1
|
Vania CJ, Padova D, Ratnanather JT, Agrawal Y. The Inner Ear and Aging Brain: A Cross-Sectional Study of Vestibular Function and Morphometric Variations in the Entorhinal and Trans-Entorhinal Cortex. J Assoc Res Otolaryngol 2025; 26:171-184. [PMID: 39994083 PMCID: PMC11996744 DOI: 10.1007/s10162-025-00977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
PURPOSE While the vestibular system is crucial for balance, posture, and stable vision, emerging evidence connects vestibular loss in older adults to spatial cognitive deficits. However, the specific neural pathways remain unclear. This study examines morphometric changes in the entorhinal cortex (ERC) and trans-entorhinal cortex (TEC), key regions in the vestibular spatial cognitive network, with vestibular function. METHODS This cross-sectional study used T1-weighted MRI images and vestibular physiological data from 103 Baltimore Longitudinal Study of Aging participants (74 males and 29 females). Vestibular function was assessed through the cervical vestibular-evoked myogenic potential (cVEMP), ocular VEMP (oVEMP), and video head-impulse test (vHIT), examining both categorical presence/absence of responses and continuous measures (cVEMP amplitude, oVEMP amplitude, and VOR gain). Morphometric changes in the ERC and TEC were analyzed by examining surface expansions and contractions relative to average shapes. RESULTS Reduced saccular function correlated with surface expansion in the left ERC's pro-rhinal, right ERC's intermediate caudal and superior regions, and right TEC's sulcal region. The decreased utricular function was associated with surface contraction in the left lateral TEC, left ERC's anterior sulcal and trans-entorhinal regions, and surface expansion in the lateral region of the left ERC. Reduced canal function showed surface contraction in the right ERC's pro-rhinal and lateral regions and the right TEC's posterior sulcal and trans-entorhinal regions. CONCLUSION These findings highlight the intricate link between vestibular function and ERC/TEC morphology, emphasizing their role in spatial and cognitive abilities. Future research will assess if structural changes due to vestibular loss contribute to cognitive deficits in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Claire J Vania
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Dominic Padova
- Center for Imaging Science and Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Alizadeh N, Dehbashi F, Gholami E, Tarahomi P, Rashidy-Pour A, Vafaei AA, Raise-Abdullahi P. Stress and glucocorticoids impair inhibitory avoidance memory retrieval and extinction in male mice: the ameliorative effect of Ginkgo biloba extract. Behav Pharmacol 2025; 36:97-106. [PMID: 39560308 DOI: 10.1097/fbp.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Memory retrieval involves recalling previously consolidated information, while memory extinction refers to the gradual weakening of such memories after recall. Stress and glucocorticoids influence the retrieval and extinction of memory. This study employed a passive avoidance task to examine the impact of acute mild stress and equivalent doses of exogenous corticosterone on fear memory retrieval and extinction in male mice. Subsequently, we investigated the potential therapeutic effects of Ginkgo biloba extract, EGb 761, on memory impairments induced by stress and corticosterone. Corticosterone was administered systemically 30 min before memory reactivation to model glucocorticoid activity during retrieval. Mild acute stress, like the stress levels typically experienced before an exam, was induced through 20-min restraint immediately before reactivation in separate groups. EGb 761 was injected 30 min before corticosterone or stress exposure. Results demonstrated that both corticosterone and acute stress impaired context-specific fear memory retrieval and enhanced subsequent extinction. Pretreatment with EGb 761 inhibited these impairing effects of acute stress and corticosterone on avoidance memory retrieval and extinction. Our findings suggest that the glucocorticoid system and acute stress markedly influence avoidance memory retrieval and extinction. Ginkgo biloba may possess therapeutic and memory-enhancing effects, particularly in stressful situations.
Collapse
Affiliation(s)
| | | | | | | | - Ali Rashidy-Pour
- Research Center of Physiology
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
3
|
Kim EW, Kim KY, Kim E. Impact of diabetes on the progression of Alzheimer's disease via trajectories of amyloid-tau-neurodegeneration (ATN) biomarkers. J Nutr Health Aging 2025; 29:100444. [PMID: 39662155 DOI: 10.1016/j.jnha.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the accumulation of abnormal proteins, such as β-amyloid and tau, in the brain, which precedes cognitive impairment. Although diabetes mellitus (DM) is a well-established risk factor for AD, few studies have investigated how the presence of DM affects the sequential pathogenesis of AD, specifically within the amyloid-tau-neurodegeneration (ATN) and cognition framework. OBJECTIVES This study aims to investigate the trajectories of ATN biomarkers in relation to the presence of DM in the preclinical and prodromal stages of AD. DESIGN Participants with normal cognition (CN) or mild cognitive impairment (MCI) at baseline were included. Subjects were followed for 12-192 months, with neuroimaging and cognitive assessments conducted at every 12 or 24 months. SETTING This study utilized data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. PARTICIPANTS A total of 603 participants aged 55-90 years were included, comprising 284 CN (25 with DM, 259 without DM) and 319 MCI (39 with DM, 280 without DM) individuals. MEASUREMENTS ATN biomarkers were identified using florbetapir positron emission tomography (PET), flortaucipir PET, and magnetic resonance imaging (MRI), respectively. Cognition was assessed using the Clinical Dementia Rating-Sum of Boxes (CDR-SB) and Mini-Mental State Examination (MMSE). Moderation analysis was conducted to investigate the effect of DM on the association between ATN biomarkers of AD. RESULTS Elevated amyloid standardized uptake value ratios (SUVRs) were associated with increased tau levels in the hippocampus, and this association was significantly enhanced by the presence of DM in MCI participants (p = 0.021). DM also strengthened the association between increased tau SUVR levels and neurodegeneration (indicated by decreased entorhinal cortical volumes; p = 0.005) in those with MCI. Furthermore, DM enhanced the association of decreased entorhinal (p = 0.012) and middle temporal cortex (p = 0.031) volumes with increased (worsened) CDR-SB scores in MCI participants. However, DM did not predict significant longitudinal changes in ATN pathology or cognitive decline in CN participants. CONCLUSIONS Our study suggests that DM may increase the risk of AD by accelerating each step of the A-T-N cascade in the prodromal stage of AD, underscoring the importance of DM management in preventing the MCI conversion to AD.
