1
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Shen Y, Wang M, Li S, Yang J. Current emerging novel therapies for Alzheimer's disease and the future prospects of magneto-mechanical force therapy. J Mater Chem B 2023; 11:9404-9418. [PMID: 37721092 DOI: 10.1039/d3tb01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly, and the morbidity increases with the aging population aggravation. The clinical symptoms of AD mainly include cognitive impairment and memory loss, which undoubtedly bring a huge burden to families and society. Currently, the drugs in clinical use only improve the symptoms of AD but do not cure or prevent the progression of the disease. Therefore, it is urgent for us to develop novel therapeutic strategies for effective AD treatment. To provide a better theoretical basis for exploring novel therapeutic strategies in future AD treatment, this review introduces the recent AD treatment technologies from three aspects, including nanoparticle (NP) based drug therapy, biological therapy and physical therapy. The nanoparticle-mediated therapeutic approaches at the nanomaterial-neural interface and biological system are described in detail, and in particular the magneto-regulated strategies by magnetic field actuating magnetic nanoparticles are highlighted. Promising application of magneto-mechanical force regulated strategy in future AD treatment is also addressed, which offer possibilities for the remote manipulation in a precise manner. In the future, it may be possible for physicians to realize a remote, precise and effective therapy for AD using magneto-mechanical force regulated technology based on the combination of magnetic nanoparticles and an external magnetic field.
Collapse
Affiliation(s)
- Yajing Shen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shutang Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
3
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
4
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
5
|
Zhou Z, Shi B, Xu Y, Zhang J, liu X, Zhou X, Feng B, Ma J, Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:3. [PMID: 36600321 PMCID: PMC9814315 DOI: 10.1186/s13287-022-03231-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common progressive neurodegenerative disease characterized by memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent models of AD. METHODS We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The outcomes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version 2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk of bias tool was used to assess study quality. RESULTS We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of NSPC groups of both mice studies (SMD = - 1.96, 95% CI - 2.47 to - 1.45, I2 = 75%, P < 0.00001) and rat studies (SMD = - 1.35, 95% CI - 2.11 to - 0.59, I2 = 77%, P = 0.0005) was apparently improved. In mice studies, NSPC group has lower Aβ deposition (SMD = - 0.96, 95% CI - 1.40 to - 0.52, P < 0.0001) and p-tau level (SMD = - 4.94, 95% CI - 7.29 to - 2.95, P < 0.0001), higher synaptic density (SMD = 2.02, 95% CI 0.50-3.55, P = 0.009) and BDNF (SMD = 1.69, 95% CI 0.61-2.77, P = 0.002). Combined with nanoformulation (SMD = - 1.29, 95% CI - 2.26 to - 0.32, I2 = 65%, P = 0.009) and genetically modified (SMD = - 1.29, 95% CI - 1.92 to - 0.66, I2 = 60%, P < 0.0001) could improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cognitive impairment of AD animal models. CONCLUSIONS Our results suggested that NSPC therapy could improve the cognitive function and slow down the progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.
Collapse
Affiliation(s)
- Zijing Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Ben Shi
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Yaxing Xu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jinyu Zhang
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xin liu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xinghong Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Baofeng Feng
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| |
Collapse
|
6
|
Advanced molecular therapies for neurological diseases: focus on stroke, alzheimer's disease, and parkinson's disease. Neurol Sci 2023; 44:19-36. [PMID: 36066674 DOI: 10.1007/s10072-022-06356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
Neurological diseases (NDs) are one of the leading causes of disability and the second leading cause of death globally. Among these stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are the most common NDs. A rise in the absolute number of individuals affected with these diseases indicates that the current treatment strategies in management and prevention of these debilitating diseases are not effective sufficiently. Therefore, novel treatment strategies are being explored to cure these diseases by addressing the causative mechanisms at the molecular level. Advanced therapies like gene therapy (gene editing and gene silencing) and stem cell therapies aim to cure diseases by gene editing, gene silencing and tissue regeneration, respectively. Gene editing results in the deletion of the aberrant gene or insertion of the corrected gene which can be executed using the CRISPR/Cas gene editing tool a promising treatment strategy being explored for many other prevalent diseases. Gene silencing using siRNA silences the gene by inhibiting protein translation, thereby silencing its expression. Stem cell therapy aims to regenerate damaged cells or tissues because of their ability to divide into any type of cell in the human body. Among these approaches, gene editing and gene silencing have currently been applied in vitro and to animal models, while stem cell therapy has reached the clinical trial stage for the treatment of NDs. The current status of these strategies suggests a promising outcome in their clinical translation.
Collapse
|
7
|
Srivastava R, Li A, Datta T, Jha NK, Talukder S, Jha SK, Chen ZS. Advances in stromal cell therapy for management of Alzheimer’s disease. Front Pharmacol 2022; 13:955401. [PMID: 36267273 PMCID: PMC9576849 DOI: 10.3389/fphar.2022.955401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Deposition of misfolded proteins and synaptic failure affects the brain in Alzheimer’s disease (AD). Its progression results in amnesia and cognitive impairment. Absence of treatment is due to excessive loss of neurons in the patients and the delayed effects of drugs. The enhanced pluripotency, proliferation, differentiation, and recombination characteristics of stromal cells into nerve cells and glial cells present them as a potential treatment for AD. Successful evidence of action in animal models along with positive results in preclinical studies further encourage its utilization for AD treatment. With regard to humans, cell replacement therapy involving mesenchymal stromal cells, induced-pluripotent stromal cells, human embryonic stromal cells, and neural stems show promising results in clinical trials. However, further research is required prior to its use as stromal cell therapy in AD related disorders. The current review deals with the mechanism of development of anomalies such as Alzheimer’s and the prospective applications of stromal cells for treatment.
