1
|
Readman MR, Wang Y, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Speech-in-noise hearing impairment is associated with increased risk of Parkinson's: A UK biobank analysis. Parkinsonism Relat Disord 2025; 131:107219. [PMID: 39793323 DOI: 10.1016/j.parkreldis.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Hearing impairment is implicated as a risk factor for Parkinson's disease (Parkinson's) incidence, with evidence suggesting that clinically diagnosed hearing loss increases Parkinson's risk 1.5-1.6 fold over 2-5 years follow up. However, the evidence is not unanimous with additional studies observing that self-reported hearing capabilities do not significantly influence Parkinson's incidence. Thus, additional cohort analyses that draw on alternative auditory measures are required to further corroborate the link between Parkinson's and hearing impairment. OBJECTIVES To determine whether hearing impairment, estimated using a speech-in-noise test (the Digit Triplet Test, DTT), is a risk factor for Parkinson's incidence. METHODS This was a pre-registered prospective cohort study using data from the UK Biobank. Data pertaining to 159,395 individuals, who underwent DTT testing and were free from Parkinson's at the point of assessment, were analysed. A Cox Proportional Hazard model, controlling for age, sex and educational attainment was conducted. RESULTS During a median follow up of 14.24 years, 810 cases of probable Parkinson's were observed. The risk of incident Parkinson's increased with baseline hearing impairment [hazard ratio: 1.57 (95%CI: 1.018, 2.435; P = .041)], indicating 57 % increase in risk for every 10 dB increase in speech-reception threshold (SRT). However, when hearing impairment was categorised in accordance with UK Biobank SRT norms neither 'Insufficient' nor 'Poor' hearing significantly influenced Parkinson's risk compared to 'Normal' hearing. CONCLUSIONS The congruence of these findings with prior research further supports the existence of a relationship between hearing impairment and Parkinson's incidence.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, UK; Department of Department of Primary Care and Mental Health, The University of Liverpool, UK; NIHR ARC NWC, Liverpool, UK; Manchester Centre for Audiology and Deafness, The University of Manchester, UK.
| | - Yang Wang
- Department of Mathematics and Statistics, Lancaster University, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, UK
| | - Ian Fairman
- Department of Psychology, Lancaster University, UK
| | | | | | - Christopher J Plack
- Department of Psychology, Lancaster University, UK; Manchester Centre for Audiology and Deafness, The University of Manchester, UK
| |
Collapse
|
2
|
Zhang H, Chen K, Gao T, Yan Y, Liu Y, Liu Y, Zhu K, Qi J, Zheng C, Wang T, Zeng P. Establishing a robust triangulation framework to explore the relationship between hearing loss and Parkinson's disease. NPJ Parkinsons Dis 2025; 11:5. [PMID: 39753591 PMCID: PMC11698951 DOI: 10.1038/s41531-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The relationship between hearing loss (HL) and Parkinson's disease (PD) remains unclear. Using individual-level and summary-level data from the UK Biobank and the largest genome-wide association studies, we examined this link through observational, Mendelian randomization and genetic pleiotropy analyses. Among 158,229 participants, PD risk rose with HL severity especially in elder and males, and hearing aids significantly reduced PD risk in males. Although our results did not support a causal association, genetic correlation analysis suggested a localized genetic overlap (17q21.31). We identified 1545 SNPs and 63 genes with pleiotropic effects on HL and PD, including 79 novel SNPs across 6 loci, with 3 showing strong co-localization. These loci were enriched in key tissues like brain, heart, liver and pancreas, linked to the dihydrolipoyl dehydrogenase complex pathway, and targeted by drugs such as Warfarin and Phenprocoumon. Overall, this study reveals the risk association, genetic basis, and pleiotropic loci connecting HL and PD.