Collapse
Affiliation(s)
- Eun Woo Kim
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Nursing, Seoyeong University, Gwangju 61268, Republic of Korea
| | - Keun You Kim
- Department of Psychiatry, Seoul Metropolitan Government Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea; Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eosu Kim
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Psychiatry, Laboratory for Alzheimer's Molecular Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Metabolism-Dementia Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Jahangir M, Shah SM, Zhou JS, Lang B, Wang XP. Parvalbumin interneurons in the anterior cingulate cortex exhibit distinct processing patterns for fear and memory in rats. Heliyon 2025; 11:e41218. [PMID: 39839509 PMCID: PMC11748682 DOI: 10.1016/j.heliyon.2024.e41218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats. Behavioral tests showed significantly improved spatial memory (p = 0.01) in ACC-PV-KD rats compared to control and sham groups, whereas novel object recognition memory was reduced significantly (p = 0.001). The PV knockdown group also showed a longer freezing duration (p = 0.001) and considerably fewer freezing responses (p = 0.005) in the fear conditioning chamber. Additionally, the PV knockdown rats spent significantly (p = 0.006) more time in the periphery and less time in the center of the open field box, indicating anxiety-like behavior. In conclusion, Parvalbumin expressing interneurons in ACC are functionally diverse and critical for regulating fear response, recognition memory and spatial memory. Completely elucidating the underlying mechanism and circuitry will open up therapeutic choices for associated disorders.
Collapse
Affiliation(s)
- Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - S. Mudasser Shah
- Institute of Developmental Psychology, School of Psychology, Beijing Normal University, Beijing, China
| | - Jian-Song Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
5
|
Li Y, Ganesan K, Smid CR, Thompson A, Cañigueral R, Royer J, Bernhardt B, Steinbeis N. Structural brain basis of latent factors of executive functions in childhood. Dev Cogn Neurosci 2025; 71:101504. [PMID: 39787640 PMCID: PMC11780108 DOI: 10.1016/j.dcn.2024.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Executive functions can be classified into processes of inhibition, working memory and shifting, which together support flexible and goal-directed behaviour and are crucial for both current and later-life outcomes. A large body of literature has identified distinct brain regions critical to performing each of these functions. These findings are however predicated on a piecemeal and single-task approach. It is therefore unclear to what extent these associations reflect task-specific features or actual constructs of executive functions. Here, in a sample of 141 children aged 6-13 years, we administered a battery of 9 executive function tasks, derived latent factors of inhibition, working memory, and shifting and examined their associations with markers of brain structure (whole-brain cortical thickness). We identified associations between working memory and cortical thickness of right superior frontal and left medial temporal lobe as well as associations between shifting and cortical thickness in bilateral frontal and occipital lobes and left medial and anterior temporal lobes. While working memory and shifting shared a cortical substrate in right superior frontal cortex as well as left middle and inferior temporal regions no significant brain clusters were associated with inhibition. We discuss these findings in relation to theories of executive functions and their development.
Collapse
Affiliation(s)
- Yongjing Li
- Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK; Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Keertana Ganesan
- Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK
| | - Claire R Smid
- Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK
| | - Abigail Thompson
- Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK
| | - Roser Cañigueral
- Division of Psychology and Language Sciences, UCL, London WC1H 0AP, UK
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | - Boris Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | | |
Collapse
|
6
|
Lyu J, Li J, Ding R, Zhao H, Liu C, Qin S. Emotional salience network involved in constructing two-dimensional fear space in humans. Neurobiol Stress 2025; 34:100677. [PMID: 39649148 PMCID: PMC11621499 DOI: 10.1016/j.ynstr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/20/2024] [Accepted: 10/02/2024] [Indexed: 12/10/2024] Open
Abstract
Fear learning is pivotal for organismal survival, ensuring the ability to avoid potential threats through learning based on experiencing minimal fear information. In reality, fear learning requires to form a structured representation of fear experiences from multiple dimensions in order to support flexible use in ever-changing environment. Yet, the underlying neural mechanisms of constructing dimensional fear space remain elusive. Here we set up an innovative approach with two-dimensional fear learning, by utilizing the probability (uncertainty) and subjective pain intensity of threatening mild electric shock with five levels of each dimension. Behaviorally, individuals constructed a two-dimensional fear space after learning phase, as evidenced by significant changes in participant's fearful ratings for each cue associated with a five-by-five grid after (relative to before) learning phase. Analysis of neuroimaging data revealed that the medial temporal lobe, in conjunction with the amygdala, the insula, the anterior cingulate cortex (ACC), the hippocampus, and the dorsolateral prefrontal cortex (dlPFC), collectively contribute to the construction of a two-dimensional fear space consisting of uncertainty and intensity. Activation in the parahippocampal gyrus, insula, and dlPFC was associated with mental navigation within two-dimensional fear space, whereas the engagement of insula, ACC, amygdala, the hippocampus, the dlPFC was associated with a unified fearful scoring cross uncertainty and intensity dimensions after fear learning. Our findings suggest a neurocognitive model through which emotional salience network underlies the construction of a structured representation of fear experiences from multiple dimensions.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Jiayue Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Rui Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG / Mc Govern Institute for Brain Research, Beijing Normal University, China
- Beijing Key Lab of Brain Imaging and Connectomics, Beijing Normal University, China
| |
Collapse
|
7
|
Chen X, Juarez A, Mason S, Kobayashi S, Baker SL, Harrison TM, Landau SM, Jagust WJ. Longitudinal relationships between Aβ and tau to executive function and memory in cognitively normal older adults. Neurobiol Aging 2025; 145:32-41. [PMID: 39490245 DOI: 10.1016/j.neurobiolaging.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
The early accumulation of AD pathology such as Aβ and tau in cognitively normal older people is predictive of cognitive decline, but it has been difficult to dissociate the cognitive effects of these two proteins. Early Aβ and tau target distinct brain regions that have different functional roles. Here, we assessed specific longitudinal pathology-cognition associations in seventy-six cognitively normal older adults from the Berkeley Aging Cohort Study who underwent longitudinal PiB PET, FTP PET, and cognitive assessments. Using linear mixed-effects models to estimate longitudinal changes and residual approach to characterizing cognitive domain-specific associations, we found that Aβ accumulation, especially in frontal/parietal regions, was associated with faster decline in executive function, not memory, whereas tau accumulation, especially in left entorhinal/parahippocampal regions, was associated with faster decline in memory, not executive function, supporting an "Aβ-executive function, tau-memory" double-dissociation in cognitively normal older people. These specific relationships between accumulating pathology and domain-specific cognitive decline may be due to the particular vulnerabilities of the frontal-parietal executive network to Aβ and temporal memory network to tau.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Alexis Juarez
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Mason
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sarah Kobayashi
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Theresa M Harrison
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan M Landau
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA
| | - William J Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Williams CM, Weissman DG, Mallard TT, McLaughlin KA, Harden KP. Brain structures with stronger genetic associations are not less associated with family- and state-level economic contexts. Dev Cogn Neurosci 2024; 70:101455. [PMID: 39368282 PMCID: PMC11490677 DOI: 10.1016/j.dcn.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
We investigate whether neural, cognitive, and psychopathology phenotypes that are more strongly related to genetic differences are less strongly associated with family- and state-level economic contexts (N = 5374 individuals with 1KG-EUR-like genotypes with 870 twins, from the Adolescent Behavior and Cognitive Development study). We estimated the twin- and SNP-based heritability of each phenotype, as well as its association with an educational attainment polygenic index (EA PGI). We further examined associations with family socioeconomic status (SES) and tested whether SES-related differences were moderated by state cost of living and social safety net programs (Medicaid expansion and cash assistance). SES was broadly associated with cognition, psychopathology, brain volumes, and cortical surface areas, even after controlling for the EA PGI. Brain phenotypes that were more heritable or more strongly associated with the EA PGI were not, overall, less related to SES, nor were SES-related differences in these phenotypes less moderated by macroeconomic context and policy. Informing a long-running theoretical debate, and contra to widespread lay beliefs, results suggest that aspects of child brain development that are more strongly related to genetic differences are not, in general, less associated with socioeconomic contexts and policies.