Collapse
Affiliation(s)
- Rashi Srivastava
- Chemical and Biochemical Engineering, Indian Institute of Technology, Patna, India
| | - Aidong Li
- Department of Rehabilitation, The Second People’s Hospital of Shenzhen, Shenzhen, China
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Salehikram Talukder
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York City, NY, United States
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| |
Collapse
|
8
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
9
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
10
|
Extracellular Vesicles Released from Neprilysin Gene-Modified Human Umbilical Cord-Derived Mesenchymal Stem Cell Enhance Therapeutic Effects in an Alzheimer's Disease Animal Model. Stem Cells Int 2021; 2021:5548630. [PMID: 34899919 PMCID: PMC8664527 DOI: 10.1155/2021/5548630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) animal studies have reported that mesenchymal stem cells (MSCs) have therapeutic effects; however, clinical trial results are controversial. Neprilysin (NEP) is the main cleavage enzyme of β-amyloid (Aβ), which plays a major role in the pathology and etiology of AD. We evaluated whether transplantation of MSCs with NEP gene modification enhances the therapeutic effects in an AD animal model and then investigated these pathomechanisms. We manufactured NEP gene-enhanced human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and intravenously transplanted them in Aβ1-42-injected AD animal models. We compared the differences in behavioral tests and immunohistochemical assays between four groups: normal, Aβ1-42 injection, naïve hUC-MSCs, and NEP-enhanced hUC-MSCs. Both naïve and NEP-enhanced hUC-MSC groups showed significant improvements in memory compared to the Aβ1-42 injection group. There was no significant difference between naïve and NEP-enhanced hUC-MSC groups. There was a significant decrease in Congo red, BACE-1, GFAP, and Iba-1 and a significant increase in BDNF, NeuN, and NEP in both hUC-MSC groups compared to the Aβ1-42 injection group. Among them, BDNF, NeuN, GFAP, Iba-1, and NEP showed more significant changes in the NEP-enhanced hUC-MSC group than in the naïve group. After stem cell injection, stem cells were not found. Extracellular vesicles (EVs) were equally observed in the hippocampus in the naïve and NEP-enhanced hUC-MSC groups. However, the EVs of NEP-enhanced hUC-MSCs contained higher amounts of NEP as compared to the EVs of naïve hUC-MSCs. Thus, hUC-MSCs affect AD animal models through stem cell-released EVs. Although there was no significant difference in cognitive function between the hUC-MSC groups, NEP-enhanced hUC-MSCs had superior neurogenesis and anti-inflammation properties compared to naïve hUC-MSCs due to increased NEP in the hippocampus by enriched NEP-possessing EVs. NEP gene-modified MSCs that release an increased amount of NEP within EVs may be a promising therapeutic option in AD treatment.
Collapse
|
11
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
12
|
Aishwarya L, Arun D, Kannan S. Stem cells as a potential therapeutic option for treating neurodegenerative diseases. Curr Stem Cell Res Ther 2021; 17:590-605. [PMID: 35135464 DOI: 10.2174/1574888x16666210810105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
In future, neurodegenerative diseases will take over cancer's place and become the major cause of death in the world, especially in developed countries. Advancements in the medical field and its facilities have led to an increase in the old age population, and thus contributing to the increase in number of people suffering from neurodegenerative diseases. Economically it is of a great burden to society and the affected family. No current treatment aims to replace, protect, and regenerate lost neurons; instead, it alleviates the symptoms, extends the life span by a few months and creates severe side effects. Moreover, people who are affected are physically dependent for performing their basic activities, which makes their life miserable. There is an urgent need for therapy that could be able to overcome the deficits of conventional therapy for neurodegenerative diseases. Stem cells, the unspecialized cells with the properties of self-renewing and potency to differentiate into various cells types can become a potent therapeutic option for neurodegenerative diseases. Stem cells have been widely used in clinical trials to evaluate their potential in curing different types of ailments. In this review, we discuss the various types of stem cells and their potential use in the treatment of neurodegenerative disease based on published preclinical and clinical studies.
Collapse
Affiliation(s)
- Aishwarya L
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Dharmarajan Arun
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Suresh Kannan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| |
Collapse
|
13
|
Si Z, Wang X. Stem Cell Therapies in Alzheimer's Disease: Applications for Disease Modeling. J Pharmacol Exp Ther 2021; 377:207-217. [PMID: 33558427 DOI: 10.1124/jpet.120.000324] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with complex pathologic and biologic characteristics. Extracellular β-amyloid deposits, such as senile plaques, and intracellular aggregation of hyperphosphorylated tau, such as neurofibrillary tangles, remain the main neuropathological criteria for the diagnosis of AD. There is currently no effective treatment of the disease, and many clinical trials have failed to prove any benefits of new therapeutics. More recently, there has been increasing interest in harnessing the potential of stem cell technologies for drug discovery, disease modeling, and cell therapies, which have been used to study an array of human conditions, including AD. The recently developed and optimized induced pluripotent stem cell (iPSC) technology is a critical platform for screening anti-AD drugs and understanding mutations that modify AD. Neural stem cell (NSC) transplantation has been investigated as a new therapeutic approach to treat neurodegenerative diseases. Mesenchymal stem cells (MSCs) also exhibit considerable potential to treat neurodegenerative diseases by secreting growth factors and exosomes, attenuating neuroinflammation. This review highlights recent progress in stem cell research and the translational applications and challenges of iPSCs, NSCs, and MSCs as treatment strategies for AD. Even though these treatments are still in relative infancy, these developing stem cell technologies hold considerable promise to combat AD and other neurodegenerative disorders. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a neurodegenerative disease that results in learning and memory defects. Although some drugs have been approved for AD treatment, fewer than 20% of patients with AD benefit from these drugs. Therapies based on stem cells, including induced pluripotent stem cells, neural stem cells, and mesenchymal stem cells, provide promising therapeutic strategies for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| | - Xidi Wang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| |
Collapse
|
14
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
15
|
Liu XY, Yang LP, Zhao L. Stem cell therapy for Alzheimer's disease. World J Stem Cells 2020; 12:787-802. [PMID: 32952859 PMCID: PMC7477654 DOI: 10.4252/wjsc.v12.i8.787] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell-derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.
