1
|
Syed RA, Hayat M, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Kaleem I, Bashir S. Aging-Related Protein Alterations in the Brain. J Alzheimers Dis 2024; 99:S5-S22. [PMID: 38339930 DOI: 10.3233/jad-230801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Aging is an intrinsic aspect of an organism's life cycle and is characterized by progressive physiological decline and increased susceptibility to mortality. Many age-associated disorders, including neurological disorders, are most commonly linked with the aging process, such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the effects of aging and AD on the molecular pathways and levels of different proteins in the brain, including metalloproteins, neurotrophic factors, amyloid proteins, and tau proteins. AD is caused by the aggregation of amyloid proteins in the brain. Factors such as metal ions, protein ligands, and the oligomerization state of amyloid precursor protein significantly influence the proteolytic processing of amyloid-β protein precursor (AβPP). Tau, a disordered cytosolic protein, serves as the principal microtubule-associated protein in mature neurons. AD patients exhibit decreased levels of nerve growth factor within their nervous systems and cerebrospinal fluid. Furthermore, a significant increase in brain-derived neurotrophic factor resulting from the neuroprotective effect of glial cell line-derived neurotrophic factor suggests that the synergistic action of these proteins plays a role in inhibiting neuronal degeneration and atrophy. The mechanism through which Aβ and AβPP govern Cu2+ transport and their influence on Cu2+ and other metal ion pools requires elucidation in future studies. A comprehensive understanding of the influence of aging and AD on molecular pathways and varying protein levels may hold the potential for the development of novel diagnostic and therapeutic methods for the treatment of AD.
Collapse
Affiliation(s)
- Rafay Ali Syed
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mahnoor Hayat
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
3
|
Razenkova VA, Korzhevskii DE. Catecholaminergic Rat’s Forebrain Structures in Early Postnatal Development and Aging. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chiavellini P, Canatelli-Mallat M, Lehmann M, Goya RG, Morel GR. Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders. Neural Regen Res 2022; 17:469-476. [PMID: 34380873 PMCID: PMC8504380 DOI: 10.4103/1673-5374.320966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hippocampus serves as a pivotal role in cognitive and emotional processes, as well as in the regulation of the hypothalamus-pituitary axis. It is known to undergo mild neurodegenerative changes during normal aging and severe atrophy in Alzheimer’s disease. Furthermore, dysregulation in the hippocampal function leads to epilepsy and mood disorders. In the first section, we summarized the most salient knowledge on the role of glial cell-line-derived neurotrophic factor and its receptors focused on aging, cognition and neurodegenerative and hippocampal-related neurological diseases mentioned above. In the second section, we reviewed the therapeutic approaches, particularly gene therapy, using glial cell-line-derived neurotrophic factor or its gene, as a key molecule in the development of neurological disorders. In the third section, we pointed at the potential of regenerative medicine, as an emerging and less explored strategy for the treatment of hippocampal disorders. We briefly reviewed the use of partial reprogramming to restore brain functions, non-neuronal cell reprogramming to generate neural stem cells, and neural progenitor cells as source-specific neuronal types to be implanted in animal models of specific neurodegenerative disorders.
Collapse
Affiliation(s)
- Priscila Chiavellini
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Martina Canatelli-Mallat
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Rodolfo G Goya
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata (INIBIOLP)-Histology and Embryology B, School of Medical Sciences, National University of La Plata (UNLP), La Plata, Buenos Aires, Argentina
| |
Collapse
|
5
|
Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020; 11:371. [PMID: 32477246 PMCID: PMC7235306 DOI: 10.3389/fneur.2020.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is a small brainstem nucleus with widely distributed noradrenergic projections to the whole brain, and loss of LC neurons is a prominent feature of age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). This article discusses the hypothesis that in early stages of neurodegenerative diseases, the discharge mode of LC neurons could be changed to a persistent high tonic discharge, which in turn might impair phasic discharge. Since phasic discharge of LC neurons is required for the release of high amounts of norepinephrine (NE) in the brain to promote anti-inflammatory and neuroprotective effects, persistent high tonic discharge of LC neurons could be a key factor in the progression of neurodegenerative diseases. Transcutaneous vagal stimulation (t-VNS), a non-invasive technique that potentially increases phasic discharge of LC neurons, could therefore provide a non-pharmacological treatment approach in specific disease stages. This article focuses on LC vulnerability in neurodegenerative diseases, discusses the hypothesis that a persistent high tonic discharge of LC neurons might affect neurodegenerative processes, and finally reflects on t-VNS as a potentially useful clinical tool in specific stages of AD and PD.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
7
|