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Keying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Kexuan Zhu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Shim M, Yi J, Pak JH, Chung JW. Zinc deficiency triggers hearing loss by reducing ribbon synapses of inner hair cells in CBA/N mice. Biochem Biophys Res Commun 2024; 693:149396. [PMID: 38118309 DOI: 10.1016/j.bbrc.2023.149396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Zinc plays a vital role in our metabolism, encompassing antioxidant regulation, immune response, and auditory function. Several studies have reported that zinc levels correlate with hearing loss. We have previously demonstrated that the auditory brainstem response (ABR) threshold increased in mice fed a zinc-deficient diet. However, the effects of zinc deficiency on hearing were not fully elucidated. The present study investigated whether zinc deficiency affects hearing in association with neuronal components or cochlear structures. CBA/N mice were fed a normal or zinc-deficient diet for 8 weeks and assessed for ABR and distortion product otoacoustic emissions (DPOAE). The cochlear sections were stained with hematoxylin and eosin solution. Also, we observed the expression of synaptic ribbons, neurofilaments, and alpha-synuclein (α-Syn). The 8-week zinc-deficient diet mice had an elevated ABR threshold but no changed DPOAE threshold or cochlear structures. A reduced number of synaptic ribbons of inner hair cells (IHCs) and impaired efferent nerve fibers were observed in the zinc-deficient diet mice. The number of outer hair cells (OHCs) and expression of α-Syn remained unchanged. Our results suggest that zinc-mediated hearing loss is associated with the loss of neuronal components of IHCs.
Collapse
Affiliation(s)
- Myungjoo Shim
- Department of Otorhinolaryngology, University of Ulsan Graduate School, Seoul, South Korea
| | - Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jhang Ho Pak
- Department of Biochemistry, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Leme MS, Sanches SGG, Carvallo RMM. Peripheral hearing in Parkinson's disease: a systematic review. Int J Audiol 2023; 62:805-813. [PMID: 35980314 DOI: 10.1080/14992027.2022.2109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the implications of Parkinson's disease (PD) in the peripheral auditory system, a systematic survey of the scientific literature was conducted. DESIGN Systematic review. STUDY SAMPLE An electronic search of the non-gray literature in the last decade was conducted using the digital databases MEDLINE® (PubMed interface), LILACS® (Virtual Health Library), Web of Science® (CAPES publications portal), and SciELO®. Studies addressing peripheral auditory function as part of the range of nonmotor PD symptoms were selected for analysis. RESULTS Pure tone audiometry data suggested that sensorineural hearing loss was more severe in the PD population than in the control groups. The effects of PD on cochlear function were evidenced by a decrease in the levels of otoacoustic emissions. CONCLUSIONS Sensorineural hearing loss and cochlear impairment are more severe in the PD population than in the control groups. Additional studies are recommended to further understand the characteristics of the peripheral auditory system in PD patients, which constitutes an emerging subject in the scientific literature.
