1
|
Chatterjee G, Saha AK, Khurshid S, Saha A. A Comprehensive Review of the Antioxidant, Antimicrobial, and Therapeutic Efficacies of Black Cumin ( Nigella sativa L.) Seed Oil and Its Thymoquinone. J Med Food 2025; 28:325-339. [PMID: 39807848 DOI: 10.1089/jmf.2024.k.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Black cumin (Nigella sativa L.) (family Ranunculaceae) is a largely utilized therapeutic herb worldwide. This comprehensive review discusses the pharmacological benefits of black cumin seed oil, focusing on its bioactive component thymoquinone (TQ). The review is structured as follows: First, we examine the antimicrobial properties of black cumin oil, followed by an analysis of its antioxidant capabilities. Finally, we explore its therapeutic potential, particularly in neurodegenerative diseases and COVID-19. Phytochemicals from N. sativa have exhibited potential for developing novel preventive and therapeutic strategies against jaundice, gastrointestinal disorders, skin diseases, anorexia, conjunctivitis, dyspepsia, intrinsic hemorrhage, amenorrhea, paralysis, anorexia, rheumatism, diabetes, hypertension, fever, influenza, eczema, asthma, cough, bronchitis, and headache. The broader spectrum of application for N. sativa and its essential bioactives have certainly enhanced the commercial value of this seed oil. TQ, a major constituent of black cumin seed oil, has numerous beneficial properties. Researchers have extensively studied black cumin seed oil and its major component, TQ. These studies have revealed a wide range of pharmacological properties, including anticancer, immunomodulatory, analgesic, antimicrobial, antidiabetic, and anti-inflammatory effects. Additionally, TQ has shown neuroprotective, spasmolytic, bronchodilatory, hepatoprotective, renoprotective, gastroprotective, and antioxidant activities.
Collapse
Affiliation(s)
- Gourab Chatterjee
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Asit Kumar Saha
- Department of Chemical Engineering, Haldia Institute of Technology, Haldia, India
| | - Shamama Khurshid
- Department of Food Technology, Haldia Institute of Technology, Haldia, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
AbdulHussein AH, Al-Taee MM, Radih ZA, Aljuboory DS, Mohammed ZQ, Hashesh TS, Riadi Y, Hadrawi SK, Najafi M. Mechanisms of cancer cell death induction by triptolide. Biofactors 2023; 49:718-735. [PMID: 36876465 DOI: 10.1002/biof.1944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salema K Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Shang Y, Zhang Z, Tian J, Li X. Anti-Inflammatory Effects of Natural Products on Cerebral Ischemia. Front Pharmacol 2022; 13:914630. [PMID: 35795571 PMCID: PMC9251309 DOI: 10.3389/fphar.2022.914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine’s treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.
Collapse
|
4
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
5
|
Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL, Lo YC. Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol 2021; 178:2998-3016. [PMID: 33788266 DOI: 10.1111/bph.15472] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests systemic inflammation-caused skeletal muscle atrophy as a major clinical feature of cachexia. Triptolide obtained from Tripterygium wilfordii Hook F possesses potent anti-inflammatory and immunosuppressive effects. The present study aims to evaluate the protective effects and molecular mechanisms of triptolide on inflammation-induced skeletal muscle atrophy. EXPERIMENTAL APPROACH The effects of triptolide on skeletal muscle atrophy were investigated in LPS-treated C2C12 myotubes and C57BL/6 mice. Protein expressions and mRNA levels were analysed by western blot and qPCR, respectively. Skeletal muscle mass, volume and strength were measured by histological analysis, micro-CT and grip strength, respectively. Locomotor activity was measured using the open field test. KEY RESULTS Triptolide (10-100 fM) up-regulated protein synthesis signals (IGF-1/p-IGF-1R/IRS-1/p-Akt/p-mTOR) and down-regulated protein degradation signal atrogin-1 in C2C12 myotubes. In LPS (100 ng·ml-1 )-treated C2C12 myotubes, triptolide up-regulated MyHC, IGF-1, p-IGF-1R, IRS-1 and p-Akt. Triptolide also down-regulated ubiquitin-proteasome molecules (n-FoxO3a/atrogin-1/MuRF1), proteasome activity, autophagy-lysosomal molecules (LC3-II/LC3-I and Bnip3) and inflammatory mediators (NF-κB, Cox-2, NLRP3, IL-1β and TNF-α). However, AG1024, an IGF-1R inhibitor, suppressed triptolide-mediated effects on MyHC, myotube diameter, MuRF1 and p62 in LPS-treated C2C12 myotubes. In LPS (1 mg·kg-1 , i.p.)-challenged mice, triptolide (5 and 20 μg·kg-1 ·day-1 , i.p.) decreased plasma TNF-α levels and it increased skeletal muscle volume, cross-sectional area of myofibers, weights of the gastrocnemius and tibialis anterior muscles, forelimb grip strength and locomotion. CONCLUSIONS AND IMPLICATIONS These findings reveal that triptolide prevented LPS-induced inflammation and skeletal muscle atrophy and have implications for the discovery of novel agents for preventing muscle wasting.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Tzu-Ying Lee
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chih Fu
- Department of Orthopedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Wen Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Neurosurgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Toxicol Appl Pharmacol 2018; 342:86-98. [DOI: 10.1016/j.taap.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
8
|
Velagapudi R, Kumar A, Bhatia HS, El-Bakoush A, Lepiarz I, Fiebich BL, Olajide OA. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int Immunopharmacol 2017; 48:17-29. [DOI: 10.1016/j.intimp.2017.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 12/27/2022]
|
9
|
Wang Q, Meng J, Dong A, Yu JZ, Zhang GX, Ma CG. The Pharmacological Effects and Mechanism ofTripterygium wilfordiiHook F in Central Nervous System Autoimmunity. J Altern Complement Med 2016; 22:496-502. [DOI: 10.1089/acm.2016.0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Qing Wang
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
| | - Jian Meng
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| | - Aiguo Dong
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
| | - Jie-zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Cun-Gen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| |