Collapse
Affiliation(s)
- Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
16
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Wlodarek L, Cao F, Alibhai FJ, Fekete A, Noyan N, Tobin SW, Marvasti TB, Wu J, Li SH, Weisel RD, Wang LY, Jia Z, Li RK. Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1 + stem cells from young donors. J Neuroinflammation 2020; 17:51. [PMID: 32028989 PMCID: PMC7006105 DOI: 10.1186/s12974-019-1681-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. Methods Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. Results Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. Conclusion Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow. Electronic supplementary material The online version of this article (10.1186/s12974-019-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukasz Wlodarek
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Feng Cao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Adam Fekete
- Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Nima Noyan
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Stephanie W Tobin
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Tina B Marvasti
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Lu-Yang Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | - Zhengping Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Program in Neurosciences & Mental Health, SickKids Research Institute, Floor 5, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto Medical Discovery Tower, Room 3-702, 101 College Street, Toronto, Ontario, M5G 1L7, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Zhang FQ, Jiang JL, Zhang JT, Niu H, Fu XQ, Zeng LL. Current status and future prospects of stem cell therapy in Alzheimer's disease. Neural Regen Res 2020; 15:242-250. [PMID: 31552889 PMCID: PMC6905342 DOI: 10.4103/1673-5374.265544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer's disease, and the current state of stem cell transplantation in the treatment of Alzheimer's disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Fu-Qiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jin-Lan Jiang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jing-Tian Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Han Niu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xue-Qi Fu
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lin-Lin Zeng
- School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
19
|
Hayashi Y, Lin HT, Lee CC, Tsai KJ. Effects of neural stem cell transplantation in Alzheimer's disease models. J Biomed Sci 2020; 27:29. [PMID: 31987051 PMCID: PMC6986162 DOI: 10.1186/s12929-020-0622-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Currently there are no therapies for treating Alzheimer's disease (AD) that can effectively halt disease progression. Existing drugs such as acetylcholinesterase inhibitors or NMDA receptor antagonists offers only symptomatic benefit. More recently, transplantation of neural stem cells (NSCs) to treat neurodegenerative diseases, including AD, has been investigated as a new therapeutic approach. Transplanted cells have the potential to replace damaged neural circuitry and secrete neurotrophic factors to counter symptomatic deterioration or to alter lesion protein levels. However, since there are animal models that can recapitulate AD in its entirety, it is challenging to precisely characterize the positive effects of transplanting NSCs. In the present review, we discuss the types of mouse modeling system that are available and the effect in each model after human-derived NSC (hNSC) or murine-derived NSC (mNSC) transplantation. Taken together, results from studies involving NSC transplantation in AD models indicate that this strategy could serve as a new therapeutic approach.
Collapse
Affiliation(s)
- Yoshihito Hayashi
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Huan-Ting Lin
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cheng-Che Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease caused by eventually aggregated amyloid β (Aβ) plaques in degenerating neurons of the aging brain. These aggregated protein plaques mainly consist of Aβ fibrils and neurofibrillary tangles (NFTs) of phosphorylated tau protein. Even though some cholinesterase inhibitors, NMDA receptor antagonist, and monoclonal antibodies were developed to inhibit neurodegeneration or activate neural regeneration or clear off the Aβ deposits, none of the treatment is effective in improving the cognitive and memory dysfunctions of the AD patients. Thus, stem cell therapy represents a powerful tool for the treatment of AD. In addition to discussing the advents in molecular pathogenesis and animal models of this disease and the treatment approaches using small molecules and immunoglobulins against AD, we will focus on the stem cell sources for AD using neural stem cells (NSCs); embryonic stem cells (ESCs); and mesenchymal stem cells (MSCs) from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific-induced pluripotent stem cells (iPS cells) are proposed as a future prospective and the challenges for the treatment of AD.
Collapse
|
21
|
Chakari-Khiavi F, Dolati S, Chakari-Khiavi A, Abbaszadeh H, Aghebati-Maleki L, Pourlak T, Mehdizadeh A, Yousefi M. Prospects for the application of mesenchymal stem cells in Alzheimer's disease treatment. Life Sci 2019; 231:116564. [PMID: 31202840 DOI: 10.1016/j.lfs.2019.116564] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) as a dementia and neurodegenerative disease, is mostly prevalent among people more than 65 years. AD is mostly manifested in the form of degraded mental function, such as losing memory and impaired cognitive function. Due to inefficiency of traditional pharmacological therapeutic approaches with no long-term cure, cell therapy can be considered as a capable approach in AD management. Therapies based on mesenchymal stem cells (MSCs) have provided hopeful results in experimental models regarding several disorders. MSCs enhance the levels of functional recoveries in pathologic experimental models of central nervous system (CNS) and are being investigated in clinical trials in neurological disorders. However, there is limited knowledge on the protective capabilities of MSCs in AD management. Almost, several experiments have suggested positive effects of MSCs and helped to better understand of AD-related dementia mechanism. MSCs have the potential to be used in AD treatment through amyloid-β peptide (AB), Tau protein and cholinergic system. This review aimed to clarify the promising perspective of MSCs in the context of AD.
Collapse
Affiliation(s)
- Forough Chakari-Khiavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Aref Chakari-Khiavi
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tannaz Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran..
| |
Collapse
|
22
|
Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 2018; 9:2865. [PMID: 30030434 PMCID: PMC6054649 DOI: 10.1038/s41467-018-05209-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/23/2018] [Indexed: 01/29/2023] Open
Abstract
Induced neural stem cells (iNSCs) reprogrammed from somatic cells have great potentials in cell replacement therapies and in vitro modeling of neural diseases. Direct conversion of fibroblasts into iNSCs has been shown to depend on a couple of key neural progenitor transcription factors (TFs), raising the question of whether such direct reprogramming can be achieved by non-neural progenitor TFs. Here we report that the non-neural progenitor TF Ptf1a alone is sufficient to directly reprogram mouse and human fibroblasts into self-renewable iNSCs capable of differentiating into functional neurons, astrocytes and oligodendrocytes, and improving cognitive dysfunction of Alzheimer’s disease mouse models when transplanted. The reprogramming activity of Ptf1a depends on its Notch-independent interaction with Rbpj which leads to subsequent activation of expression of TF genes and Notch signaling required for NSC specification, self-renewal, and homeostasis. Together, our data identify a non-canonical and safer approach to establish iNSCs for research and therapeutic purposes. Fibroblasts can be reprogrammed into induced neural stem cells (iNSCs) using transcription factors expressed in neural progenitors. Here the authors show that Ptf1a, which is normally expressed in postmitotic neurons, can reprogram fibroblasts to iNSCs through Notch independent interaction with Rbpj.
