat brain. Neurosci Res 2011; 71:22-34. [PMID: 21684311 DOI: 10.1016/j.neures.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
Abstract
Prosaposin is the precursor protein of four glycoproteins, saposins A, B, C, and D, which activate sphingolipid hydrolases in lysosomes. Besides this role, intact prosaposin is also known as a potent neurotrophic factor that prevents neuronal cell death and stimulates neurite outgrowth in in vivo and in vitro experiments. In the present study, we examined chronological changes in prosaposin immunoreactivity in the rat brain using immunofluorescence staining and Diaminobenzidine (DAB) immunohistochemistry. In the hippocampal regions CA1, CA3, and dentate gyrus, the strongest staining of prosaposin was observed on postnatal day 1. The prosaposin immunoreactivity then decreased gradually until postnatal day 28. But in the cerebral cortex, prosaposin staining intensity increased from postnatal day 1 to 14, then decreased until postnatal day 28. The prosaposin immunoreactivity co-localized with the lysosomal granules labeled by an anti-Cathepsin D antibody, indicating that prosaposin mainly localized in the lysosomes of the neurons. We also examined the chronological changes in prosaposin mRNA and its two alternatively spliced variants using in situ hybridization. We found that both the mRNA forms, especially the one without a nine-base insertion, increased significantly from embryonic day 15 to postnatal day 7, then decreased gradually until postnatal day 28. Abundant prosaposin expression in the perinatal stages indicates a potential role of prosaposin in the early development of the rat brain.
Collapse
Affiliation(s)
- Bing Xue
- Division of Anatomy and Embryology, Department of Integrated Basic Medical Science, Ehime University School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yoneshige A, Suzuki K, Kojima N, Matsuda J. Regional expression of prosaposin in the wild-type and saposin D-deficient mouse brain detected by an anti-mouse prosaposin-specific antibody. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:422-434. [PMID: 19907127 PMCID: PMC3621563 DOI: 10.2183/pjab.85.422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Prosaposin is a precursor of saposins A, B, C, and D. Saposins are indispensable for lysosomal hydrolysis of sphingolipids. The notion that prosaposin itself is likely involved in brain development led us to generate an anti-mouse prosaposin-specific antibody that do not cross-react with any of the processed saposins. We have used it to study expression of prosaposin in the brain of wild-type (WT) and saposin D knockout mice (Sap-D(-/-)). Immunoblot studies indicated that prosaposin, already abundant in the brain of WT, was dramatically increased in Sap-D(-/-). By immunohistochemistry, the brain of WT was rich in prosaposin in hippocampal CA3 pyramidal neurons, tufted cells and mitral cells in olfactory bulb, and cerebellar Purkinje cells. In Sap-D(-/-), immunoreactivity of prosaposin was increased in these neurons, most notably in the CA3 pyramidal neurons which contained prosaposin immuno-positive inclusion bodies in the endoplasmic reticulum. Further characterization of these prosaposin-rich neurons may provide new insights into the physiological functions of prosaposin in the nervous system.
Collapse
Affiliation(s)
- Azusa Yoneshige
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Kunihiko Suzuki
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Naoya Kojima
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Junko Matsuda
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| |
Collapse
|
19
|
Impaired prosaposin secretion during nerve regeneration in diabetic rats and protection of nerve regeneration by a prosaposin-derived peptide. J Neuropathol Exp Neurol 2008; 67:702-10. [PMID: 18596543 DOI: 10.1097/nen.0b013e31817e23f4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Prosaposin is both a precursor of sphingolipid activator proteins and a secreted neurotrophic and myelinotrophic factor. Because peripheral nerve regeneration is impaired in diabetes mellitus, we measured prosaposin protein levels from control and streptozotocin-diabetic rats by collecting endoneurial fluid secreted into a bridging tube connecting the ends of transected sciatic nerve. Prosaposin protein levels were significantly reduced in endoneurial fluid from diabetic rats and increased in the proximal nerve stump compared to controls. To investigate whether a prosaposin-derived peptide could improve nerve regeneration, rats were treated with prosaptide TX14(A) after sciatic nerve crush. In control rats, TX14(A) was without effect in the uninjured nerve but shortened toe spread recovery time after nerve crush. In diabetic rats, efficacy of prosaptide TX14(A) was confirmed by correction of thermal hypoalgesia, formalin-evoked hyperalgesia, and conduction slowing in the uninjured nerve. The peptide also prevented diabetes-induced abnormalities in nerve regeneration distance and mean axonal diameter of regenerated axons, whereas delayed recovery of toe spread was not improved. Muscle denervation atrophy was attenuated by TX14(A) in both control and diabetic rats. These results suggest that reduced prosaposin secretion after nerve injury may contribute to impaired regeneration rates in diabetic rats, and that prosaptide TX14(A) can improve aspects of nerve regeneration.