Collapse
Affiliation(s)
- Mariana S Leme
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| | - Seisse G G Sanches
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| | - Renata M M Carvallo
- Department of Physiotherapy, Speech Therapy & Audiology and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo-FMUSP, São Paulo, Brazil
| |
Collapse
|
5
|
Readman MR, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Is Hearing Loss a Risk Factor for Idiopathic Parkinson's Disease? An English Longitudinal Study of Ageing Analysis. Brain Sci 2023; 13:1196. [PMID: 37626551 PMCID: PMC10452744 DOI: 10.3390/brainsci13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Observations that hearing loss is a substantial risk factor for dementia may be accounted for by a common pathology. Mitochondrial oxidative stress and alterations in α-synuclein pathology may be common pathology candidates. Crucially, these candidate pathologies are implicated in Parkinson's disease (PD). Consequently, hearing loss may be a risk factor for PD. Subsequently, this prospective cohort study of the English Longitudinal Study of Ageing examines whether hearing loss is a risk factor for PD longitudinally. Participants reporting self-reported hearing capabilities and no PD diagnosis prior to entry (n = 14,340) were used. A joint longitudinal and survival model showed that during a median follow up of 10 years (SD = 4.67 years) increased PD risk (p < 0.001), but not self-reported hearing capability (p = 0.402). Additionally, an exploratory binary logistic regression modelling the influence of hearing loss identified using a screening test (n = 4812) on incident PD indicated that neither moderate (p = 0.794), nor moderately severe/severe hearing loss (p = 0.5210), increased PD risk, compared with normal hearing. Whilst discrepancies with prior literature may suggest a neurological link between hearing loss and PD, further large-scale analyses using clinically derived hearing loss are needed.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool L69 3BX, UK
- NIHR ARC NWC, Liverpool L7 8XP, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YW, UK
| | - Ian Fairman
- Public Advisor, Associated with Lancaster University Psychology Department, Lancaster LA1 4YF, UK
| | | | | | - Christopher J. Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
6
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Li S, Cheng C, Lu L, Ma X, Zhang X, Li A, Chen J, Qian X, Gao X. Hearing Loss in Neurological Disorders. Front Cell Dev Biol 2021; 9:716300. [PMID: 34458270 PMCID: PMC8385440 DOI: 10.3389/fcell.2021.716300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide, which is projected to reach 900 million by 2050. Its histological characteristics are lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological disorders cover a wide range of diseases affecting the nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), autism spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders manifest with hearing loss, in addition to typical nervous symptoms. The prevalence, manifestations, and neuropathological mechanisms underlying vary among different diseases. In this review, we discuss the relevant literature, from clinical trials to research mice models, to provide an overview of auditory dysfunctions in the most common neurological disorders, particularly those associated with hearing loss, and to explain their underlying pathological and molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoli Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Ao Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
8
|
Fransson AE, Videhult Pierre P, Risling M, Laurell GFE. Inhalation of Molecular Hydrogen, a Rescue Treatment for Noise-Induced Hearing Loss. Front Cell Neurosci 2021; 15:658662. [PMID: 34140880 PMCID: PMC8205059 DOI: 10.3389/fncel.2021.658662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Noise exposure is the most important external factor causing acquired hearing loss in humans, and it is strongly associated with the production of reactive oxygen species (ROS) in the cochlea. Several studies reported that the administration of various compounds with antioxidant effects can treat oxidative stress-induced hearing loss. However, traditional systemic drug administration to the human inner ear is problematic and has not been successful in a clinical setting. Thus, there is an urgent need to develop rescue treatment for patients with acute acoustic injuries. Hydrogen gas has antioxidant effects, rapid distribution, and distributes systemically after inhalation.The purpose of this study was to determine the protective efficacy of a single dose of molecular hydrogen (H2) on cochlear structures. Guinea pigs were divided into six groups and sacrificed immediately after or at 1 or 2 weeks. The animals were exposed to broadband noise for 2 h directly followed by 1-h inhalation of 2% H2 or room air. Electrophysiological hearing thresholds using frequency-specific auditory brainstem response (ABR) were measured prior to noise exposure and before sacrifice. ABR thresholds were significantly lower in H2-treated animals at 2 weeks after exposure, with significant preservation of outer hair cells in the entire cochlea. Quantification of synaptophysin immunoreactivity revealed that H2 inhalation protected the cochlear inner hair cell synaptic structures containing synaptophysin. The inflammatory response was greater in the stria vascularis, showing increased Iba1 due to H2 inhalation.Repeated administration of H2 inhalation may further improve the therapeutic effect. This animal model does not reproduce conditions in humans, highlighting the need for additional real-life studies in humans.