Collapse
|
23
|
Kwak KA, Lee SP, Yang JY, Park YS. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells Int 2018; 2018:6392986. [PMID: 29686714 PMCID: PMC5852851 DOI: 10.1155/2018/6392986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease's pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.
Collapse
Affiliation(s)
- Kyeong-Ah Kwak
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Yang
- Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
25
|
Lee JH, Oh IH, Lim HK. Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease. Psychiatry Investig 2016; 13:583-589. [PMID: 27909447 PMCID: PMC5128344 DOI: 10.4306/pi.2016.13.6.583] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) without cure remains as a serious health issue in the modern society. The major neuropathological alterations in AD are characterized by chronic neuroinflammation and neuronal loss due to neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau, plaques of β-amyloid (Aβ) and various metabolic dysfunctions. Due to the multifaceted nature of AD pathology and our limited understanding on its etiology, AD is difficult to be treated with currently available pharmaceuticals. This unmet need, however, could be met with stem cell technology that can be engineered to replace neuronal loss in AD patients. Although stem cell therapy for AD is only in its development stages, it has vast potential uses ranging from replacement therapy to disease modelling and drug development. Current progress with stem cells in animal model studies offers promising results for the new prospective treatment for AD. This review will discuss the characteristics of AD, current progress in stem cell therapy and remaining challenges and promises in its development.
Collapse
Affiliation(s)
- Ji Han Lee
- Washington University in St. Louis, St. Louis, MO, USA
| | - Il-Hoan Oh
- The Catholic High-Performance Cell Therapy Center & Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
26
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
28
|
Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease. Eur J Pharmacol 2015. [DOI: 10.1016/j.ejphar.2015.07.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
A Cell Electrofusion Chip for Somatic Cells Reprogramming. PLoS One 2015; 10:e0131966. [PMID: 26177036 PMCID: PMC4503441 DOI: 10.1371/journal.pone.0131966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Cell fusion is a potent approach to explore the mechanisms of somatic cells reprogramming. However, previous fusion methods, such as polyethylene glycol (PEG) mediated cell fusion, are often limited by poor fusion yields. In this study, we developed a simplified cell electrofusion chip, which was based on a micro-cavity/ discrete microelectrode structure to improve the fusion efficiency and to reduce multi-cell electrofusion. Using this chip, we could efficiently fuse NIH3T3 cells and mouse embryonic stem cells (mESCs) to induce somatic cells reprogramming. We also found that fused cells demethylated gradually and 5-hydroxymethylcytosine (5hmC) was involved in the demethylation during the reprogramming. Thus, the cell electrofusion chip would facilitate reprogramming mechanisms research by improving efficiency of cell fusion and reducing workloads.
Collapse
|
30
|
Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer's disease: A systematic review and meta-analysis. Sci Rep 2015; 5:12134. [PMID: 26159750 PMCID: PMC4498325 DOI: 10.1038/srep12134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), an irreversible progressive neurodegenerative disease, causes characteristic cognitive impairment, and no curative treatments are currently available. Stem cell transplantation offers a powerful tool for the treatment of AD. We conducted a systematic review and meta-analysis of data from controlled studies to study the impact of stem cell biology and experimental design on learning and memory function following stem cell transplantation in animal models of AD. A total of 58 eligible controlled studies were included by searching PubMed, EMBASE, and Web of Science up to April 13, 2015. Meta-analysis showed that stem cell transplantation could promote both learning and memory recovery. Stratified meta-analysis was used to explore the influence of the potential factors on the estimated effect size, and meta-regression analyses were undertaken to explore the sources of heterogeneity for learning and memory function. Publication bias was assessed using funnel plots and Egger’s test. The present review reinforces the evidence supporting stem cell transplantation in experimental AD. However, it highlights areas that require well-designed and well-reported animal studies.
Collapse
|
31
|
Li J, Ding X, Zhang R, Jiang W, Sun X, Xia Z, Wang X, Wu E, Zhang Y, Hu Y. Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neuroscience 2015; 303:103-14. [PMID: 26135675 DOI: 10.1016/j.neuroscience.2015.06.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
So far, no effective disease-modifying therapies for Alzheimer's disease (AD) aiming at protecting or reversing neurodegeneration of the disease have been established yet. The present work aims to elucidate the effect of Harpagoside (abbreviated HAR), an iridoid glycosides purified from the Chinese medicinal herb Scrophularia ningpoensis, on neurodegeneration induced by β-amyloid peptide (Aβ) and the underlying molecular mechanism. Here we show that HAR exerts neuroprotective effects against Aβ neurotoxicity. Rats injected aggregated Aβ₁₋₄₀ into the bilateral hippocampus displayed impaired spatial learning and memory ability in a Y-maze test and novel object recognition test, while HAR treatment ameliorated Aβ₁₋₄₀-induced behavioral deficits. Moreover, administration of HAR increased the expression levels of brain-derived neurotrophic factor (BDNF) and activated the extracellular-regulated protein kinase (ERK) and the phosphatidylinositol 3-kinase (PI3-kinase) pathways both in the cerebral cortex and hippocampus of the Aβ₁₋₄₀-insulted rat model. Furthermore, in cultured primary cortical neurons, Aβ₁₋₄₂ induced significant decrease of choline acetyltransferase (ChAT)-positive neuron number and neurite outgrowth length, both of which were dose dependently increased by HAR. In addition, HAR pretreatment also significantly attenuated the decrease of cell viability in Aβ₁₋₄₂-injured primary cortical neurons. Finally, when K252a, an inhibitor of Trk tyrosine kinases, and a BDNF neutralizing antibody were added to the culture medium 2 h prior to HAR addition, the protective effect of HAR on Aβ₁₋₄₂-induced neurodegeneration in the primary cortical neuron was almost inhibited. Taken together, HAR exerting neuroprotection effect and ameliorating learning and memory deficit appears to be associated, at least in part, with up-regulation of BDNF content as well as activating its downstream signaling pathways, e.g., MAPK/PI3K pathways. It raises the possibility that HAR has potential to be a therapeutic agent against AD.