Collapse
Affiliation(s)
- Camille M Williams
- Department of Psychology and Population Research Center, University of Texas at Austin, USA.
| | - David G Weissman
- Department of Psychology, California State University, Dominguez Hills, USA; Department of Psychology, Harvard University, California State University, Dominguez Hills, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | | | - K Paige Harden
- Department of Psychology and Population Research Center, University of Texas at Austin, USA
| |
Collapse
|
9
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
10
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Salimi M, Nazari M, Shahsavar P, Dehghan S, Javan M, Mirnajafi‐Zadeh J, Raoufy MR. Olfactory bulb stimulation mitigates Alzheimer's-like disease progression. CNS Neurosci Ther 2024; 30:e70056. [PMID: 39404073 PMCID: PMC11474698 DOI: 10.1111/cns.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has demonstrated potential in mitigating Alzheimer's disease (AD). However, the invasive nature of DBS presents challenges for its application. The olfactory bulb (OB), showing early AD-related changes and extensive connections with memory regions, offers an attractive entry point for intervention, potentially restoring normal activity in deteriorating memory circuits. AIMS Our study examined the impact of electrically stimulating the OB on working memory as well as pathological and electrophysiological alterations in the OB, medial prefrontal cortex, hippocampus, and entorhinal cortex in amyloid beta (Aβ) AD model rats. METHODS Male Wistar rats underwent surgery for electrode implantation in brain regions, inducing Alzheimer's-like disease. Bilateral olfactory bulb (OB) electrical stimulation was performed for 1 hour daily to the OB of stimulation group animals for 18 consecutive days, followed by the evaluations of histological, behavioral, and local field potential signal processing. RESULTS OB stimulation counteracted Aβ plaque accumulation and prevented AD-induced working memory impairments. Furthermore, it prompted an increase in power across diverse frequency bands and enhanced functional connectivity, particularly in the gamma band, within the investigated regions during a working memory task. CONCLUSION This preclinical investigation highlights the potential of olfactory pathway-based brain stimulation to modulate the activity of deep-seated memory networks for AD treatment. Importantly, the accessibility of this pathway via the nasal cavity lays the groundwork for the development of minimally invasive approaches targeting the olfactory pathway for brain modulation.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- The Danish Research Institute of Translational Neuroscience, DANDRITEAarhus UniversityAarhusDenmark
| | - Payam Shahsavar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research CenterIran University of Medical SciencesTehranIran
- The Five Senses Institute, Eye Research CenterRassoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Fenton L, Salminen LE, Lim AC, Weissberger GH, Nguyen AL, Axelrod J, Noriega-Makarskyy D, Yassine H, Mosqueda L, Han SD. Lower entorhinal cortex thickness is associated with greater financial exploitation vulnerability in cognitively unimpaired older adults. Cereb Cortex 2024; 34:bhae360. [PMID: 39227308 PMCID: PMC11371417 DOI: 10.1093/cercor/bhae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
Research suggests that increased financial exploitation vulnerability due to declining decision making may be an early behavioral manifestation of brain changes occurring in preclinical Alzheimer's disease. One of the earliest documented brain changes during the preclinical phase is neurodegeneration in the entorhinal cortex. The objective of the current study was to examine the association between a measure of financial exploitation vulnerability and thickness in the entorhinal cortex in 97 cognitively unimpaired older adults. We also investigated financial exploitation vulnerability associations with frontal regions typically associated with decision making (e.g. dorsolateral and ventromedial prefrontal cortices), and additionally examined the interactive effect of age and cortical thickness on financial exploitation vulnerability. Results showed that greater financial exploitation vulnerability was associated with significantly lower entorhinal cortex thickness. There was a significant interaction between age and entorhinal cortex thickness on financial exploitation vulnerability, whereby lower entorhinal cortex thickness was associated with greater financial exploitation vulnerability in older participants. When the group was divided by age using a median split (70+ and <70 years old), lower entorhinal cortex thickness was associated with greater vulnerability only in the older group. Collectively, these findings suggest that financial exploitation vulnerability may serve as a behavioral manifestation of entorhinal cortex thinning, a phenomenon observed in suboptimal brain aging and preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Fenton
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, United States
| | - Lauren E Salminen
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, CA 90033, United States
| | - Aaron C Lim
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, United States
| | - Gali H Weissberger
- The Department of Social and Health Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Annie L Nguyen
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA 92093, United States
| | - Jenna Axelrod
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, United States
| | - Daisy Noriega-Makarskyy
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, United States
| | - Hussein Yassine
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA 90033, United States
| | - Laura Mosqueda
- Department of Family Medicine, Keck School of Medicine of USC, Alhambra, CA 91803, United States
| | - S Duke Han
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089, United States
| |
Collapse
|
13
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Garduño BM, Hanni P, Hays C, Cogram P, Insel N, Xu X. How the forebrain transitions to adulthood: developmental plasticity markers in a long-lived rodent reveal region diversity and the uniqueness of adolescence. Front Neurosci 2024; 18:1365737. [PMID: 38456144 PMCID: PMC10917993 DOI: 10.3389/fnins.2024.1365737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Maturation of the forebrain involves transitions from higher to lower levels of synaptic plasticity. The timecourse of these changes likely differs between regions, with the stabilization of some networks scaffolding the development of others. To gain better insight into neuroplasticity changes associated with maturation to adulthood, we examined the distribution of two molecular markers for developmental plasticity. We conducted the examination on male and female degus (Octodon degus), a rodent species with a relatively long developmental timecourse that offers a promising model for studying both development and age-related neuropathology. Immunofluorescent staining was used to measure perineuronal nets (PNNs), an extracellular matrix structure that emerges during the closure of critical plasticity periods, as well as microglia, resident immune cells that play a crucial role in synapse remodeling during development. PNNs (putatively restricting plasticity) were found to be higher in non-juvenile (>3 month) degus, while levels of microglia (putatively mediating plasticity) decreased across ages more gradually, and with varying timecourses between regions. Degus also showed notable variation in PNN levels between cortical layers and hippocampal subdivisions that have not been previously reported in other species. These results offer a glimpse into neuroplasticity changes occurring during degu maturation and highlight adolescence as a unique phase of neuroplasticity, in which PNNs have been established but microglia remain relatively high.