Collapse
|
10
|
Li JM, Zhang Y, Tang L, Chen YH, Gao Q, Bao MH, Xiang J, Lei DL. Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer's disease. Neural Regen Res 2016; 11:1492-1498. [PMID: 27857756 PMCID: PMC5090855 DOI: 10.4103/1673-5374.191224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The principal pathology of Alzheimer's disease includes neuronal extracellular deposition of amyloid-beta peptides and formation of senile plaques, which in turn induce neuroinflammation in the brain. Triptolide, a natural extract from the vine-like herb Tripterygium wilfordii Hook F, has potent anti-inflammatory and immunosuppressive efficacy. Therefore, we determined if triptolide can inhibit activation and proliferation of microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer's disease. We used 1 or 5 μg/kg/d triptolide to treat APP/PS1 double transgenic mice (aged 4-4.5 months) for 45 days. Unbiased stereology analysis found that triptolide dose-dependently reduced the total number of microglial cells, and transformed microglial cells into the resting state. Further, triptolide (5 μg/kg/d) also reduced the total number of hippocampal astrocytes. Our in vivo test results indicate that triptolide suppresses activation and proliferation of microglial cells and astrocytes in the hippocampus of APP/PS1 double transgenic mice with Alzheimer's disease.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Anatomy and Neurobiology, Central South University, School of Basic Medical Science, Changsha, Hunan Province, China; Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China; Department of Anatomy, Changsha Medical University, Changsha, Hunan Province, China
| | - Yan Zhang
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - Liang Tang
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - Yong-Heng Chen
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - Qian Gao
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - Mei-Hua Bao
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - Ju Xiang
- Neuroscience Research Center, Changsha Medical University, Changsha, Hunan Province, China
| | - De-Liang Lei
- Department of Anatomy and Neurobiology, Central South University, School of Basic Medical Science, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Bai S, Hu Z, Yang Y, Yin Y, Li W, Wu L, Fang M. Anti-Inflammatory and Neuroprotective Effects of Triptolide via the NF-κB Signaling Pathway in a Rat MCAO Model. Anat Rec (Hoboken) 2015; 299:256-66. [PMID: 26575184 DOI: 10.1002/ar.23293] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/12/2015] [Accepted: 10/05/2015] [Indexed: 01/14/2023]
Abstract
Stroke is the leading cause of neurological disability in humans. Middle cerebral artery occlusion (MCAO) followed by reperfusion is widely accepted to mimic stroke in basic medical research. Triptolide is one of the major active components of the traditional Chinese herb Tripterygium wilfordii Hook F, and has been reported to have potent anti-inflammatory and immunosuppressive properties. Since its preclinical effects on stroke were still unclear, we decided to study the effects of Triptolide on focal cerebral ischemia/reperfusion injury in this study. The results showed that Triptolide treatment significantly attenuates brain infarction volume, water content, neurological deficits, and neuronal cell death rate, which were increased in the MCAO model rats. Immunohistochemistry was used to analyze the expression of glial fibrillary acidic protein (GFAP), Cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), and NF-κB in the ischemic brains. The administration of Triptolide showed down-regulation of the iNOS, COX-2, GFAP, and NF-κB expression in MCAO rats. It also increased the expression of bcl-2, and suppressed levels of bax and caspase-3 compared with the MCAO group. Our findings revealed that Triptolide exerts its neuroprotective effects against inflammation with the involvement of inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Shi Bai
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China.,School of Medicine, Taizhou University, Taizhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yifei Yin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weiyun Li
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lijuan Wu
- School of Medicine, Taizhou University, Taizhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
12
|
Liu S, Li X, Li H, Liang Q, Chen J, Chen J. Comparison of tripterygium wilfordii multiglycosides and tacrolimus in the treatment of idiopathic membranous nephropathy: a prospective cohort study. BMC Nephrol 2015; 16:200. [PMID: 26637482 PMCID: PMC4669631 DOI: 10.1186/s12882-015-0199-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a major cause of nephrotic syndrome among adults. Considering the natural course of IMN, when to treat and with which immunosuppressive treatment need to be carefully considered in such patients. A combination of tripterygium wilfordii multiglycosides (TWG) and prednisone may be an effective option for treating patients with IMN. METHODS In this prospective cohort study, we enrolled patients with biopsy-proven IMN at our kidney centre. One cohort received TWG combined with prednisone, whereas another cohort received tacrolimus (TAC) combined with prednisone, for 36 weeks. The primary outcome was the remission rate, whereas the secondary outcomes included the time to remission, relapse rate, changes in serum albumin levels and daily urinary protein levels, estimated glomerular filtration rate, and adverse events. RESULTS A total of 53 patients with IMN met the criteria for enrollment, and all patients completed the therapy. At the end of the 36-week therapy, remission (either partial remission [PR] or complete remission [CR]) was observed in 20 patients (86.9 %) receiving TWG and in 27 patients (90.0 %) receiving TAC (p > 0.05), whereas CR was noted in 12 patients (52.2 %) receiving TWG and 14 patients (46.7 %) receiving TAC (p > 0.05). The probability of remission was similar for both the TWG and TAC groups (p > 0.05, by log-bank test). The mean time for achieving remission was 11.8 ± 12.5 weeks in the TWG group and 8.5 ± 9.1 weeks in the TAC group (p > 0.05). CONCLUSIONS The combination of TWG and predisone is an effective and safe therapy for IMN.