Collapse
Affiliation(s)
- Anette Elisabeth Fransson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Videhult Pierre
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
De Groote E, Bockstael A, Botteldooren D, Santens P, De Letter M. The Effect of Parkinson's Disease on Otoacoustic Emissions and Efferent Suppression of Transient Evoked Otoacoustic Emissions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1354-1368. [PMID: 33769843 DOI: 10.1044/2020_jslhr-20-00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose Several studies have demonstrated increased auditory thresholds in patients with Parkinson's disease (PD) based on subjective tonal audiometry. However, the pathophysiological mechanisms underlying auditory dysfunction in PD remain elusive. The primary aim of this study was to investigate cochlear and olivocochlear function in PD using objective measurements and to assess the effect of dopaminergic medication on auditory function. Method Eighteen patients with PD and 18 gender- and age-matched healthy controls (HCs) were included. Patients with PD participated in medication on and off conditions. Linear mixed models were used to determine the effect of PD on tonal audiometry, transient evoked and distortion product otoacoustic emissions (OAEs), and efferent suppression (ES). Results Tonal audiometry revealed normal auditory thresholds in patients with PD for their age across all frequencies. OAE signal amplitudes demonstrated a significant interaction effect between group (PD vs. HC) and frequency, indicating decreased OAEs at low frequencies and increased OAEs at high frequencies in patients with PD. No significant differences were found between patients with PD and HCs regarding ES. In addition, no significant effect of medication status was found on auditory measurements in patients with PD. Conclusions Altered OAEs support the hypothesis of cochlear alterations in PD. No evidence was found for the involvement of the medial olivocochlear system. Altogether, OAEs may provide an objective early indicator of auditory alterations in PD and should complement subjective tonal audiometry when assessing and monitoring auditory function in PD.
Collapse
Affiliation(s)
| | - Annelies Bockstael
- Acoustics Research Group, Department of Information Technology, Ghent University, Belgium
| | - Dick Botteldooren
- Acoustics Research Group, Department of Information Technology, Ghent University, Belgium
| | | | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Belgium
| |
Collapse
|
10
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Shetty K, Krishnan S, Thulaseedharan JV, Mohan M, Kishore A. Asymptomatic Hearing Impairment Frequently Occurs in Early-Onset Parkinson's Disease. J Mov Disord 2019; 12:84-90. [PMID: 30944288 PMCID: PMC6547043 DOI: 10.14802/jmd.18048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Recent reports of hearing impairment in Parkinson's disease (PD) have suggested that auditory dysfunction could be a non-motor manifestation of PD. These reports were based on observations of elderly patients for whom presbycusis may, to some extent, have contributed to hearing dysfunction. Therefore, we aimed to explore the auditory functions in younger patients with PD. METHODS We conducted a case-control study in a relatively younger (< 55 years of age at study time) population of PD patients and healthy volunteers to test whether auditory dysfunction is a significant non-motor dysfunction in PD. Pure tone audiometry (PTA) and brainstem evoked response audiometry (BERA) were performed in all participants. RESULTS None of the patients or controls reported hearing deficits. Fifty-one patients with PD and 50 healthy volunteers who were age- and gender-matched to the patients participated. PTA-detected hearing impairment was found in 64.7% of patients and 28% of controls (p < 0.001) for both low-mid and/or high frequencies. Hearing impairment was more frequent in the younger subgroups of patients than age-matched controls, while the frequency of hearing impairment was similar in older groups of subjects. BERA was not different between patients and controls. CONCLUSION Asymptomatic auditory dysfunction is a common non-motor manifestation of early-onset PD and more frequent in younger patients, indicating that it may be independent of aging. The mechanism underlying this dysfunction appears to be peripheral, although a central dysfunction cannot be ruled out based on the findings of this study.