Collapse
Affiliation(s)
- B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Patrick Hanni
- Department of Psychology, University of Montana, Missoula, MT, United States
| | - Chelsea Hays
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Nathan Insel
- Department of Psychology, University of Montana, Missoula, MT, United States
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Yu W, Li Y, Zhong F, Deng Z, Wu J, Yu W, Lü Y. Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing. Cell Mol Neurobiol 2024; 44:20. [PMID: 38345650 PMCID: PMC10861702 DOI: 10.1007/s10571-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Zhangjing Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
16
|
Xu H, Li J, Huang H, Yin B, Li DD. Abnormal developmental of structural covariance networks in young adults with heavy cannabis use: a 3-year follow-up study. Transl Psychiatry 2024; 14:45. [PMID: 38245512 PMCID: PMC10799944 DOI: 10.1038/s41398-024-02764-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore, these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, 325007, China.
| | - Jiahao Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
17
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
18
|
Korologou-Linden R, Schuurmans IK, Cecil CAM, White T, Banaschewski T, Bokde ALW, Desrivières S, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka M, Walter H, Winterer J, Whelan R, Schumann G, Howe LD, Ben-Shlomo Y, Davies NM, Anderson EL. The bidirectional effects between cognitive ability and brain morphology: A life course Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.17.23297145. [PMID: 38014064 PMCID: PMC10680890 DOI: 10.1101/2023.11.17.23297145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Little is understood about the dynamic interplay between brain morphology and cognitive ability across the life course. Additionally, most existing research has focused on global morphology measures such as estimated total intracranial volume, mean thickness, and total surface area. Methods Mendelian randomization was used to estimate the bidirectional effects between cognitive ability, global and regional measures of cortical thickness and surface area, estimated total intracranial volume, total white matter, and the volume of subcortical structures (N=37,864). Analyses were stratified for developmental periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years). Results The earliest effects were observed in childhood and early adulthood in the frontoparietal lobes. A bidirectional relationship was identified between higher cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex and a larger surface area in the caudal middle frontal cortex and temporal pole were associated with greater cognitive ability. Contrary, a thicker temporal pole was associated with lower cognitive ability. Discussion Stable effects of cognitive ability on brain morphology across the life course suggests that childhood is potentially an important window for intervention.
Collapse
|
19
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
20
|
Yang X, Chen Q, Jian T, Du H, Jin W, Liang M, Wang R, Chen X, Liao X, Qin H. Optrode recording of an entorhinal-cortical circuit in freely moving mice. BIOMEDICAL OPTICS EXPRESS 2023; 14:1911-1922. [PMID: 37206131 PMCID: PMC10191667 DOI: 10.1364/boe.487191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/21/2023]
Abstract
The deep layers of medial entorhinal cortex (MEC) are considered a crucial station for spatial cognition and memory. The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive projections to brain cortical areas. However, the functional heterogeneity of these efferent neurons in MECVa is poorly understood, due to the difficulty of performing single-neuron activity recording from the narrow band of cell population while the animals are behaving. In the current study, we combined multi-electrode electrophysiological recording and optical stimulation to record cortical-projecting MECVa neurons at single-neuron resolution in freely moving mice. First, injection of a viral Cre-LoxP system was used to express channelrhodopsin-2 specifically in MECVa neurons that project to the medial part of the secondary visual cortex (V2M-projecting MECVa neurons). Then, a lightweight, self-made optrode was implanted into MECVa to identify the V2M-projecting MECVa neurons and to enable single-neuron activity recordings in mice performing the open field test and 8-arm radial maze. Our results demonstrate that optrode approach is an accessible and reliable method for single-neuron recording of V2M-projecting MECVa neurons in freely moving mice, paving the way for future circuit studies designed to characterize the activity of MECVa neurons during specific tasks.
Collapse
Affiliation(s)
- Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
Hamza EA, Moustafa AA, Tindle R, Karki R, Nalla S, Hamid MS, El Haj M. Effect of APOE4 Allele and Gender on the Rate of Atrophy in the Hippocampus, Entorhinal Cortex, and Fusiform Gyrus in Alzheimer's Disease. Curr Alzheimer Res 2023; 19:CAR-EPUB-130079. [PMID: 36892120 DOI: 10.2174/1567205020666230309113749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The hippocampus, entorhinal cortex, and fusiform gyrus are brain areas that deteriorate during early-stage Alzheimer's disease (AD). The ApoE4 allele has been identified as a risk factor for AD development, is linked to an increase in the aggregation of amyloid ß (Aß) plaques in the brain, and is responsible for atrophy of the hippocampal area. However, to our knowledge, the rate of deterioration over time in individuals with AD, with or without the ApoE4 allele, has not been investigated. METHOD In this study, we, for the first time, analyze atrophy in these brain structures in AD patients with and without the ApoE4 using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. RESULTS It was found that the rate of decrease in the volume of these brain areas over 12 months was related to the presence of ApoE4. Further, we found that neural atrophy was not different for female and male patients, unlike prior studies, suggesting that the presence of ApoE4 is not linked to the gender difference in AD. CONCLUSION Our results confirm and extend previous findings, showing that the ApoE4 allele gradually impacts brain regions impacted by AD.