Collapse
Affiliation(s)
- Shanshan Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Xiayu Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Heng Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Qian Liang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Jun Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
13
|
Zhang F, Li N, Jiang L, Chen L, Huang M. Neuroprotective Effects of (-)-Epigallocatechin-3-Gallate Against Focal Cerebral Ischemia/Reperfusion Injury in Rats Through Attenuation of Inflammation. Neurochem Res 2015. [PMID: 26198193 DOI: 10.1007/s11064-015-1647-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stroke is the second leading cause of death among adults worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has been demonstrated to exhibit neuroprotective functions in cerebral ischemia/reperfusion injury. However, the underlying mechanisms in this process and its contribution to the protection function remain unknown. The current study examined the neuroprotective effects of EGCG after transient middle cerebral artery occlusion (tMCAO) in rats. tMCAO for 120 min was induced in male Sprague-Dawley rats treated with EGCG (50 mg/kg, i.p.) or Vehicle immediately after reperfusion. Neurological score, infarct ratio and inflammation-related molecules (assessed by 2,3,5-triphenyltetrazolium chloride, enzyme-linked immunosorbent assays, quantitative real-time PCR or western blotting) were estimated at 24 h after operation. EGCG prevented the impairment of neurological function and decreased the infarct volume, compared with the Vehicle group. The inflammation-related molecules TNF-α, IL-1β, IL-6 levels usually caused by ischemia/reperfusion were significantly ameliorated by EGCG. EGCG also inhibited the upregulation of nuclear factor-kappa B/p65 (NF-κB/p65), and induction of cyclooxygenase 2 and inducible nitric oxide synthase. The present study indicates that EGCG may be a promising therapeutic agent for cerebral ischemia/reperfusion injury through attenuation of inflammation.
Collapse
Affiliation(s)
- FengJin Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou City, People's Republic of China,
| | | | | | | | | |
Collapse
|
14
|
Huang J, Zhou L, Wu H, Pavlos N, Chim SM, Liu Q, Zhao J, Xue W, Tan RX, Ye J, Xu J, Ang ES, Feng H, Tickner J, Xu J, Ding Y. Triptolide inhibits osteoclast formation, bone resorption, RANKL-mediated NF-қB activation and titanium particle-induced osteolysis in a mouse model. Mol Cell Endocrinol 2015; 399:346-53. [PMID: 25448849 DOI: 10.1016/j.mce.2014.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
Abstract
The RANKL-induced NF-κB signaling pathway is required for osteoclast formation and function. By screening for compounds that inhibit RANKL-induced NF-κB activation using a luciferase reporter gene assay in RAW264.7 cells, we identified triptolide (PG490), as a candidate compound targeting osteoclast differentiation and osteoclast-mediated osteolysis. Triptolide (PG490) is an active compound of the medicinal herb Tripterygium wilfordii Hook F (TWHF) or Lei Gong Teng with known anti-inflammatory properties. We found that triptolide inhibited osteoclastogenesis and bone resorption, as well as RANKL-induced NF-қB activities as monitored by luciferase reporter gene assays and the nuclear translocation of p65. In vivo studies showed that triptolide attenuates titanium-induced osteolysis and osteoclast formation in a mouse calvarial model. Considering that drugs which protect against localized bone loss are critically needed for the effective treatment of particle-induced osteolysis, our data suggest that triptolide might have therapeutic potential for the treatment of bone lytic diseases caused by prosthetic wear particles.