Collapse
|
20
|
Expression patterns in alternative splicing forms of prosaposin mRNA in the rat facial nerve nucleus after facial nerve transection. Neurosci Res 2007; 60:82-94. [PMID: 18022721 DOI: 10.1016/j.neures.2007.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 08/20/2007] [Accepted: 09/26/2007] [Indexed: 11/24/2022]
Abstract
Prosaposin acts as a neurotrophic factor, in addition to its role as the precursor protein for saposins A, B, C, and D, which are activators for specific sphingolipid hydrolases in lysosomes. In rats, the prosaposin gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without. The expression of these mRNAs changes after brain injury. We examined the expression patterns of the alternative splicing forms of prosaposin mRNA in the rat facial nerve nucleus for 52 days following facial nerve transection. Pro+0 mRNA increased within 3 days of transection, peaked after 5-10 days, and remained significantly elevated for 21 days. In contrast, the expression of Pro+9 mRNA was constant throughout the regenerative period. Prosaposin mRNA expression increased not only in facial motoneurons, but also in microglia during facial nerve regeneration. Our findings indicate that the saposin B domain of prosaposin, which is the domain affected by alternative splicing, plays an important role in both neurons and microglia during neuroregeneration.
Collapse
|
21
|
Hosoda Y, Miyawaki K, Saito S, Chen J, Bing X, Terashita T, Kobayashi N, Araki N, Shimokawa T, Hamada F, Sano A, Tanabe H, Matsuda S. Distribution of prosaposin in the rat nervous system. Cell Tissue Res 2007; 330:197-207. [PMID: 17763872 DOI: 10.1007/s00441-007-0464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yoshiki Hosoda
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Terashita T, Saito S, Miyawaki K, Hyodo M, Kobayashi N, Shimokawa T, Saito K, Matsuda S, Gyo K. Localization of prosaposin in rat cochlea. Neurosci Res 2006; 57:372-8. [PMID: 17156877 DOI: 10.1016/j.neures.2006.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/20/2006] [Accepted: 11/07/2006] [Indexed: 01/23/2023]
Abstract
Prosaposin, the precursor of the sphingolipid hydrolase activator proteins called saposins A, B, C, and D, is abundant in the nervous system and muscles. Besides its role as the precursor of saposins, prosaposin is reported to function as a neurotrophic factor, initiating neural differentiation and preventing neuronal cell death in vivo and in vitro. In this study, we examined the localization and synthesis of prosaposin in the rat cochlea. Intense prosaposin immunoreactivity was observed in the organ of Corti, stria vascularis, and spiral ganglion. In an immuno-electron microscopic study, prosaposin immunoreactivity was found mainly in lysosomal granules of the cells in these regions. In the lysosome, prosaposin does not always colocalize with cathepsin D, but was localized mainly in the dark area of the lysosome. Prosaposin mRNA was observed in these same regions. Our results suggest that prosaposin plays a role in homeostasis in the peripheral auditory system.
Collapse
Affiliation(s)
- Takehiro Terashita
- Department of Basic Medical Research and Education, Ehime University School of Medicine, Shitsukawa, Toon, Ehime, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|