Collapse
Affiliation(s)
- J Li
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Ding
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - R Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - W Jiang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Sun
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Z Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - E Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| | - Y Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China.
| | - Y Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
32
|
Kim JA, Ha S, Shin KY, Kim S, Lee KJ, Chong YH, Chang KA, Suh YH. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model. Cell Death Dis 2015; 6:e1789. [PMID: 26086962 PMCID: PMC4669825 DOI: 10.1038/cddis.2015.138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/05/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss in several regions of the brain. Recent studies have suggested that stem cell transplantation could serve as a potential therapeutic strategy to halt or ameliorate the inexorable disease progression. However, the optimal stage of the disease for stem cell transplantation to have a therapeutic effect has yet to be determined. Here, we demonstrated that transplantation of neural stem cells into 12-month-old Tg2576 brains markedly improved both cognitive impairments and neuropathological features by reducing β-amyloid processing and upregulating clearance of β-amyloid, secretion of anti-inflammatory cytokines, endogenous neurogenesis, as well as synapse formation. In contrast, the stem cell transplantation did not recover cognitive dysfunction and β-amyloid neuropathology in Tg2576 mice aged 15 months when the memory loss is manifest. Overall, this study underscores that stem cell therapy at optimal time frame is crucial to obtain maximal therapeutic effects that can restore functional deficits or stop the progression of AD.
Collapse
Affiliation(s)
- J A Kim
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University, Seoul, 110-799, Korea
| | - S Ha
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, Gachon University, Incheon, 405-760, Korea
| | - K Y Shin
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University, Seoul, 110-799, Korea
| | - S Kim
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, Gachon University, Incheon, 405-760, Korea
| | - K J Lee
- Synaptic Circuit Plasticity Laboratory, Department of Structure & Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 701-300, Korea
| | - Y H Chong
- Division of Molecular Biology and Neuroscience, Department of Microbiology, School of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, 158-710, Korea
| | - K-A Chang
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, Gachon University, Incheon, 405-760, Korea
| | - Y-H Suh
- 1] Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University, Seoul, 110-799, Korea [2] Synaptic Circuit Plasticity Laboratory, Department of Structure & Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu 701-300, Korea
| |
Collapse
|
33
|
Banik A, Prabhakar S, Kalra J, Anand A. Effect of human umbilical cord blood derived lineage negative stem cells transplanted in amyloid-β induced cognitive impaired mice. Behav Brain Res 2015; 291:46-59. [PMID: 25989508 DOI: 10.1016/j.bbr.2015.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular deposition of insoluble amyloid-β (Aβ) plaques and intracellular tangles made up of phosphorylated tau in brain. Several therapeutic approaches are being carried out in animal AD models for testing their safety and efficacy in altering disease pathology and behavioral deficits. Very few studies have examined the effect of human umbilical cord blood (hUCB) derived stem cells in degenerative disease models despite growing number of cord blood banks worldwide. Here we have examined the therapeutic efficacy of hUCB derived lineage negative (Lin -ve) stem cells in alleviating behavioral and neuropathological deficits in a mouse model of cognitive impairment induced by bilateral intrahippocampal injection of Aβ-42. Lin -ve cells were transplanted at two doses (50,000 and 100,000) at the site of injury and examined at 10 and 60 days post transplantation for rescue of memory deficits. These cells were found to ameliorate cognitive impairment in 50,000-60 days and 100,000-10 days groups whereas, 50,000-10 days and 100,000-60 days groups could not exert any significant improvement. Further, mice showing spatial memory improvement were mediated by up-regulation of BDNF, CREB and also by concomitant down regulation of Fas-L in their brain. The transplanted cells were found in the host tissue and survived up to 60 days without expressing markers of neuronal differentiation or reducing Aβ burden in mouse brain. We suggest that these undifferentiated cells could exert neuroprotective effects either through inhibiting apoptosis and/or trophic effects in the brain.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudesh Prabhakar
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasvinder Kalra
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
34
|
Stem cell treatment for Alzheimer's disease. Int J Mol Sci 2014; 15:19226-38. [PMID: 25342318 PMCID: PMC4227270 DOI: 10.3390/ijms151019226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.
Collapse
|
35
|
Upadhyay G, Shankar S, Srivastava RK. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 2014; 52:610-25. [DOI: 10.1007/s12035-014-8883-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
36
|
Bobkova NV, Poltavtseva RA, Samokhin AN, Sukhikh GT. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull Exp Biol Med 2014; 156:119-21. [PMID: 24319707 DOI: 10.1007/s10517-013-2293-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Science; V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health Care of the Russian Federation, Moscow, Russia.
| | | | | | | |
Collapse
|
37
|
Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H. Stem-cell challenges in the treatment of Alzheimer's disease: a long way from bench to bedside. Med Res Rev 2014; 34:957-78. [PMID: 24500883 DOI: 10.1002/med.21309] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, and its neuropathology is characterized by deposition of insoluble β-amyloid peptides, intracellular neurofibrillary tangles, and the loss of diverse neurons. Current pharmacological treatments for AD relieve symptoms without affecting the major pathological characteristics of the disease. Therefore, it is essential to develop new and effective therapies. Stem-cell types include tissue-specific stem cells, such as neural stem cells and mesenchymal stem cells, embryonic stem cells derived from blastocysts, and induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells. Recent preclinical evidence suggests that stem cells can be used to treat or model AD. The mechanisms of stem cell based therapies for AD include stem cell mediated neuroprotection and trophic actions, antiamyloidogenesis, beneficial immune modulation, and the replacement of the lost neurons. iPSCs have been recently used to model AD, investigate sporadic and familial AD pathogenesis, and screen for anti-AD drugs. Although considerable progress has been achieved, a series of challenges must be overcome before stem cell based cell therapies are used clinically for AD patients. This review highlights the recent experimental and preclinical progress of stem-cell therapies for AD, and discusses the translational challenges of their clinical application.