Collapse
Affiliation(s)
- Jianbin Huang
- Orthopaedic Department, Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Huafei Wu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - Nathan Pavlos
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Perth, WA 6009, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Qian Liu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Research Centre for Regenerative Medicine, Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China, 530021
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China, 530021
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, Medical School, Nanjing University, Nanjing, China, 210093
| | - Jiming Ye
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Jun Xu
- Research Center for Drug Discovery (RCDD), School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou, China, 510006
| | - Estabelle S Ang
- School of Dentistry, University of Western Australia, Perth, WA 6009, Australia
| | - Haotian Feng
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia; Program of Nutrition and Bone & Joint Health, Nestlé R&D (China) Ltd. Building 5, No. 5 Dijin Road, Haidian District, Beijing, China, 100095
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yue Ding
- Orthopaedic Department, Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
16
|
Liu X, Li H, Liu J, Guan Y, Huang L, Tang H, He J. Immune reconstitution from peripheral blood mononuclear cells inhibits lung carcinoma growth in NOD/SCID mice. Oncol Lett 2014; 8:1638-1644. [PMID: 25202383 PMCID: PMC4156269 DOI: 10.3892/ol.2014.2379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022] Open
Abstract
Drug resistance and immune deficiency are important factors for the poor prognosis of lung carcinoma. The present study explored the possible protective effect of immune reconstitution from peripheral blood mononuclear cells (PBMCs) on multi-drug-resistant human lung carcinoma Am1010 cells in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The inoculated tumor fragments grew rapidly in the NOD/SCID mice. The growth was significantly inhibited by intraperitoneal injection of PBMCs. In the mice injected with PBMCs, numerous CD3+ and CD8+ cells, but less CD4+ cells, were found in spleen and tumor tissues. These data suggest that PBMC transplantation inhibits lung carcinoma progression via the reconstitution of the immune system, particularly of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiothoracic Surgery, The Second Hospital Affiliated to University of South China, Hengyang, Hunan 421001, P.R. China ; Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| | - Huiling Li
- Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China ; Department of Respiratory Medicine, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan 572000, P.R. China
| | - Jun Liu
- Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| | - Yubao Guan
- Department of Radiology, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| | - Liyan Huang
- Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| | - Hailing Tang
- Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| | - Jianxing He
- Department of Cardiothoracic Surgery, Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
17
|
Xu F, Li Y, Li S, Ma Y, Zhao N, Liu Y, Qian N, Zhao H, Li Y. Complete Freund’s adjuvant–induced acute inflammatory pain could be attenuated by triptolide via inhibiting spinal glia activation in rats. J Surg Res 2014; 188:174-82. [DOI: 10.1016/j.jss.2013.11.1087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/19/2022]
|
18
|
Zhang C, Nong Y, Tong S, Yao Q, Wen L, Zhang Z, Wei L, Cheng J, Feng Y, Song Z. Triptolide improves early survival of mesenchymal stem cells transplanted into rat myocardium. Cardiology 2014; 128:73-85. [PMID: 24557329 DOI: 10.1159/000356551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate whether triptolide can prolong the survival of rat mesenchymal stem cells (MSCs) transfected with the mouse hyperpolarization-activated cyclic nucleotide-gated channel 4 (mHCN4) gene in the myocardium. METHODS Grafted cell survival was determined using a sex-mismatched cell transplantation model and analysis of Y chromosome-specific Sry gene expression from hearts harvested at different time points after cell transplantation. ELISA and RT-PCR were used to measure protein and mRNA levels, respectively, of nuclear factor (NF)-κB, IL-1β, IL-6 and TNF-α. RESULTS Donor cell numbers decreased over time. Pretreatment with triptolide improved graft survival both 24 (29.3 ± 0.9%) and 72 h (17.5 ± 1.2%) after transplantation of MSCs and resulted in a 2.5-fold increase in the total cell number 72 h after cell transplantation. The mRNA expression and protein content of NF-κB, IL-1β, IL-6 and TNF-α were significantly reduced in the triptolide-treated group compared with the control groups. In addition, triptolide downregulated Bax but upregulated Bcl-2 in the injected region. CONCLUSIONS Transient treatment with triptolide may significantly improve the early survival of MSCs in vivo. The mechanism underlying this effect involves attenuating the inflammatory response via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Changhai Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Wang J, Wang Y, Fu Q, Lei YH, Nie ZY, Qiu J, Bao TY. Protective effect of exogenous matrix metalloproteinase-9 on chronic renal failure. Exp Ther Med 2013; 7:329-334. [PMID: 24396399 PMCID: PMC3881041 DOI: 10.3892/etm.2013.1409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/30/2013] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have pivotal functions in extracellular matrix turnover and are involved in chronic kidney diseases. However, the exact functions of MMPs in chronic renal failure (CRF) have yet to be demonstrated. The aim of the present study was to examine the effects of MMP-9 on CRF. An adenine-induced model of CRF was generated in rabbits. Following the injection of MMP-9 into the renal arteries of the rabbits, significant improvements in renal morphology and serum levels of creatinine and urea nitrogen were observed. Furthermore, MMP-9 administration was shown to decrease the serum TIMP-1 concentration and upregulate renal MMP-9 expression. These results demonstrate a directly protective role for MMP-9 in CRF.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urologic Surgery, Institute of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jue Wang
- Department of Urologic Surgery, Institute of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong Wang
- Department of Urologic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qiang Fu
- Department of Urologic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong-Hua Lei
- Department of Urologic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhi-Yong Nie