Collapse
Affiliation(s)
- Eid Abo Hamza
- Faculty of Education, Department of Mental Health, Tanta University, Egypt
- College of Education, Humanities & Social Sciences, Al Ain University, UAE
| | - Ahmed A Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Richard Tindle
- Department of Psychology, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Rasu Karki
- Department of Psychology, Western Sydney University, Penrith, NSW, 2214, Australia
| | - Shahed Nalla
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | | | - Mohamad El Haj
- Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Nantes Université, Univ. Angers., Nantes, F-44000, France
- Clinical Gerontology Department, CHU Nantes, Bd Jacques Monod,Nantes, F44093, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
22
|
Hollenbenders Y, Pobiruchin M, Reichenbach A. Two Routes to Alzheimer's Disease Based on Differential Structural Changes in Key Brain Regions. J Alzheimers Dis 2023; 92:1399-1412. [PMID: 36911937 DOI: 10.3233/jad-221061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder with homogenous disease patterns. Neuropathological changes precede symptoms by up to two decades making neuroimaging biomarkers a prime candidate for early diagnosis, prognosis, and patient stratification. OBJECTIVE The goal of the study was to discern intermediate AD stages and their precursors based on neuroanatomical features for stratifying patients on their progression through different stages. METHODS Data include grey matter features from 14 brain regions extracted from longitudinal structural MRI and cognitive data obtained from 1,017 healthy controls and AD patients of ADNI. AD progression was modeled with a Hidden Markov Model, whose hidden states signify disease stages derived from the neuroanatomical data. To tie the progression in brain atrophy to a behavioral marker, we analyzed the ADAS-cog sub-scores in the stages. RESULTS The optimal model consists of eight states with differentiable neuroanatomical features, forming two routes crossing once at a very early point and merging at the final state. The cortical route is characterized by early and sustained atrophy in cortical regions. The limbic route is characterized by early decrease in limbic regions. Cognitive differences between the two routes are most noticeable in the memory domain with subjects from the limbic route experiencing stronger memory impairments. CONCLUSION Our findings corroborate that more than one pattern of grey matter deterioration with several discernable stages can be identified in the progression of AD. These neuroanatomical subtypes are behaviorally meaningful and provide a door into early diagnosis of AD and prognosis of the disease's progression.
Collapse
Affiliation(s)
- Yasmin Hollenbenders
- Medical Faculty Heidelberg, Heidelberg University, Germany.,Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,Center for Machine Learning, Heilbronn University of Applied Sciences, Germany
| | - Monika Pobiruchin
- Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,GECKO Institute for Medicine, Informatics and Economics, Heilbronn University of Applied Sciences, Germany
| | - Alexandra Reichenbach
- Medical Faculty Heidelberg, Heidelberg University, Germany.,Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,Center for Machine Learning, Heilbronn University of Applied Sciences, Germany
| | | |
Collapse
|
23
|
Spets DS, Slotnick SD. Entorhinal Cortex Functional Connectivity during Item Long-Term Memory and the Role of Sex. Brain Sci 2023; 13:brainsci13030446. [PMID: 36979256 PMCID: PMC10046190 DOI: 10.3390/brainsci13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A growing body of literature shows there are sex differences in the patterns of brain activity during long-term memory. However, there is a paucity of evidence on sex differences in functional brain connectivity. We previously identified sex differences in the patterns of connections with the hippocampus, a medial temporal lobe (MTL) subregion, during spatial long-term memory. The perirhinal/entorhinal cortex, another MTL subregion, plays a critical role in item memory. In the current functional magnetic resonance imaging (fMRI) study, we investigated perirhinal/entorhinal functional connectivity and the role of sex during item memory. During the study phase, abstract shapes were presented to the left or right of fixation. During the test phase, abstract shapes were presented at fixation, and the participants classified each item as previously “old” or “new”. An entorhinal region of interest (ROI) was identified by contrasting item memory hits and misses. This ROI was connected to regions generally associated with visual memory, including the right inferior frontal gyrus (IFG) and visual-processing regions (the bilateral V1, bilateral cuneus, and left lingual gyrus). Males produced greater connectivity than females with the right IFG/insula and the right V1/bilateral cuneus. Broadly, these results contribute to a growing body of literature supporting sex differences in the brain.
Collapse
Affiliation(s)
- Dylan S. Spets
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott D. Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence:
| |
Collapse
|
24
|
Wang C, Shen D, Hu Y, Chen J, Liu J, Huang Y, Yu X, Chu H, Zhang C, Yin L, Liu Y, Ma H. Selective Targeting of Class I HDAC Reduces Microglial Inflammation in the Entorhinal Cortex of Young APP/PS1 Mice. Int J Mol Sci 2023; 24:4805. [PMID: 36902234 PMCID: PMC10003411 DOI: 10.3390/ijms24054805] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-β (Aβ) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aβ deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1β and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Di Shen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Hu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jie Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jingyun Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yufei Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xuebin Yu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiying Chu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Liangwei Yin
- Department of Oncology, Dalian Municipal Central Hospital, Dalian 116089, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116089, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
25
|
Zuo L, Dong Y, Hu Y, Xiang X, Liu T, Zhou J, Shi J, Wang Y. Clinical Features, Brain-Structure Changes, and Cognitive Impairment in Basal Ganglia Infarcts: A Pilot Study. Neuropsychiatr Dis Treat 2023; 19:1171-1180. [PMID: 37197329 PMCID: PMC10184853 DOI: 10.2147/ndt.s384726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Stroke has been considered to raise the risk of dementia in several studies, but the relationship between brain structural changes and poststroke cognitive impairment (PSCI) is unclear. Methods In this study, 23 PSCI patients with basal ganglia infarcts after 2 weeks and 29 age-matched controls underwent magnetic resonance imaging measuring cortical thickness and volume changes, as well as neuropsychological tests. CI was derived from a performance score <1.5 standard deviations for normally distributed scores. We compared Z scores in different cognitive domains and cortical thickness and volumes in two groups. Multiple linear regressions were used to investigate the relationship between cortical thickness and volumes and neuropsychological tests. Results A majority of PSCI patients were in their 50s (55.19±8.52 years). PSCI patients exhibited significantly decreased Z scores in multiple domains, such as memory, language, visuomotor speed, and attention/executive function. The volumes of the middle posterior corpus callosum, middle anterior corpus callosum, and hippocampus in PSCI patients were markedly lower than controls. The thickness of the right inferior temporal cortex and insula were significantly smaller than controls. It found that the reduced right hippocampus was related to executive dysfunction. Hippocampus dysfunction may be involved in language impairment (p<0.05) in PSCI patients with basal ganglia infarcts. Conclusion These findings demonstrated that brain structure changed after ischemic stroke, and different gray-matter structural changes could lead to specific cognitive decline in PSCI patients with basal ganglia infarcts. Atrophy of the right hippocampus potentially serves as an imaging marker of early executive function of PSCI.