The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: possible link between gut microbiota and brain regions. Eur J Nutr 2019; 58:3361-3375. [PMID: 30826905 DOI: 10.1007/s00394-019-01924-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/05/2019] [Indexed: 01/17/2023]
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) was associated with gut microbial impairment (dysbiosis) and neurological and behavioral disorders. The role of the gut-brain axis in the management of many diseases including T2DM has been the focus of much research activity in the recent years. However, a wide knowledge gap exists about the gut microbial effects on the function of glia cells. Hence, the present study was aimed to examine the effects of psychobatics on dysbiosis and glia cells function in enteric and central nervous system with an inflammatory insight in T2DM. METHODS Thirty rats were treated by Lactobacillus (L.) plantarum, inulin, or their combination (synbiotic) for 8 weeks after inducing T2DM. Fecal sample was collected to evaluate gut microbial composition. Then, the rats were sacrificed, and the colon, amygdala, and prefrontal cortex (PFC) were studied. RESULTS T2DM resulted in dysbiosis and increased levels of glial cell-derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP), and inflammatory markers (IL-17, IL-6, and TLR-2) in the colon and brain. However, concurrent supplementation of L. plantarum and inulin could improve the gut microbial composition as well as reduce the levels of inflammatory cytokines. While the administration of L. plantarum led to a significant decrease in TLR-2 as well as GDNF and GFAP only in the amygdala, the synbiotic intake could make such changes in the colon, amygdala, and PFC. CONCLUSIONS Our findings demonstrated an innovative approach to the beneficial effects of psychobiotics in neuroinflammation and behavioral performance through gut microbiota changes, focusing on possible role of glial cells in gut-brain axis.
Collapse
|
8
|
Braun DJ, Kalinin S, Feinstein DL. Conditional Depletion of Hippocampal Brain-Derived Neurotrophic Factor Exacerbates Neuropathology in a Mouse Model of Alzheimer's Disease. ASN Neuro 2017; 9:1759091417696161. [PMID: 28266222 PMCID: PMC5415058 DOI: 10.1177/1759091417696161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Damage occurring to noradrenergic neurons in the locus coeruleus (LC) contributes to the evolution of neuroinflammation and neurodegeneration in a variety of conditions and diseases. One cause of LC damage may be loss of neurotrophic support from LC target regions. We tested this hypothesis by conditional unilateral knockout of brain-derived neurotrophic factor (BDNF) in adult mice. To evaluate the consequences of BDNF loss in the context of neurodegeneration, the mice harbored familial mutations for human amyloid precursor protein and presenilin-1. In these mice, BDNF depletion reduced tyrosine hydroxylase staining, a marker of noradrenergic neurons, in the rostral LC. BDNF depletion also reduced noradrenergic innervation in the hippocampus, the frontal cortex, and molecular layer of the cerebellum, assessed by staining for dopamine beta hydroxylase. BDNF depletion led to an increase in cortical amyloid plaque numbers and size but was without effect on plaque numbers in the striatum, a site with minimal innervation from the LC. Interestingly, cortical Iba1 staining for microglia was reduced by BDNF depletion and was correlated with reduced dopamine beta hydroxylase staining. These data demonstrate that reduction of BDNF levels in an LC target region can cause retrograde damage to LC neurons, leading to exacerbation of neuropathology in distinct LC target areas. Methods to reduce BDNF loss or supplement BDNF levels may be of value to reduce neurodegenerative processes normally limited by LC noradrenergic activities.
Collapse
Affiliation(s)
- David J Braun
- 1 Department of Anesthesiology, University of Illinois, Chicago, IL, USA
| | - Sergey Kalinin
- 1 Department of Anesthesiology, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
9
|
Nicastro TM, Greenwood BN. Central monoaminergic systems are a site of convergence of signals conveying the experience of exercise to brain circuits involved in cognition and emotional behavior. Curr Zool 2016; 62:293-306. [PMID: 29491917 PMCID: PMC5804240 DOI: 10.1093/cz/zow027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/11/2016] [Indexed: 01/04/2023] Open
Abstract
Physical activity can enhance cognitive function and increase resistance against deleterious effects of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise are conserved among vertebrates, suggesting that ubiquitous mechanisms may underlie beneficial effects of exercise. In the current review, we summarize the beneficial effects of exercise on cognitive function and stress resistance and discuss central and peripheral signaling factors that may be critical for conferring the effects of physical activity to brain circuits involved in cognitive function and stress. Additionally, it is suggested that norepinephrine and serotonin, highly conserved monoamines that are sensitive to exercise and able to modulate behavior in multiple species, could represent a convergence between peripheral and central exercise signals that mediate the beneficial effects of exercise. Finally, we offer the novel hypothesis that thermoregulation during exercise could contribute to the emotional effects of exercise by activating a subset of temperature-sensitive serotonergic neurons in the dorsal raphe nucleus that convey anxiolytic and stress-protective signals to forebrain regions. Throughout the review, we discuss limitations to current approaches and offer strategies for future research in exercise neuroscience.