- Department of Urologic Surgery, Tenth Hospital of PLA, Wuwei, Gansu 733000, P.R. China
| | - Jianxin Qiu
- Department of Urologic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ting-Yi Bao
- Department of Urologic Surgery, Institute of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
20
|
Deng XH, Ai WM, Lei DL, Luo XG, Yan XX, Li Z. Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience 2012; 209:161-70. [PMID: 22395112 DOI: 10.1016/j.neuroscience.2012.02.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/26/2012] [Accepted: 02/10/2012] [Indexed: 11/19/2022]
Abstract
Some typical immune proteins are expressed in the nervous system, among which the paired-immunoglobulin-like receptor B (PirB) is a receptor for major histocompatibility complex class I antigen (MHC-I), but may play a physiological role in the brain for neuronal circuitry stability by inhibiting synaptic plasticity. Chronic neuroinflammation is common to many neurodegenerative diseases and is often associated with neuronal/synaptic damage and dysfunction. Here we examined the expression of PirB in the rat brain following intracerebral application of lipopolysaccharide (LPS), which has been shown to induce proinflammatory changes and cognitive deficits in rodents. One month after unilateral intrahippocampal LPS injection (10 μg in 4 μl phosphate-buffered saline, PBS), increased protein levels and immunoreactivity of PirB were detected in the ipsilateral hippocampal formation and cortex of the experimental group relative to vehicle (PBS) control. The increased PirB labeling was localized to astrocytes and neurons. Reduced synaptophysin protein levels and immunoreactivity were also found in the ipsilateral hippocampal formation and cortex in LPS-treated rats relative to controls. Morris water maze tests indicated that hippocampus-dependent spatial learning and memory were impaired in LPS-treated animals. Our findings add new experimental data for an upregulation of immune proteins in neuronal and glial cells in the brain in a model of endotoxin-induced neuroinflammation, synaptic alteration, and cognitive decline. The results suggest that PirB modulation may be involved in the pathological process under neurodegenerative conditions.
Collapse
Affiliation(s)
- X-H Deng
- Department of Anatomy and Neurobiology, Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012; 33:83-97. [PMID: 22107709 DOI: 10.1016/j.mam.2011.10.016] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/14/2011] [Indexed: 01/01/2023]
Abstract
Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
22
|
Local suppression of pro-inflammatory cytokines and the effects in BMP-2-induced bone regeneration. Biomaterials 2012; 33:304-16. [DOI: 10.1016/j.biomaterials.2011.09.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 09/21/2011] [Indexed: 12/31/2022]
|
23
|
Geng Y, Fang M, Wang J, Yu H, Hu Z, Yew DT, Chen W. Triptolide Down-regulates COX-2 Expression and PGE2 Release by Suppressing the Activity of NF-κB and MAP kinases in Lipopolysaccharide-treated PC12 Cells. Phytother Res 2011; 26:337-43. [PMID: 21717513 DOI: 10.1002/ptr.3538] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/03/2011] [Accepted: 04/17/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Geng
- Department of Neurology; Zhejiang Province People's Hospital; Hangzhou China
| | - Marong Fang
- Institute of Anatomy and Cell Biology, Medical College; Zhejiang University; Hangzhou China
| | - Jing Wang
- Institute of Anatomy and Cell Biology, Medical College; Zhejiang University; Hangzhou China
| | - Haiyan Yu
- Department of Dermatology, Sir Run Run Shaw Hospital, Medical College; Zhejiang University; Hangzhou China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology; Hangzhou Red Cross Hospital; Hangzhou China
| | - David T. Yew
- School of Biomedical Sciences, Faculty of Medicine; the Chinese University of Hong Kong; Hong Kong China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Medical College; Zhejiang University; Hangzhou China
- Key Laboratory of Medical Neurobiology of Ministry of Health, Medical College; Zhejiang University; Hangzhou China
| |
Collapse
|
24
|
Pan XD, Chen XC, Zhu YG, Chen LM, Zhang J, Huang TW, Ye QY, Huang HP. Tripchlorolide protects neuronal cells from microglia-mediated β-amyloid neurotoxicity through inhibiting NF-κB and JNK signaling. Glia 2009; 57:1227-38. [DOI: 10.1002/glia.20844] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Neuroprotective effect of benzylideneacetophenone derivative on the MPTP model of neurodegeneration in mice. Arch Pharm Res 2009; 31:1098-107. [DOI: 10.1007/s12272-001-1275-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/15/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
26
|
Triptolide protects podocytes from puromycin aminonucleoside induced injury in vivo and in vitro. Kidney Int 2008; 74:596-612. [DOI: 10.1038/ki.2008.203] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Gong Y, Xue B, Jiao J, Jing L, Wang X. Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-kappaB and JNK in LPS-treated microglia. J Neurochem 2008; 107:779-88. [PMID: 18761708 DOI: 10.1111/j.1471-4159.2008.05653.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activated microglia participate in neuroinflammation which contributes to neuronal damage in neurodegenerative diseases. Inhibition of microglial activation may have potential anti-inflammatory effects. Our laboratory has previously reported that triptolide, a natural biologically active compound extracted from Tripterygium wilfordii, could protect dopaminergic neurons from inflammation-mediated damage. However, the mechanism by which triptolide inhibits inflammation remains unknown. We reported here that inhibition of prostaglandin E(2) (PGE(2)) production could be a potential mechanism of triptolide to suppress inflammation. Triptolide suppressed c-jun NH2-terminal kinase (JNK) phosphorylation, cyclooxygenase 2 (COX-2) expression and PGE(2) production in microglial cultures treated with lipopolysaccharide (LPS). Triptolide also greatly inhibited the transcriptional activity, but not the DNA-binding activity of nuclear factor-kappaB (NF-kappaB) in microglia following LPS stimulation. These results indicate that triptolide might suppress NF-kappaB activity to down-regulate COX-2 expression. The LPS-stimulated transcriptional activity of NF-kappaB was suppressed by inhibition of p38MAPK, but not by that of JNK and extracellular signal-regulated kinase. Furthermore, the LPS-induced PGE(2) production was reduced by inhibiting these kinases. Taken together, these results suggest that triptolide may suppress neuroinflammation via a mechanism that involves inactivation of two parallel signaling pathways: p38-NF-kappaB-COX-2-PGE(2) and JNK-PGE(2).