Collapse
Affiliation(s)
- Kuldeep Shetty
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Jissa Vinoda Thulaseedharan
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Manju Mohan
- Department of Audiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
12
|
Liu H, Li G, Lu J, Gao YG, Song L, Li GL, Wu H. Cellular Differences in the Cochlea of CBA and B6 Mice May Underlie Their Difference in Susceptibility to Hearing Loss. Front Cell Neurosci 2019; 13:60. [PMID: 30873008 PMCID: PMC6400987 DOI: 10.3389/fncel.2019.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Hearing is an extremely delicate sense that is particularly vulnerable to insults from environment, including drugs and noise. Unsurprisingly, mice of different genetic backgrounds show different susceptibility to hearing loss. In particular, CBA/CaJ (CBA) mice maintain relatively stable hearing over age while C57BL/6J (B6) mice show a steady decline of hearing, making them a popular model for early onset hearing loss. To reveal possible underlying mechanisms, we examined cellular differences in the cochlea of these two mouse strains. Although the ABR threshold and Wave I latency are comparable between them, B6 mice have a smaller Wave I amplitude. This difference is probably due to fewer spiral ganglion neurons found in B6 mice, as the number of ribbon synapses per inner hair cell (IHC) is comparable between the two mouse strains. Next, we compared the outer hair cell (OHC) function and we found OHCs from B6 mice are larger in size but the prestin density is similar among them, consistent with the finding that they share similar hearing thresholds. Lastly, we examined the IHC function and we found IHCs from B6 mice have a larger Ca2+ current, release more synaptic vesicles and recycle synaptic vesicles more quickly. Taken together, our results suggest that excessive exocytosis from IHCs in B6 mice may raise the probability of glutamate toxicity in ribbon synapses, which could accumulate over time and eventually lead to early onset hearing loss.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun-Ge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Geng-Lin Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
13
|
Lauer AM. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice. Front Neurosci 2017. [PMID: 28626386 PMCID: PMC5454393 DOI: 10.3389/fnins.2017.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have suggested a role of weakened medial olivocochlear (OC) efferent feedback in accelerated hearing loss and increased susceptibility to noise. The present study investigated the progression of hearing loss with age and exposure to a noisy environment in medial OC-deficient mice. Alpha9 nicotinic acetylcholine receptor knockout (α9KO) and wild types were screened for hearing loss using auditory brainstem responses. α9KO mice housed in a quiet environment did not show increased hearing loss compared to wild types in young adulthood and middle age. Challenging the medial OC system by housing in a noisy environment did not increase hearing loss in α9KO mice compared to wild types. ABR wave 1 amplitudes also did not show differences between α9KO mice and wild types. These data suggest that deficient medial OC feedback does not result in early onset of hearing loss.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of MedicineBaltimore, MD, United States
| |
Collapse
|
14
|
Kopelovich JC, Robinson BK, Soken H, Verhoeven KJ, Kirk JR, Goodman SS, Hansen MR. Acoustic Hearing After Murine Cochlear Implantation: Effects of Trauma and Implant Type. Ann Otol Rhinol Laryngol 2015; 124:931-9. [PMID: 26091845 PMCID: PMC7607423 DOI: 10.1177/0003489415592162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To model the contribution of implant material and insertion trauma on loss of acoustic hearing after cochlear implantation in an appropriate animal model. METHODS Sixty-five C57Bl/6J mice underwent unilateral implantation with implant grade materials: 2 implant grade silicones and a third uncoated platinum wire. A sham surgery group was included as a control. Serial auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAEs) were used to discern effects on hearing over 22 weeks. Histologic measurements of damage to the organ of Corti and spiral ganglion were correlated with degree of hearing loss and material type. RESULTS Organ of Corti damage correlated with rate of hearing loss soon after implantation (0-2 weeks) but not subsequently (2-22 weeks). Organ of Corti damage did not depend on implant type and was present even in sham surgery subjects when hearing was severely damaged. Spiral ganglia appeared unaffected. There was no evidence of an inflammatory or toxic effect of the materials beyond the site of implant insertion. CONCLUSIONS Hearing loss and cochlear damage appear to be related to insertion trauma, with minimal effect on delayed hearing loss caused by different materials. In the C57Bl/6J mouse model, the sensory epithelium appears to be the location of damage after cochlear implantation.