Collapse
|
10
|
Campos C, Rocha NBF, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Rev Neurother 2016; 16:723-34. [PMID: 27086703 DOI: 10.1080/14737175.2016.1179582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Collapse
Affiliation(s)
- Carlos Campos
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Nuno Barbosa F Rocha
- b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Eduardo Lattari
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Flávia Paes
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - António E Nardi
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Sérgio Machado
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,c Physical Activity Neuroscience Laboratory , Physical Activity Sciences Postgraduate Program - Salgado de Oliveira University (UNIVERSO) , Niterói , Brazil
| |
Collapse
|
11
|
Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis 2015; 6:331-41. [PMID: 26425388 DOI: 10.14336/ad.2015.0825] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
Aging is a normal physiological process accompanied by cognitive decline. This aging process has been the primary risk factor for development of aging-related diseases such as Alzheimer's disease (AD). Cognitive deficit is related to alterations of neurotrophic factors level such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF). These strong relationship between aging and AD is important to investigate the time which they overlap, as well as, the pathophysiological mechanism in each event. Considering that aging and AD are related to cognitive impairment, here we discuss the involving these neurotrophic factors in the aging process and AD.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michelle Lima Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra Ioppi Zugno
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
12
|
Zhao Q, Cai D, Bai Y. Selegiline rescues gait deficits and the loss of dopaminergic neurons in a subacute MPTP mouse model of Parkinson's disease. Int J Mol Med 2013; 32:883-91. [PMID: 23877198 DOI: 10.3892/ijmm.2013.1450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/05/2022] Open
Abstract
The monoamine oxidase type-B (MAO-B) inhibitor, selegiline, is often recommended as a first-line treatment for Parkinson's disease (PD) and has been shwon to possess neuroprotective effects. The aim of the present study was to determine whether selegiline increases the levels of the neurotrophic factors (NTFs), glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), and whether it rescues motor dysfunction and the loss of dopaminergic neurons in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions. We found that the oral administration of selegiline (1.0 mg/kg/day for 14 days) successfully suppressed the MPTP-induced reduction of nigral dopaminergic neurons and striatal fibers (192.68 and 162.76% of MPTP-exposed animals, respectively; both P<0.001). Moreover, improvements in gait dysfunction were observed after 7 and 14 days of a low dose of selegiline that is reported not to inhibit MAO‑B. Furthermore, there was a significant increase in GDNF and BDNF mRNA (2.10 and 2.75-fold) and protein levels (143.53 and 157.05%) in the selegiline-treated mice compared with the saline-treated MPTP-exposed mice. In addition, the Bax/Bcl-2 gene and protein expression ratios were significantly increased in the MPTP-exposed mice, and this effect was reversed by selegiline. Correlation analysis revealed that gait measurement and GDNF/BDNF levels positively correlated with the number of dopaminergic neurons. These findings demonstrate that selegiline has neurorescue effects that are possibly associated with the induction of NTFs and anti-apoptotic genes.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | | | | |
Collapse
|
13
|
von Bohlen und Halbach O. Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci 2010; 2. [PMID: 20941325 PMCID: PMC2952461 DOI: 10.3389/fnagi.2010.00036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/26/2010] [Indexed: 12/30/2022] Open
Abstract
It is known since a long time that the hippocampus is sensitive to aging. Thus, there is a reduction in the hippocampal volume during aging. This age-related volume reduction is paralleled by behavioral and functional deficits in hippocampus-dependent learning and memory tasks. This age-related volume reduction of the hippocampus is not a consequence of an age-related loss of hippocampal neurons. The morphological changes associated with aging include reductions in the branching pattern of dendrites, as well as reductions in spine densities, reductions in the densities of fibers projecting into the hippocampus as well as declines in the rate of neurogenesis. It is very unlikely that a single factor or a single class of molecules is responsible for all these age-related morphological changes in the hippocampus. Nevertheless, it would be of advantage to identify possible neuromodulators or neuropeptides that may contribute to these age-related changes. In this context, growth factors may play an important role in the maintenance of the postnatal hippocampal architecture. In this review it is hypothesized that brain-derived neurotrophic factor (BDNF) is a factor critically involved in the regulation of age-related processes in the hippocampus. Moreover, evidences suggest that disturbances in the BDNF-system also affect hippocampal dysfunctions, as e.g. seen in major depression or in Alzheimer disease.