Collapse
Affiliation(s)
- Yuntao Gong
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Ministry of Education, Key Laboratory for Neuroscience, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease. Neurosci Bull 2008; 24:133-42. [PMID: 18500385 DOI: 10.1007/s12264-008-1225-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP+. METHODS The rat model of PD was established by intranigral microinjection of MPP+. At baseline and on day 1, 3, 7, 14, 21 following MPP+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry. RESULTS Intranigral injection of MPP+ resulted in robust activation of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances. CONCLUSION These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP+-induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.
Collapse
|
29
|
Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP. Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 2008; 76:362-72. [DOI: 10.1016/j.bcp.2008.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 05/10/2008] [Accepted: 05/13/2008] [Indexed: 11/26/2022]
|
30
|
Luo BL, Niu RC, Feng JT, Hu CP, Xie XY, Ma LJ. Downregulation of secretory leukocyte proteinase inhibitor in chronic obstructive lung disease: the role of TGF-beta/Smads signaling pathways. Arch Med Res 2008; 39:388-96. [PMID: 18375249 DOI: 10.1016/j.arcmed.2008.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Secretory leukocyte proteinase inhibitor (SLPI) is an important antileukoprotease in airway. The aim of the present study was to explore the expression of SLPI in the bronchi and lung tissues of chronic obstructive pulmonary disease (COPD) models and the regulative mechanism by transforming growth factor (TGF)beta(1)/Smads signal pathway in bronchial epithelial cell. METHODS COPD rat model was established and was treated with or without TGFbeta1 monoclonal antibody. Spirometry was conducted, and expressions of TGFbeta(1), Smad4 and SLPI were examined by immunohistochemistry and reverse-transcription polymerase chain reaction (RT-PCR), respectively. The normal human bronchial epithelial cell (NHBE) was cultured, preincubated with or without siRNA (Smad4), and then stimulated with TGFbeta(1). Expressions of Smad4 and SLPI were detected by immunocytochemistry, Western blot and RT-PCR, respectively. RESULTS As compared with the model group, after treatment with TGFbeta(1) monoclonal antibody, peak expiratory flow (PEF), forced expiratory volume in 0.3 sec (FEV(0.3)) and FEV(0.3)/forced vital capacity (FVC) in the TGFbeta(1) monoclonal antibody intervention group were all significantly improved. Expression of SLPI was also improved, but expression of Smad4 was significantly decreased. Expression of SLPI in NHBE cells was inhibited by TGFbeta(1) both at the mRNA level and the protein level. Furthermore, effect of TGFbeta(1)-inhibited expression of SLPI in NHBE cells was disengaged by siRNA (Smad4) both at the mRNA level and the protein level. CONCLUSIONS Decreased expression of SLPI in the COPD rat model may be mainly caused by the increased expression of TGFbeta(1), and this process is probably related to the activation of Smads signal pathway.
Collapse
Affiliation(s)
- Bai-Ling Luo
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Hunan Province, Changsha, PR China.
| | | | | | | | | | | |
Collapse
|
31
|
Syeda F, Tullis E, Slutsky AS, Zhang H. Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. Am J Physiol Heart Circ Physiol 2008; 294:H2769-74. [PMID: 18441204 PMCID: PMC4896815 DOI: 10.1152/ajpheart.00211.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) play an important role during inflammation in cardiovascular diseases. Human neutrophil peptides (HNPs) are released from PMN granules upon activation and are conventionally involved in microbial killing. Recent studies suggested that HNPs may be involved in the pathogenesis of vascular abnormality by modulating inflammatory responses and vascular tone. Since HNPs directly interact with endothelium upon release from PMNs in the circulation, we tested the hypothesis that the stimulation with HNPs of endothelial cells modulates the expression of vasoactive by-products through altering cyclooxygenase (COX) activity. When human umbilical vein endothelial cells were stimulated with purified HNPs, we observed a time- and dose-dependent increase in the expression of COX-2, whereas COX-1 levels remained unchanged. Despite an increased expression of COX-2 at the protein level, HNPs did not significantly enhance the COX-2 activity, thus the production of the prostaglandin PGI2. HNPs significantly induced the release of endothelin-1 (ET-1) as well as the formation of nitrotyrosine. The HNP-induced COX-2 and ET-1 production was attenuated by the treatment with the oxygen free radical scavenger N-acetyl-L-cysteine and the inhibitors of p38 MAPK and NF-kappaB, respectively. The angiontensin II pathway did not seem to be involved in the HNP-induced upregulation of COX-2 and ET-1 since the use of the angiotensin-converting enzyme inhibitor enalapril had no effect in this context. In conclusion, HNP may play an important role in the pathogenesis of inflammatory cardiovascular diseases by activating endothelial cells to produce vasoactive by-products as a result of oxidative stress.