Collapse
Affiliation(s)
- Jonathan C Kopelovich
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Barbara K Robinson
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Hakan Soken
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Eskisehir Military Hospital, Eskisehir, Turkey
| | | | - Jonathon R Kirk
- Cochlear Ltd, Research and Technology Laboratories, Centennial, Colorado, USA
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Kim DK, Park SN, Park KH, Park CW, Yang KJ, Kim JD, Kim MS. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles. Drug Deliv 2014; 22:367-74. [PMID: 24447111 DOI: 10.3109/10717544.2013.879354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Local delivery systems for treatment of intractable inner ear disorders have been attempted by many investigators. OBJECTIVE To evaluate the permeability and safety of a drug delivery system for the inner ear using a poly(2-hydroxyethyl aspartamide) (PHEA) polymersome. MATERIALS AND METHODS One-month-old male C57/BL6 mice were used. We administered the same amount of the fluorescent dye, Nile red, into the middle ear in two forms: loaded in PHEA polymersomes (NP group) or diluted in ethanol (NR group). At 1 day after administration, we harvested the cochlea and counted visible red particles in the tissues of cochlea under confocal microscopy and compared the groups. In a safety evaluation, 1 week after the same surgery, we conducted hearing tests and histological evaluations of the bulla and cochlea, and compared the results with those of the sham operation and negative control groups. RESULTS In terms of permeability, the number of red particles in the organ of Corti was increased significantly in the NP group, and three subjects in the NP group showed uptake of red particles in inner hair cells. However, there was no statistically significant difference in the observations in the lateral wall or modiolus. In safety tests, the NP and sham-operation groups showed decreased DPOAE responses and mildly swollen middle ear mucosa, compared with the negative control group, which was thought to be the result of postoperative changes. CONCLUSIONS PHEA nanoparticles may have utility as a drug carrier into the inner ear in terms of both permeability and safety.
Collapse
Affiliation(s)
- Dong-Kee Kim
- Department of Otolaryngology-Head & Neck Surgery, The Catholic University of Korea, College of Medicine , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease. PLoS One 2013; 8:e70274. [PMID: 23936403 PMCID: PMC3731353 DOI: 10.1371/journal.pone.0070274] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD.
Collapse
|
17
|
Park SN, Back SA, Park KH, Seo JH, Noh HI, Akil O, Lustig LR, Yeo SW. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss. Auris Nasus Larynx 2012; 40:11-7. [PMID: 22364846 DOI: 10.1016/j.anl.2011.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/08/2011] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES This study was conducted to compare morphologic and audiologic changes after noise exposure in two different strains of mice (CBA and C57) and to create morphologically proven models of noise-induced hearing loss. METHODS Mice were exposed to white noise at 110-dB sound-pressure level for 60 minutes at the age of 1 month. Hearing thresholds and outer hair cell functions were evaluated by auditory brainstem response recordings and distortion product otoacoustic emission immediately and 22 days after noise exposure. Cochlear pathology was observed and compared by light and electron microscopic studies. RESULTS Both mice strains showed hearing threshold shifts with decreased outer hair cell function immediately and 22 days after noise exposure. More severe auditory brainstem response threshold shifts were observed in C57 mice compared with CBA mice at click, 8-, 16-, and 32-kHz tone-burst stimuli. A cochlear morphologic study demonstrated predominant outer hair cell degeneration at all turns of the cochlea; degeneration was most severe at the basal turn in both mice strains. A scanning electron microscopic study revealed more severe ultrastructural damage of outer hair cells at each turn of the cochlea in C57 mice. The lateral wall of the cochlea was more severely degenerated in CBA mice. CONCLUSION Both mice strains showed consistent, permanent noise-induced hearing loss with different susceptibilities and site vulnerabilities. Further studies to investigate the mechanism of the different degree and cochlear site vulnerability to noise exposure between two mice strains are necessary.
Collapse
Affiliation(s)
- Shi-Nae Park
- Department of Otolaryngology-Head & Neck Surgery, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|