Collapse
Affiliation(s)
- Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - YanHong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, 117597Singapore
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xianglong Xiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People’s Republic of China
| | - Jianxin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Yongjun Wang, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070, People’s Republic of China, Tel +86-010-59978350, Fax +86-010-59973383, Email
| |
Collapse
|
26
|
Liu JP, Li YY, Yang KZ, Shi SF, Gong Y, Tao Z, Tong Y, Sun J, Yue BN, Li XL, Gao XY, Liu QG, Xu M. Electroacupuncture and manual acupuncture at LR3 and ST36 have attenuating effects on hypertension and subsequent cognitive dysfunction in spontaneously hypertensive rats: A preliminary resting-state functional magnetic resonance imaging study. Front Neurosci 2023; 17:1129688. [PMID: 36968479 PMCID: PMC10033598 DOI: 10.3389/fnins.2023.1129688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Chronic hypertension may have a contributory role toward cognitive impairment. Acupuncture exerts protective effects on cognitive functions while controlling the blood pressure. However, the neural mechanism underlying the dual attenuating effect of acupuncture remains unclear. In this study, we investigated the effects of electroacupuncture (EA) and manual acupuncture (MA) on the functional activity of the brain regions of spontaneously hypertensive rats (SHRs) by through resting-state functional magnetic resonance imaging (rs-fMRI). We also evaluated the differences in these functional activities between the EA and MA groups. Methods We randomly assigned 30 SHRs into the EA, MA, and model (SHR) groups. Wistar Kyoto rats (n = 10) were used as normal control (WKY). The interventions were administered once every alternate day for 12 weeks. The systolic blood pressure of all rats was recorded every 2 weeks until the end of the intervention. After the intervention, rs-fMRI scanning was performed to access the whole brain data of rats randomly selected from each group evenly. The amplitude of low frequency fluctuation (ALFF) analysis, regional homogeneity (ReHo) analysis, and functional connectivity (FC) analysis were also conducted. The Morris water maze (MWM) test was conducted to evaluate the learning and memory of the rats. Hematoxylin-eosin staining and Nissl staining were performed to observe histopathological changes in the key brain regions. Results We demonstrated that, when compared with the SHR group, the EA and MA groups had significantly lower blood pressure and better performance for behavioral test indices, and that the effect of EA was better than that of MA. ALFF and ReHo analyses revealed enhancement of the neuronal activity of some functionally impaired brain areas in the EA and MA groups. The main callback brain regions included the hypothalamus, entorhinal cortex, brain stem, prelimbic cortex, cingulate cortex, corpus callosum, and cerebellum. The FC analysis demonstrated that EA and MA enhanced the functional connectivity between the seeds and brain regions such as the brain stem, entorhinal cortex, hippocampus, prelimbic cortex, and cerebellum. The pathological test of the entorhinal cortex also verified the protective effect of acupuncture on the neuronal functional activity. Discussion Our findings suggested that EA and MA exhibited attenuating effects on hypertension and cognitive dysfunction by enhancing the functional activities in the corresponding brain regions. Moreover, EA activated more callback brain regions and functional connectivity than MA, which may explain why the effect of EA was better than that of MA.
Collapse
Affiliation(s)
- Ji-peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yin-yin Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-zhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-feng Shi
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuang Tao
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yi Tong
- Beijing Tong Ren Tang International Natural-Pharm Co., Ltd., Beijing, China
| | - Jiao Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-lu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-yu Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qing-guo Liu,
| | - Meng Xu
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Meng Xu,
| |
Collapse
|
27
|
Distinct multivariate structural brain profiles are related to variations in short- and long-delay memory consolidation across children and young adults. Dev Cogn Neurosci 2022; 59:101192. [PMID: 36566622 PMCID: PMC9803921 DOI: 10.1016/j.dcn.2022.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
From early to middle childhood, brain regions that underlie memory consolidation undergo profound maturational changes. However, there is little empirical investigation that directly relates age-related differences in brain structural measures to memory consolidation processes. The present study examined memory consolidation of intentionally studied object-location associations after one night of sleep (short delay) and after two weeks (long delay) in normally developing 5-to-7-year-old children (n = 50) and young adults (n = 39). Behavioural differences in memory retention rate were related to structural brain measures. Our results showed that children, in comparison to young adults, retained correctly learnt object-location associations less robustly over short and long delay. Moreover, using partial least squares correlation method, a unique multivariate profile comprised of specific neocortical (prefrontal, parietal, and occipital), cerebellar, and hippocampal head and subfield structures in the body was found to be associated with variation in short-delay memory retention. A different multivariate profile comprised of a reduced set of brain structures, mainly consisting of neocortical (prefrontal, parietal, and occipital), hippocampal head, and selective hippocampal subfield structures (CA1-2 and subiculum) was associated with variation in long-delay memory retention. Taken together, the results suggest that multivariate structural pattern of unique sets of brain regions are related to variations in short- and long-delay memory consolidation across children and young adults.
Collapse
|
28
|
Martin L, Jaime K, Ramos F, Robles F. Bio-inspired cognitive architecture of episodic memory. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Rodríguez-Flores TC, Palomo-Briones GA, Robles F, Ramos F. Proposal for a computational model of incentive memory. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Sleep Fosters Odor Recognition in Children with Attention Deficit Hyperactivity Disorder but Not in Typically Developing Children. Brain Sci 2022; 12:brainsci12091182. [PMID: 36138918 PMCID: PMC9496889 DOI: 10.3390/brainsci12091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Prior experience represents a prerequisite for memory consolidation across various memory systems. In the context of olfaction, sleep was found to enhance the consolidation of odors in adults but not in typically developing children (TDC), likely due to differences in pre-experience. Interestingly, unmedicated children with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition related to dopamine dysfunction, showed lower perceptive thresholds for odors, potentially allowing for more odor experience compared to TDC. We investigated sleep-associated odor memory consolidation in ADHD. Twenty-eight children with ADHD and thirty age-matched TDC participated in an incidental odor recognition task. For the sleep groups (ADHD: n = 14, TDC: n = 15), the encoding of 10 target odorants took place in the evening, and the retention of odorants was tested with 10 target odorants and 10 distractor odorants the next morning. In the wake groups (ADHD: n = 14, TDC: n = 15), the time schedule was reversed. Odor memory consolidation was superior in the ADHD sleep group compared to the TDC sleep and the ADHD wake groups. Intensity and familiarity ratings during encoding were substantially higher in ADHD compared to TDC. Sleep-associated odor memory consolidation in ADHD is superior to TDC. Abundant pre-experience due to lower perceptive thresholds is suggested as a possible explanation. Olfaction might serve as a biomarker in ADHD.