Collapse
Affiliation(s)
- Farisa Syeda
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Anaesthesia and Physiology, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respiratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Tullis
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON, Canada
- Division of Respiratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Arthur S. Slutsky
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON, Canada
- Departments of Anaesthesia and Physiology, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respiratory Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Differential effects of triptolide and tetrandrine on activation of COX-2, NF-kappaB, and AP-1 and virus production in dengue virus-infected human lung cells. Eur J Pharmacol 2008; 589:288-98. [PMID: 18565510 PMCID: PMC7094504 DOI: 10.1016/j.ejphar.2008.04.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 04/09/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
Most virus infections induce cycloxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production in cells, an inflammatory response that might be detrimental to virus replication and pathogenesis. This response in dengue virus infection remains to be elucidated. Triptolide and tetrandrine, compounds derived from two commonly used Chinese herbs, both demonstrate anti-inflammatory and immunosuppressive effects partly through modulation of COX-2 expression and, hence, may have antiviral effects. In this study, we examined, firstly, the immune response to dengue virus infection with respect to COX-2 expression and PGE2 production in human lung cells (A549), liver cells (HepG2) and dendritic cells. Secondly, we assessed the potential antiviral effects of triptolide and tetrandrine on dengue virus infection vis-à-vis expression of COX-2, PGE2, transcription factors, as well as virus production. We found that dengue virus infection enhanced COX-2 expression and PGE2 production in A549 cells, similarly to the response in dendritic cells, but not in HepG2 cells. In dengue virus-infected A549 cells, nuclear factor κB (NF-κB) and activator protein 1 (AP-1) were also activated, and both were dose-dependently inhibited by triptolide (0.5–4 ng/ml). Tetrandrine (1–10 μM) had no similar immunosuppressive effects and, moreover, at higher concentrations, enhanced NF-κB and AP-1 activity, COX-2 expression and PGE2 production. However, unexpectedly, tetrandrine, but not triptolide, dose-dependently suppressed dengue virus production in A549 cells, independent of PGE2 level. Our findings imply that triptolide and tetrandrine may attenuate dengue virus infection in human lung cells, but through distinct pathways.
Collapse
|
33
|
Holden LJ, Coleman MD. Assessment of the astrogliotic responses of three human astrocytoma cell lines to ethanol, trimethyltin chloride and acrylamide. Toxicology 2007; 241:75-83. [PMID: 17875352 DOI: 10.1016/j.tox.2007.08.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 01/10/2023]
Abstract
The astrogliotic responses of the CCF-STTG1, U251-MG, and U373-MG human astrocytoma lines were determined after exposure to ethanol, trimethyltin chloride (TMTC), and acrylamide over 4, 16, and 24h. Basal glial fibrillary acidic protein (GFAP) expression in the U-251MG and U373-MG cells was 10-fold greater than the CCF-STGG1 line. Ethanol treatment over 24h, but not at 4 and 16h, resulted in significant increases in GFAP in all three glioma lines at sub-cytotoxic levels; the GFAP responses in the CCF-STTG1 line were the most sensitive, as concentrations of 0.1 and 1mM led to increases in GFAP expression compared with control of 56.8+/-15.7 and 58.9+/-11.5%, respectively (P<0.05). Treatment with TMTC (1 microM) over 4h showed elevated GFAP expression in the U251-MG cell line to 28.0+/-15.7% above control levels (P<0.01), but not in the other U373-MG or CCF-STTG1 cells. At 4h, MTT turnover was markedly increased compared with control, particularly in the U373-MG line at concentrations as low as 1 microM (17.1+/-2.3%; P<0.01). TMTC exposure over 16 and 24h resulted in reduction in GFAP expression in all three lines at concentrations; at 24h incubation, the reduction was >50% (P<0.01). There were no changes in GFAP expression or MTT turnover in response to acrylamide except at the highest concentration ranges of 10-100 mM. This study underlines the significance of period of exposure, as well as toxin concentration in astrocytoma cellular response to toxic pressure.