Collapse
Affiliation(s)
- Xiaotang Fan
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | | | | | | | | |
Collapse
|
38
|
Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 2013; 9:7845-54. [PMID: 23639778 DOI: 10.1016/j.actbio.2013.04.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) belong to a family of copolyesters with demonstrated biocompatibility. We hypothesize that genetically fusing evolutionarily preserved cell binding motifs, such as RGD or IKVAV, to the PHA-binding protein phasin (PhaP) for surface functionalization of PHA materials could better support the growth and differentiation of neural stem cells (NSCs). This hypothesis is tested on three polyester materials of the same aliphatic family: poly(L-lactic acid) (PLA) and two PHB copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx). Experimental results indicate that surface coating of the two fusion proteins, PhaP-RGD and PhaP-IKVAV, provides short-term advantages in promoting the adhesion, proliferation and neural differentiation of rat NSCs compared to the PhaP-coated or uncoated material. Among the tested samples, the combination of coating PhaP-IKVAV on an PHBVHHx surface yields the highest levels in cell adhesion and proliferation, while the PLA film coated with PhaP-IKVAV promotes better neural differentiation and neurite outgrowth in the early stage. Because both PhaP-RGD and PhaP-IKVAV could be produced in an inexpensive manner, our data suggest that PhaP-IKVAV is an ideal nonspecific coating agent to functionalize hydrophobic biomaterials in the application of neural tissue engineering.
Collapse
|
39
|
Zheng M, Liu J, Ruan Z, Tian S, Ma Y, Zhu J, Li G. Intrahippocampal injection of Aβ1-42 inhibits neurogenesis and down-regulates IFN-γ and NF-κB expression in hippocampus of adult mouse brain. Amyloid 2013; 20:13-20. [PMID: 23286786 DOI: 10.3109/13506129.2012.755122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by accumulation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is widely recognized as a key factor in the pathogenesis of AD. Aβ1-42 a major component of amyloid plaques, has shown synaptotoxicity associated with impaired long-term potentiation and cognitive deficits. Alteration of neurogenesis in AD patients has been reported, while little is known about how Aβ1-42 affects hippocampal neurogenesis in the adult brain. In this study, we injected human Aβ1-42 peptide into hippocampal CA1 area of adult mouse brain bilaterally and evaluated histological change and neurogenesis in the hippocampus. Hematoxylin and eosin (HE) stain showed that Aβ1-42-injection resulted in an extensive neurodegeneration in the Aβ-accumulated area and CA3 in hippocampus. Immunostaining showed that intrahippocampal Aβ1-42-injection dramatically decreased the number of bromodeoxyuridine (BrdU)-positive cells in the dentate gyrus (DG) compared to the vehicle injection. Moreover, a significant decrease in the number of BrdU/double-cortin double-positive cells in Aβ1-42-injected hippocampus was observed, suggesting that Aβ1-42-injection inhibited progenitor cell proliferation and neurogenesis in subgranular zone of the DG in the adult brain. We also found that the Aβ1-42-mediated decline of neurogenesis was associated with decreased protein levels of cytokines interferon-γ (IFN-γ) and transcription factor nuclear factor-kappa B (NF-κB) in the hippocampus. These results suggest that Aβ1-42 inhibits hippocampal neurogenesis in the adult brain possibly through down-regulation of INF-γ and NF-κB signaling pathway. This study provides a new insight into Aβ1-42-mediated decrease in hippocampal neurogenesis in the adult central nervous system.
Collapse
Affiliation(s)
- Meige Zheng
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Xu H, Huang W, Wang Y, Sun W, Tang J, Li D, Xu P, Guo L, Yin ZQ, Fan X. The function of BMP4 during neurogenesis in the adult hippocampus in Alzheimer's disease. Ageing Res Rev 2013; 12:157-64. [PMID: 22698853 DOI: 10.1016/j.arr.2012.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/11/2012] [Accepted: 05/31/2012] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is an age-related, progressive and irreversible neurodegenerative disease that results in the loss of selected neurons throughout the basal forebrain, amygdala, hippocampus, and cortical area as well as progressive deficits of cognition and memory. The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is one of the regions where adult neurogenesis occurs in mammals, including humans and non-human primates. The new granule cells, which are the primary excitatory neurons in the DG, contribute to the processes of learning and memory. The changes in neurogenesis observed during the initial stages and progression of AD suggest that the modulation of the new production of neurons at neurogenic sites may exert profound effects on hippocampal function. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin contribute to the modulation of neurogenesis in the adult hippocampus, thereby affecting hippocampal function. This review focuses on the role of BMP4 and Noggin in the control of the stem and precursor cells in the adult hippocampus during AD and their potential as a possible therapeutic strategy for AD sufferers. It is helpful to extend the understanding of the control of stem cells in the normal and diseased hippocampus.