Collapse
|
31
|
Haehner A, Chen B, Espin M, Haussmann R, Matthes C, Desser D, Loessner L, Brandt MD, Donix M, Hummel T. Training with Odors Impacts Hippocampal Thickness in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:743-755. [DOI: 10.3233/jad-220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The olfactory system is affected early in Alzheimer’s disease and olfactory loss can already be observed in patients with mild cognitive impairment (MCI). Olfactory training is effective for improving olfactory and cognitive function by stimulating the olfactory pathway, but its effect on patients with MCI remains unclear. Objective: The aim of this randomized, prospective, controlled, blinded study was to assess whether a 4-month period of olfactory training (frequent short-term sniffing various odors) may have an effect on olfactory function, cognitive function, and morphology of medial temporal lobe (MTL) subregions and olfactory bulb in MCI patients. Methods: A total of thirty-seven MCI patients were randomly assigned to the training group or a placebo group, which were performed twice a day for 4 months. Olfactory assessments, cognitive tests and magnetic resonance imaging were performed at the baseline and follow-up period. Results: After the training, there was an increase in odor discrimination, and increased cortical thickness of bilateral hippocampus (CA23DG and CA1) and mean MTL. Additionally, the change of olfactory score was positively associated with change of volume of olfactory bulb and hippocampus; the change of global cognition was positively associated with change of cortical thickness of hippocampus, entorhinal cortex and mean MTL; the change of cortical thickness of entorhinal cortex was positively associated with change of executive function. Conclusion: Olfactory training was associated with an increase in cortical thickness of the hippocampus but not olfactory bulb volume in patients with MCI. Olfactory training may serve as an early intervention of preventing hippocampal atrophy.
Collapse
Affiliation(s)
| | - Ben Chen
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Melanie Espin
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | | | - Dmitriy Desser
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Moritz D. Brandt
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Markus Donix
- Department of Psychiatry, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
32
|
Amgalan A, Maher AS, Imms P, Ha MY, Fanelle TA, Irimia A. Functional Connectome Dynamics After Mild Traumatic Brain Injury According to Age and Sex. Front Aging Neurosci 2022; 14:852990. [PMID: 35663576 PMCID: PMC9158471 DOI: 10.3389/fnagi.2022.852990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Neural and cognitive deficits after mild traumatic brain injury (mTBI) are paralleled by changes in resting state functional correlation (FC) networks that mirror post-traumatic pathophysiology effects on functional outcomes. Using functional magnetic resonance images acquired both acutely and chronically after injury (∼1 week and ∼6 months post-injury, respectively), we map post-traumatic FC changes across 136 participants aged 19-79 (52 females), both within and between the brain's seven canonical FC networks: default mode, dorsal attention, frontoparietal, limbic, somatomotor, ventral attention, and visual. Significant sex-dependent FC changes are identified between (A) visual and limbic, and between (B) default mode and somatomotor networks. These changes are significantly associated with specific functional recovery patterns across all cognitive domains (p < 0.05, corrected). Changes in FC between default mode, somatomotor, and ventral attention networks, on the one hand, and both temporal and occipital regions, on the other hand, differ significantly by age group (p < 0.05, corrected), and are paralleled by significant sex differences in cognitive recovery independently of age at injury (p < 0.05, corrected). Whereas females' networks typically feature both significant (p < 0.036, corrected) and insignificant FC changes, males more often exhibit significant FC decreases between networks (e.g., between dorsal attention and limbic, visual and limbic, default-mode and somatomotor networks, p < 0.0001, corrected), all such changes being accompanied by significantly weaker recovery of cognitive function in males, particularly older ones (p < 0.05, corrected). No significant FC changes were found across 35 healthy controls aged 66-92 (20 females). Thus, male sex and older age at injury are risk factors for significant FC alterations whose patterns underlie post-traumatic cognitive deficits. This is the first study to map, systematically, how mTBI impacts FC between major human functional networks.
Collapse
Affiliation(s)
- Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Michelle Y. Ha
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Timothy A. Fanelle
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Lin C, Oh MM, Disterhoft JF. Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Front Aging Neurosci 2022; 14:838513. [PMID: 35360205 PMCID: PMC8963507 DOI: 10.3389/fnagi.2022.838513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
With aging comes a myriad of different disorders, and cognitive decline is one of them. Studies have consistently shown a decline amongst aged subjects in their ability to acquire and maintain temporal associative memory. Defined as the memory of the association between two objects that are separated in time, temporal associative memory is dependent on neocortical structures such as the prefrontal cortex and temporal lobe structures. For this memory to be acquired, a mental trace of the first stimulus is necessary to bridge the temporal gap so the two stimuli can be properly associated. Persistent firing, the ability of the neuron to continue to fire action potentials even after the termination of a triggering stimulus, is one mechanism that is posited to support this mental trace. A recent study demonstrated a decline in persistent firing ability in pyramidal neurons of layer III of the lateral entorhinal cortex with aging, contributing to learning impairments in temporal associative memory acquisition. In this work, we explore the potential ways persistent firing in lateral entorhinal cortex (LEC) III supports temporal associative memory, and how aging may disrupt this mechanism within the temporal lobe system, resulting in impairment in this crucial behavior.