Collapse
|
14
|
Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson's disease. Brain Res 2010; 1346:224-36. [PMID: 20478277 DOI: 10.1016/j.brainres.2010.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 12/29/2022]
Abstract
Many experiments support the notion that augmentation of neurotrophic factors' (NTFs) activity, especially glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) could prevent or halt the progress of neurodegeneration in Parkinson's disease (PD). However, application of NTFs as therapeutic agents for PD is hampered by the difficulty in delivering them to specific brain regions safely and effectively. Another potential strategy is to stimulate the endogenous expression of NTFs. In this study, we investigated the effects of Echinacoside (ECH), a monomer extracted from herbs, on rescuing dopaminergic function in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned mice. We found that oral administration of ECH (30 mg/kg/day for 14 days) to MPTP-treated mice, commencing after impairment of the nigrstriatal system, suppressed the reduction of nigral dopaminergic neurons, striatal fibers, dopamine and dopamine transporter to 134.24%, 203.17%, 147.25% and 154.72 of MPTP-lesioned animals respectively (p<0.05). There was a relative elevation in expression of GDNF and BDNF mRNA (2.94 and 3.75-fold) and protein (184.34% and 185.93%) in ECH treated mice compared with vehicle-treated MPTP-lesioned mice (p<0.05). In addition, the apoptosis cells and Bax/Bcl-2 ratio of mRNA and protein in MPTP-lesioned mice significantly increased, and these effects could be prevented by ECH. At the 7th and 14th days of ECH treatment, the gait disorder displayed obvious improvement (p<0.05). These findings demonstrate that ECH is probably a novel, orally active, non-peptide inducer of NTFs and inhibitor of apoptosis, and they provide preclinical support for therapeutic potential of this compound in the treatment of PD.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Axons/enzymology
- Blotting, Western
- Brain-Derived Neurotrophic Factor/biosynthesis
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dopamine/metabolism
- Dopamine/physiology
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/psychology
- Glial Cell Line-Derived Neurotrophic Factor/biosynthesis
- Glycosides/therapeutic use
- Immunohistochemistry
- In Situ Nick-End Labeling
- MPTP Poisoning/drug therapy
- MPTP Poisoning/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Neostriatum/enzymology
- Nerve Growth Factors/biosynthesis
- Neurons/drug effects
- Neurons/physiology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/metabolism
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tyrosine 3-Monooxygenase/metabolism
- bcl-2-Associated X Protein/biosynthesis
Collapse
Affiliation(s)
- Qing Zhao
- Laboratory of Neurology, Institute of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
15
|
Allard S, Gosein V, Cuello AC, Ribeiro-da-Silva A. Changes with aging in the dopaminergic and noradrenergic innervation of rat neocortex. Neurobiol Aging 2010; 32:2244-53. [PMID: 20096955 DOI: 10.1016/j.neurobiolaging.2009.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
In normal aging, the mammalian cortex undergoes significant remodeling. Although neuromodulation by dopamine and noradrenaline in the cortex is known to be important for proper cognitive function, little is known on how cortical noradrenergic and dopaminergic presynaptic boutons are affected in normal aging. Using rats we investigated whether these two neurotransmitter systems undergo structural reorganization in aging, and if these changes correlated with cognitive loss. Young and aged rats were tested for cognitive performance using the Morris water maze. Following the behavioral characterization, the animals were sacrificed and the cortical tissue was processed for immunofluorescence using antibodies directed against tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) to detect and discriminate noradrenergic and dopaminergic varicosities. We observed a significant increase in dopaminergic varicosities in lamina V of the anterior cingulate cortex (ACC) of aged cognitively unimpaired rats when compared to young and aged-impaired animals. In laminae II and III of the ACC, we observed a significant decrease of dopaminergic varicosities in aged-impaired animals when compared to young or aged cognitively unimpaired animals. Changes in noradrenergic varicosities never reached statistical significance in any group or brain region. The data suggests that the remodeling of mesocortical dopaminergic fibers may participate in age-associated cognitive decline.