Collapse
|
41
|
Zhang C, Wang ZJ, Lok KH, Yin M. β-amyloid42 induces desensitization of CXC chemokine receptor-4 via formyl peptide receptor in neural stem/progenitor cells. Biol Pharm Bull 2012; 35:131-8. [PMID: 22293341 DOI: 10.1248/bpb.35.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deposition of β-amyloid (Aβ) plaques and progressive loss of neurons are two main characteristics of Alzheimer's disease (AD). Supplement of neural stem/progenitor cells (NSPCs) is a promising strategy for repair of the neurodegenerative diseases. However, hostile microenvironment of neurodegenerative brain is harmful for the neuroregeneration. Aβ(42) promoted the proliferation of NSPCs. Moreover, Aβ(42) (10-1000 nM) promoted the migration of NSPCs in a dose-dependent manner. The attraction of NSPCs toward Aβ(42) was significantly offset by 10 μM cyclosporin H, a potent and selective formyl peptide receptor antagonist. After incubation with Aβ(42) for 9 d, the migration ability of NSPCs was significantly decreased (p<0.05). The expression of formyl peptide receptor (FPR) and CXC chemokine receptor-4 (CXCR4) were significantly decreased in NSPCs. The expression of G protein-coupled receptor kinase 2 (GRK2) was up-regulated on the membrane of NSPCs correspondingly. Our results suggested that Aβ(42) decreases the migratory capacity of NSPCs by FPR heterologous desensitization after long time incubation, and GRK2 in NSPCs may be responsible for the damaged migratory capacity.
Collapse
Affiliation(s)
- Can Zhang
- School of Pharmacy, Shanghai Jiaotong University, China
| | | | | | | |
Collapse
|
42
|
Synergistic effects of amyloid peptides and lead on human neuroblastoma cells. Cell Mol Biol Lett 2012; 17:408-21. [PMID: 22610977 PMCID: PMC3839229 DOI: 10.2478/s11658-012-0018-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/11/2012] [Indexed: 11/20/2022] Open
Abstract
Aggregated amyloid peptides (AP), major components of senile plaques, have been considered to play a very important and crucial role in the development and neuro-pathogenesis of Alzheimer's disease (AD). In the present in vitro, study the synergistic effects of Pb(2+), a heavy metal, and AP on the human neuroblastoma SH-SY5Y cells were investigated. The cells treated with Pb(2+) (0.01-10 μM) alone exhibited a significant decrease in viability and IC(50) was 5 μM. A similar decrease in viability was also observed when the cells were exposed to AP, Aβ1-40 (20-120 μM) and Aβ25-35 (2.5-15 μM) for 48 hrs. The IC(50) values were 60 μM and 7.5 μM for Aβ1-40 and Aβ25-35 respectively. To assess the synergistic effects the cells were exposed to IC(50) of both AP and Pb(2+), which resulted in further reduction of the viability. The study was extended to determine the lactate dehydrogenase (LDH) release to assess the cytotoxic effects, 8-isoprostane for extent of oxidative damage, COX 1 and 2 for inflammation related changes, p53 protein for DNA damage and protein kinases A and C for signal transduction. The data suggest that the toxic effects of AP were most potent in the presence of Pb(2+), resulting in an aggravated clinical pathological condition. This could be attributed to the oxidative stress, inflammation neuronal apoptosis and an alteration in the activities of the signaling enzymes.
Collapse
|
43
|
Wang K, Wang H, Wang J, Xie Y, Chen J, Yan H, Liu Z, Wen T. System approaches reveal the molecular networks involved in neural stem cell differentiation. Protein Cell 2012; 3:213-24. [PMID: 22492180 DOI: 10.1007/s13238-012-0014-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 12/31/2022] Open
Abstract
The self-renewal and multipotent potentials in neural stem cells (NSCs) maintain the normal physiological functions of central nervous system (CNS). The abnormal differentiation of NSCs would lead to CNS disorders. However, the mechanisms of how NSCs differentiate into astrocytes, oligodendrocytes (OLs) and neurons are still unclear, which is mainly due to the complexity of differentiation processes and the limitation of the cell separation method. In this study, we modeled the dynamics of neural cell interactions in a systemic approach by mining the high-throughput genomic and proteomic data, and identified 8615 genes that are involved in various biological processes and functions with significant changes during the differentiation processes. A total of 1559 genes are specifically expressed in neural cells, in which 242 genes are NSC specific, 215 are astrocyte specific, 551 are OL specific, and 563 are neuron specific. In addition, we proposed 57 transcriptional regulators specifically expressed in NSCs may play essential roles in the development courses. These findings provide more comprehensive analysis for better understanding the endogenous mechanisms of NSC fate determination.
Collapse
Affiliation(s)
- Kai Wang
- Laboratory of Molecular Neurobiology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
A preclinical assessment of neural stem cells as delivery vehicles for anti-amyloid therapeutics. PLoS One 2012; 7:e34097. [PMID: 22496779 PMCID: PMC3319561 DOI: 10.1371/journal.pone.0034097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/21/2012] [Indexed: 11/23/2022] Open
Abstract
Transplantation of neural stems cells (NSCs) could be a useful means to deliver biologic therapeutics for late-stage Alzheimer's disease (AD). In this study, we conducted a small preclinical investigation of whether NSCs could be modified to express metalloproteinase 9 (MMP9), a secreted protease reported to degrade aggregated Aβ peptides that are the major constituents of the senile plaques. Our findings illuminated three issues with using NSCs as delivery vehicles for this particular application. First, transplanted NSCs generally failed to migrate to amyloid plaques, instead tending to colonize white matter tracts. Second, the final destination of these cells was highly influenced by how they were delivered. We found that our injection methods led to cells largely distributing to white matter tracts, which are anisotropic conduits for fluids that facilitate rapid distribution within the CNS. Third, with regard to MMP9 as a therapeutic to remove senile plaques, we observed high concentrations of endogenous metalloproteinases around amyloid plaques in the mouse models used for these preclinical tests with no evidence that the NSC-delivered enzymes elevated these activities or had any impact. Interestingly, MMP9-expressing NSCs formed substantially larger grafts. Overall, we observed long-term survival of NSCs in the brains of mice with high amyloid burden. Therefore, we conclude that such cells may have potential in therapeutic applications in AD but improved targeting of these cells to disease-specific lesions may be required to enhance efficacy.