Collapse
Affiliation(s)
- Lindsay J Holden
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
34
|
Hong Z, Wang G, Gu J, Pan J, Bai L, Zhang S, Chen SD. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci 2007; 26:1500-8. [PMID: 17714494 DOI: 10.1111/j.1460-9568.2007.05766.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many current studies of Parkinson's disease (PD) suggest that inflammation is involved in the neurodegenerative process. Tripchlorolide (TW397), a traditional Chinese herbal compound with anti-inflammatory and immunosuppressive properties, has been shown to protect dopaminergic neurons against, and restore their function after, the neurotoxicity induced by 1-methyl-4-phenylpyridinium ions in vitro. This study was designed to investigate the effect of TW397 in vivo in the PD model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned C57BL/6 mice. In the animals that received vehicle-only (i.e., no TW397) treatment with MPTP i.p. injection, the survival ratios of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra pars compacta and TH-IR fibres in the striatum were only 59 and 13%, respectively, compared with the normal controls. Intriguingly, in conjunction with MPTP, treatment with TW397, 1 microg/kg for 16 days, once per day, dramatically improved the survival rate of the TH-IR neurons and TH-IR fibres to 80 and 43% of the control. The treatment with TW397 also significantly improved the level of dopamine in the substantia nigra and striatum to 157 and 191%, respectively, of the MPTP- plus vehicle-treated group. In addition, in MPTP-treated animals the rota-rod performances of those treated with 0.5 or 1 microg/kg TW397 were significantly improved, by approximately 2- and 3-fold, respectively, relative to vehicle-treated animals. The neuroprotective effect of TW397 was coincident with an attenuated astroglial response within the striatum. These data demonstrate a neuroprotective action of TW397 in vivo against MPTP toxicity, with important implications for the treatment of PD.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | | | | | | | | | | | | |
Collapse
|
35
|
Bezdecny SA, Karmaus P, Roth RA, Ganey PE. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-kappaB. Toxicol Appl Pharmacol 2007; 221:285-94. [PMID: 17482227 PMCID: PMC1950673 DOI: 10.1016/j.taap.2007.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 01/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A(2) with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of (3)H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-kappaB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A(2), reduced (3)H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter (3)H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-kappaB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-kappaB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB-mediated increases in superoxide anion were prevented by the NADPH oxidase inhibitor apocynin or the free radical scavenger 4-hydroxy TEMPO, but neither of these inhibitors affected the 2244-TCB-induced changes in COX-2 mRNA levels or (3)H-AA release. Taken together these data suggest that p38 MAP kinase-dependent activation of NF-kappaB is critical for the 2244-TCB-mediated upregulation of COX-2 mRNA.
Collapse
Affiliation(s)
- Steven A. Bezdecny
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Peer Karmaus
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Robert A. Roth
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology and, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
36
|
McCallum C, Kwon S, Leavitt P, Shen DM, Liu W, Gurnett A. Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity. Immunobiology 2007; 212:549-56. [PMID: 17678712 DOI: 10.1016/j.imbio.2007.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/17/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Triptolide is a naturally occurring diterpene triepoxide whose anti-inflammatory effects correlate with transcriptional inhibition of various cytokines. Despite its use in herbal medicine for thousands of years, the cellular target and mode of action of this drug are unknown. [3H]-triptolide was prepared and a filtration assay designed to measure binding to cells and cellular extracts. Triptolide bound specifically and irreversibly to a single, 90 kDa protein in nuclear extracts from stimulated and non-stimulated monocytic and epithelial cell lines. Thiol reactivity of one or more of the epoxides on triptolide was necessary for the covalent binding, since thiol oxidizing agents dithiodipyridine and diamide, and the thiol alkylating agent N-ethylmaleimide all reduced the binding of [3H]-triptolide to nuclear extract. Neither glutathione nor the pro-oxidant tert-butylhydroperoxide affected the binding of [3H]-triptolide to the nuclear protein, ruling out a general oxidant effect. The number of epoxide moieties correlated with the ability to compete with radiolabeled triptolide for binding to the nuclear extract and with the potency of inhibition of TNFalpha secretion from monocytes, IL-2 secretion from Jurkat cells, and with inhibition of RNA synthesis. The correlation between the structure-activity relationship and observed binding suggests that identification of the triptolide binding protein could provide insight into the cellular mode of action of this anti-inflammatory natural product.
Collapse
Affiliation(s)
- Christine McCallum
- Department of Infectious Diseases, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Müller N, Schwarz MJ. Neuroimmune-endocrine crosstalk in schizophrenia and mood disorders. Expert Rev Neurother 2006; 6:1017-38. [PMID: 16831116 DOI: 10.1586/14737175.6.7.1017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review focuses on possible causes and the impact of different immune states in schizophrenia and major depression. It discusses the fact that, in schizophrenia, an over-activation of the type 2 immune response may dominate, while the type 1 and the pro-inflammatory immune responses are over-activated in major depression. The consequence of these diverse immune states is the activation and, respectively, inhibition of different enzymes in tryptophan/kynurenine metabolism, which may lead to an overemphasis of N-methyl-D-aspartate (NMDA) receptor antagonism in schizophrenia and of NMDA-receptor agonism in depression, resulting in glutamatergic hypofunction in schizophrenia and glutamatergic hyperfunction in major depression. In addition, the activation of the type 1 and the pro-inflammatory immune responses in major depression result in increased serotonin degradation and a serotonergic deficit. While antipsychotics and antidepressants today mainly act on the dopaminergic-glutamatergic and the noradrenergic-serotonergic neurotransmission, anti-inflammatory and immune-modulating therapies might act more basically at the pathophysiological mechanism. The limitations of this concept, however, are critically discussed.
Collapse
Affiliation(s)
- Norbert Müller
- Ludwig-Maximilians-Universität München, Hospital for Psychiatry and Psychotherapy, 80336 München, Germany.
| | | |
Collapse
|