1
|
Suzuki J, Hemmi T, Maekawa M, Watanabe M, Inada H, Ikushima H, Oishi T, Ikeda R, Honkura Y, Kagawa Y, Kawase T, Mano N, Owada Y, Osumi N, Katori Y. Fatty acid binding protein type 7 deficiency preserves auditory function in noise-exposed mice. Sci Rep 2023; 13:21494. [PMID: 38057582 PMCID: PMC10700610 DOI: 10.1038/s41598-023-48702-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Fatty acid-binding protein 7 (FABP7) is vital for uptake and trafficking of fatty acids in the nervous system. To investigate the involvement of FABP7 in noise-induced hearing loss (NIHL) pathogenesis, we used Fabp7 knockout (KO) mice generated via CRISPR/Cas9 in the C57BL/6 background. Initial auditory brainstem response (ABR) measurements were conducted at 9 weeks, followed by noise exposure at 10 weeks. Subsequent ABRs were performed 24 h later, with final measurements at 12 weeks. Inner ears were harvested 24 h after noise exposure for RNA sequencing and metabolic analyses. We found no significant differences in initial ABR measurements, but Fabp7 KO mice showed significantly lower thresholds in the final ABR measurements. Hair cell survival was also enhanced in Fabp7 KO mice. RNA sequencing revealed that genes associated with the electron transport chain were upregulated or less impaired in Fabp7 KO mice. Metabolomic analysis revealed various alterations, including decreased glutamate and aspartate in Fabp7 KO mice. In conclusion, FABP7 deficiency mitigates cochlear damage following noise exposure. This protective effect was supported by the changes in gene expression of the electron transport chain, and in several metabolites, including excitotoxic neurotransmitters. Our study highlights the potential therapeutic significance of targeting FABP7 in NIHL.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Tomotaka Hemmi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Ikushima
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuya Oishi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology, Head and Neck Surgery, Iwate Medical University School of Medicine, 19-1 Odori, Yahaba, Shiwa, 020-8505, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
2
|
Honkura Y, Suzuki J, Sakayori N, Inada H, Kawase T, Katori Y, Osumi N. Effects of enriched endogenous omega-3 fatty acids on age-related hearing loss in mice. BMC Res Notes 2019; 12:768. [PMID: 31771637 PMCID: PMC6878677 DOI: 10.1186/s13104-019-4809-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023] Open
Abstract
Objective Dietary intervention is a practical prevention strategy for age-related hearing loss (AHL). Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) may be effective in prevention of AHL due to their anti-inflammatory and tissue-protective functions. Age-related changes in the hearing function of wild-type and Fat-1 transgenic mice derived from the C57BL/6N strain, which can convert omega-6 PUFAs to n-3 PUFAs and consequently produce enriched endogenous n-3 PUFAs, were investigated to test the efficacy of n-3 PUFAs for AHL prevention. Results At 2 months, the baseline auditory brainstem response (ABR) thresholds were the same in Fat-1 and wild-type mice at 8–16 kHz but were significantly higher in Fat-1 mice at 4 and 32 kHz. In contrast, the ABR thresholds of Fat-1 mice were significantly lower at 10 months. Moreover, the ABR thresholds of Fat-1 mice at low-middle frequencies were significantly lower at 13 months (12 kHz). Body weights were significantly reduced in Fat-1 mice at 13 months, but not at 2, 10, and 16–17 months. In conclusion, enriched endogenous n-3 PUFAs produced due to the expression of the Fat-1 transgene partially alleviated AHL in male C57BL/6N mice.
Collapse
Affiliation(s)
- Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Nobuyuki Sakayori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, 1-1 Seiryou-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
3
|
Suzuki J, Inada H, Han C, Kim MJ, Kimura R, Takata Y, Honkura Y, Owada Y, Kawase T, Katori Y, Someya S, Osumi N. "Passenger gene" problem in transgenic C57BL/6 mice used in hearing research. Neurosci Res 2019; 158:6-15. [PMID: 31622631 DOI: 10.1016/j.neures.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Despite recent advances in genome engineering technologies, traditional transgenic mice generated on a mixed genetic background of C57BL/6 and 129/Sv mice remain widely used in age-related hearing loss (AHL) research, since C57BL/6 mice exhibit early onset and progression of AHL due to a mutation in cadherin 23-encoding gene (Cdh23753G>A). In these transgenic mice, backcrossing for more than 10 generations results in replacement of the donor background (129/Sv) with that of the recipient (C57BL/6), so that approximately 99.9% of genes are C57BL/6-derived and are considered congenic. However, the regions flanking the target gene may still be of 129/Sv origin, creating a so-called "passenger gene problem" where the normal 129/Sv-derived Cdh23753G allele can travel with the target gene. In this study, we investigated the role of fatty acid-binding protein 7 (Fabp7), which is important for cellular uptake and intracellular trafficking of fatty acids in the cochlea, using traditional Fabp7 knockout (KO) mice on the C57BL/6 background. We found that Fabp7 KO mice showed delayed AHL progression and milder cochlear degeneration. However, the genotype of the Cdh23 region flanking Fabp7 was still that of 129/Sv origin (Cdh23753GG). Our findings reveal the potential risk of contamination for traditional transgenic mice generated on the C57BL/6 background.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Chul Han
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA; Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yusuke Takata
- Department of Otolaryngology, Tokyo Women's Medical University Medical Center East, Arakawa, Tokyo 116-8567, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan; Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, University of Florida, Gainesville, FA 32610-0143, USA
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
4
|
Otaki Y, Watanabe T, Kubota I. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clin Chim Acta 2017; 474:44-53. [PMID: 28911997 DOI: 10.1016/j.cca.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
5
|
Fatty acid binding proteins and the nervous system: Their impact on mental conditions. Neurosci Res 2014; 102:47-55. [PMID: 25205626 DOI: 10.1016/j.neures.2014.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Abstract
The brain is rich in lipid and fatty molecules. In this review article, we focus on fatty acid binding proteins (Fabps) that bind to fatty acids such as arachidonic acid and docosahexianoic acid and transfer these lipid ligands within the cytoplasm. Among Fabp family molecules, Fabp3, Fabp5, and Fabp7 are specifically localized in neural stem/progenitor cells, neurons and glia in a cell-type specific manner. Quantitative trait locus analysis has revealed that Fabp7 is related with performance of prepulse inhibition (PPI) that is used as an endophenotype of psychiatric diseases such as schizophrenia. Fabp5 and Fabp7 play important roles on neurogenesis and differentially regulate acoustic startle response and PPI. However, other behavior performances including spatial memory, anxiety-like behavior, and diurnal changes in general activity were not different in mice deficient for Fabp7 or Fabp5. Considering the importance of fatty acids in neurogenesis, we would like to emphasize that lipid nutrition and its dynamism via Fabps play significant roles in mental conditions. This might provide a good example of how nutritional environment can affect psychiatric conditions at the molecular level.
Collapse
|