Collapse
|
45
|
Tang J. How close is the stem cell cure to the Alzheimer's disease: Future and beyond? Neural Regen Res 2012; 7:66-71. [PMID: 25806061 PMCID: PMC4354121 DOI: 10.3969/j.issn.1673-5374.2012.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative illness, is the most common form of dementia. So far, there is neither an effective prevention nor a cure for Alzheimer's disease. In recent decades, stem cell therapy has been one of the most promising treatments for Alzheimer's disease patients. This article aims to summarize the current progress in the stem cell treatments for Alzheimer's disease from an experiment to a clinical research.
Collapse
Affiliation(s)
- Jun Tang
- Department of Laboratory Medicine and Pathology, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, 55905, USA
| |
Collapse
|
46
|
Han M, Liu Y, Tan Q, Zhang B, Wang W, Liu J, Zhang XJ, Wang YY, Zhang JM. Therapeutic efficacy of stemazole in a beta-amyloid injection rat model of Alzheimer's disease. Eur J Pharmacol 2011; 657:104-10. [DOI: 10.1016/j.ejphar.2011.01.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 12/22/2022]
|
47
|
Shih PH, Wu CH, Yeh CT, Yen GC. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1683-1689. [PMID: 21302893 DOI: 10.1021/jf103822h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease is neuropathologically characterized by amyloid β-protein (Aβ) deposition, resulting in neurotoxicity. Herein, we focused on the prevention of anthocyanins from amyloid-mediated neurodysfunction. The data demonstrated that combined exposure of Aβ(1-40) and Aβ(25-35) to Neuro-2A cells resulted in reactive oxygen species (ROS) production and perturbation of calcium homeostasis. The expressions of LXRα, ApoE, ABCA1, and seladin-1 genes were significantly down-regulated upon Aβ challenge. β-Secretase, the rate-limiting enzyme that catalyzes amyloid precursor protein transform to Aβ, was up-regulated by Aβ treatment. For the duration of Aβ stimulation, malvidin (Mal) or oenin (Oen; malvidin-3-O-glucoside) was added, and the protective effects were observed. Mal and Oen showed protective effects against Aβ-induced neurotoxicity through blocking ROS formation, preserving Ca(2+) homeostasis, and preventing Aβ-mediated perturbation of certain genes involved in Aβ metabolism and cellular defense. The present study implicates anthocyanin as a potential therapeutic candidate for the prevention of amyloid-mediated neurodysfunction.
Collapse
Affiliation(s)
- Ping-Hsiao Shih
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
48
|
|
49
|
Park KD, Seong SK, Park YM, Choi Y, Park JH, Lee SH, Baek DH, Kang JW, Choi KS, Park SN, Kim DS, Kim SH, Kim HS. Telomerase reverse transcriptase related with telomerase activity regulates tumorigenic potential of mouse embryonic stem cells. Stem Cells Dev 2010; 20:149-57. [PMID: 20486780 DOI: 10.1089/scd.2009.0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cell (ESC) research gave rise to the possibility that stem cell therapy could be used in the treatment of incurable diseases such as neurodegenerative disorders. However, problems related to the tumorigenicity of undifferentiated ESCs must be resolved before such cells can be used in the application of cell replacement therapies. In the present study, we attempted to determine biomarkers that predicted tumor formation of undifferentiated ESCs in vivo. We differentiated mouse ESCs (R1 cell line) into neural lineage using a 5-step method, and evaluated the expression of oncogenes (p53, Bax, c-myc, Bcl2, K-ras), telomerase-related genes (TERT, TRF), and telomerase activity and telomere length during differentiation of ESCs. The expression of oncogenes did not show a significant change during differentiation steps, but the expression of telomerase reverse transcriptase (TERT) and telomerase activity correlated with mouse ESCs differentiation. To investigate the possibility of mouse TERT (mTERT) as a biomarker of tumorigenicity of undifferentiated ESCs, we established mTERT knockdown ESCs using the shRNA lentivirus vector and evaluated its tumorigenicity in vivo using nude mice. Tumor volumes significantly decreased, and appearances of tumor formation in mice were delayed in the TERT-knockdown ESC treated group compared with the undifferentiated ESC treated group. Altogether, these results suggested that mTERT might be potentially beneficial as a biomarker, rather than oncogenes of somatic cells, for the assessment of ESCs tumorigenicity.
Collapse
Affiliation(s)
- Ki Dae Park
- Department of Pharmaceutical and Medical Device Research, National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Neri T, Bucciantini M, Rosti V, Raimondi S, Relini A, Massa M, Zuccotti M, Donadei S, Stefani M, Redi CA, Merlini G, Stoppini M, Garagna S, Bellotti V. Embryonic stem and haematopoietic progenitor cells resist to Aβ oligomer toxicity and maintain the differentiation potency in culture. Amyloid 2010; 17:137-45. [PMID: 21067308 DOI: 10.3109/13506129.2010.530138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Regenerative medicine deals with the possible use of stem cells to repair tissues damaged by aging and related diseases, including amyloidoses. In the latter case, the toxicity of the amyloid deposits can, in principle, question the possibility to graft specific tissues by undifferentiated cells. To assess whether stem cells are vulnerable to amyloid toxicity, we exposed, in culture, murine embryonic stem (ES) cells and haematopoietic progenitor (HP) cells to oligomers of the amyloidogenic peptide Aβ42 at concentrations previously shown to be cytotoxic to several other cell types. These stem cells did not display any sign of apoptosis and their survival, proliferation and differentiation were not affected by the oligomers although the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that ES, but not HP, cells displayed some impaired ability to reduce the tetrazole salts possibly as a result of transient oxidative stress. Our results support a remarkable resistance of the investigated stem cells against amyloids and hence their potential use in cell therapy of Alzheimer's disease and, possibly, other amyloid diseases.
Collapse
Affiliation(s)
- Tui Neri
- Dipartimento di Biologia Animale, Centro di Ricerca Interdipartimentale di Ingegneria Tissutale, University of Pavia, Pavia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|