Collapse
Affiliation(s)
- Simon Allard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
16
|
Mathewson KJ, Dywan J, Snyder PJ, Tays WJ, Segalowitz SJ. Aging and electrocortical response to error feedback during a spatial learning task. Psychophysiology 2008; 45:936-48. [DOI: 10.1111/j.1469-8986.2008.00699.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Schulte-Herbrüggen O, Eckart S, Deicke U, Kühl A, Otten U, Danker-Hopfe H, Abramowski D, Staufenbiel M, Hellweg R. Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice. J Neurosci Res 2008; 86:2774-83. [DOI: 10.1002/jnr.21704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Juric DM, Loncar D, Carman-Krzan M. Noradrenergic stimulation of BDNF synthesis in astrocytes: Mediation via α1- and β1/β2-adrenergic receptors. Neurochem Int 2008; 52:297-306. [PMID: 17681645 DOI: 10.1016/j.neuint.2007.06.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/23/2007] [Accepted: 06/28/2007] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) synthesis in astrocytes induced by noradrenaline (NA) is a receptor-mediated process utilizing two parallel adrenergic pathways: beta1/beta2-adrenergic/cAMP and the novel alpha1-adrenergic/PKC pathway. BDNF is produced by astrocytes, in addition to neurons, and the noradrenergic system plays a role in controlling BDNF synthesis. Since astrocytes express various subtypes of alpha- and beta-adrenergic receptors that have the potential to be activated by synaptically released NA, we focused our present study on the mediatory role of adrenergic receptors in the noradrenergic up-regulation of BDNF synthesis in cultured neonatal rat cortical astrocytes. NA (1 microM) elevates BDNF levels by four-fold after 6 h of incubation. Its stimulation was partly inhibited by either the beta1-adrenergic antagonist atenolol, the beta2-adrenergic antagonist ICI 118,551, or by the alpha1-adrenergic antagonist prazosin, while the alpha2-adrenergic antagonist yohimbine showed no effect. BDNF levels in astrocytes were increased by the specific beta1-adrenergic agonist dobutamine and the beta2-adrenergic agonist salbutamol, as well as by adenylate cyclase activation (by forskolin) and PKA activation (by dBcAMP). However, none of the tested agonists or mediators of the intracellular beta-adrenergic pathways were able to reach the level of NA's stimulatory effect. BDNF cellular levels were also elevated by the alpha1-adrenergic agonist methoxamine, but not by the alpha2-adrenergic agonist clonidine. The increase in intracellular Ca2+ by ionophore A23187 showed no effect, whereas PKC activation by phorbol 12-myristate 13-acetate (TPA) potently stimulated BDNF levels in the cells. The methoxamine-stimulated BDNF synthesis was inhibited by desensitizing pretreatment with TPA, indicating that the alpha1-stimulation was mediated via PKC activation. In conclusion, the synthesis of astrocytic BDNF stimulated by noradrenergic neuronal activity is an adaptable process using multiple types (alpha1 and beta1/beta2) of adrenergic receptor activation.
Collapse
Affiliation(s)
- Damijana Mojca Juric
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana SI-1000, Slovenia.
| | | | | |
Collapse
|
19
|
Ypsilanti AR, Girão da Cruz MT, Burgess A, Aubert I. The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiol Aging 2007; 29:1666-79. [PMID: 17507114 DOI: 10.1016/j.neurobiolaging.2007.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 02/10/2007] [Accepted: 04/04/2007] [Indexed: 01/19/2023]
Abstract
Cholinergic deficits occur in the aged hippocampus and they are significant in Alzheimer's disease. Using stereological and biochemical approaches, we characterized the cholinergic septohippocampal pathway in old (24 months) and young adult (3 months) rats. The total length of choline acetyltransferase (ChAT)-positive fibers in the dorsal hippocampus was significantly decreased by 32% with aging (F((1,9))=20.94, p=0.0014), along with the levels of synaptophysin, a presynaptic marker. No significant changes were detected in ChAT activity or in the amounts of ChAT protein, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin related kinase receptor (Trk) A, TrkB, or p75 neurotrophin receptor (p75(NTR)) in the aged dorsal hippocampus. The number and size of ChAT-positive neurons and the levels of ChAT activity, NGF and BDNF were not statistically different in the septum of aged and young adult rats. This study suggests that substantial synaptic loss and cholinergic axonal degeneration occurs during aging and reinforces the importance of therapies that can protect axons and promote their growth in order to restore cholinergic neurotransmission.
Collapse
Affiliation(s)
- Athéna Rebecca Ypsilanti
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|