Collapse
|
34
|
Jiang Y, Liu D, Zhang X, Liu H, Zhang C, Zhang J. Modulation of the rat hippocampal-cortex network and episodic-like memory performance following entorhinal cortex stimulation. CNS Neurosci Ther 2022; 28:448-457. [PMID: 34964261 PMCID: PMC8841309 DOI: 10.1111/cns.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - De‐Feng Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Huan‐Guang Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jian‐Guo Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
35
|
Li J, Zhang G, Wang J, Liu D, Wan C, Fang J, Wu D, Zhou Y, Tian T, Zhu W. Experience-dependent associations between distinct subtypes of childhood trauma and brain function and architecture. Quant Imaging Med Surg 2022; 12:1172-1185. [PMID: 35111614 DOI: 10.21037/qims-21-435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
Background Childhood trauma can alter brain-development trajectories and lead to a greater risk of psychopathology developing in adulthood. For this reason, understanding experience-dependent brain abnormalities associated with different trauma subtypes is crucial for identifying developmental processes disrupted by unfavorable early environments and for proposing early intervention measures to reduce trauma's negative effects. Methods This study used multimodal magnetic resonance imaging (MRI) to explore the neural correlates of distinct subtypes of childhood trauma. We recruited a large community sample of young adults (mean age, 24.1, SD 1.9 years) who completed a Childhood Trauma Questionnaire, were given behavioral scores, and underwent multimodal MRI. To quantify brain changes, we used functional connectivity density (FCD) mapping based on whole brain analysis, regions of interest (ROI) analysis, and morphological measurements. Experience-dependent brain abnormalities were identified by multivariable linear regression. Results We found that diverse brain regions in the FCD mapping were significantly related to 4 trauma subtypes and belonged to different cognitive components used for various behaviors. Experience-related influences on functional circuits and brain morphology were observed in extensive regions, including the sensorimotor, cingulum, accumbens, insula, and frontal-parietal areas, as well as in regions within the default mode network. Conclusions Identifying specific regions or systems may be a valid strategy for understanding the pathogenesis and development process of psychiatric disorders in people with different traumatic experiences and may facilitate better-targeted intervention strategies for maltreated children.
Collapse
Affiliation(s)
- Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhua Wan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Differential Effects of Lateral and Medial Entorhinal Cortex Lesions on Trace, Delay and Contextual Fear Memories. Brain Sci 2021; 12:brainsci12010034. [PMID: 35053778 PMCID: PMC8773659 DOI: 10.3390/brainsci12010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
The entorhinal cortex (EC), with connections to the hippocampus, amygdala, and neocortex, is a critical, yet still underexplored, contributor to fear memory. Previous research suggests possible heterogeneity of function among its lateral (LEC) and medial (MEC) subregions. However, it is not well established what unique roles these subregions serve as the literature has shown mixed results depending on target of manipulation and type of conditioning used. Few studies have manipulated both the LEC and MEC within the same experiment. The present experiment systematically manipulated LEC and MEC function to examine their potential roles in fear memory expression. Long-Evans rats were trained using either trace or delay fear conditioning. The following day, rats received an N-methyl-D-aspartate (NMDA)-induced lesion to the LEC or MEC or received a sham surgery. Following recovery, rats were given an 8-min context test in the original context. The next day, rats were tested for tone freezing in a novel context with three discrete tone presentations. Further, rats were tested for hyperactivity in an open field under both dark and bright light gradient conditions. Results: Following either LEC or MEC lesion, freezing to context was significantly reduced in both trace and delay conditioned rats. LEC-lesioned rats consistently showed significantly less freezing following tone-offset (trace interval, or equivalent, and intertrial interval) in both trace and delay fear conditioned rats. Conclusions: These data suggest that the LEC may play a role in the expression of a conjunctive representation between the tone and context that mediates the maintenance of post-tone freezing.
Collapse
|
37
|
Martin L, Rosales JH, Jaime K, Ramos F. Affective Episodic Memory System for Virtual Creatures: The First Step of Emotion-Oriented Memory. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7954140. [PMID: 34721565 PMCID: PMC8550857 DOI: 10.1155/2021/7954140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
Episodic memory and emotions are considered essential functions in human cognition. Both allow us to acquire new knowledge from the environment, ranging from the objects around us to how we feel towards them. These qualities make them crucial functions for systems trying to create human-like behaviour. In the field of cognitive architectures (CAs), there are multiple studies covering memory and emotions. However, most of them treat these subjects in an isolated manner, considering emotions only as a reward signal unrelated to a retrieved experience. To address this lack of direct interaction, we propose a computational model that covers the common processes that are related to memory and emotions. Specifically, this proposal focuses on affective evaluations of episodic memories. Neurosciences and psychology are the bases of this model. That is, the model's components and the processes that they carry out on the information they receive are designed based on evidence from these cognitive sciences. The proposed model is a part of Cuáyóllótl, a cognitive architecture for cybernetic entities such as virtual creatures and robots. Case studies validate our proposal. They show the relevance of the integration of emotions and memory in a virtual creature. The virtual creature endowed with our emotional episodic model improves its learning and modifies its behaviour according to planning and decision-making processes.
Collapse
Affiliation(s)
- Luis Martin
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| | - Jonathan H. Rosales
- Faculty of Science and Technology, Autonomous University of Guadalajara, Zapopan 45129, Mexico
| | - Karina Jaime
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| | - Felix Ramos
- Department of Computer Science, Center for Research and Advanced Studies of the National Polytechnic Institute, Zapopan 45019, Mexico
| |
Collapse
|
38
|
Cruz-Sanabria F, Reyes PA, Triviño-Martínez C, García-García M, Carmassi C, Pardo R, Matallana DL. Exploring Signatures of Neurodegeneration in Early-Onset Older-Age Bipolar Disorder and Behavioral Variant Frontotemporal Dementia. Front Neurol 2021; 12:713388. [PMID: 34539558 PMCID: PMC8446277 DOI: 10.3389/fneur.2021.713388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Older-age bipolar disorder (OABD) may involve neurocognitive decline and behavioral disturbances that could share features with the behavioral variant of frontotemporal dementia (bvFTD), making the differential diagnosis difficult in cases of suspected dementia. Objective: To compare the neuropsychological profile, brain morphometry, and structural connectivity patterns between patients diagnosed with bvFTD, patients classified as OABD with an early onset of the disease (EO-OABD), and healthy controls (HC). Methods: bvFTD patients (n = 25, age: 66 ± 7, female: 64%, disease duration: 6 ± 4 years), EO-OABD patients (n = 17, age: 65 ± 9, female: 71%, disease duration: 38 ± 8 years), and HC (n = 28, age: 62 ± 7, female: 64%) were evaluated through neuropsychological tests concerning attention, memory, executive function, praxis, and language. Brain morphometry was analyzed through surface-based morphometry (SBM), while structural brain connectivity was assessed through diffusion tensor imaging (DTI). Results: Both bvFTD and EO-OABD patients showed lower performance in neuropsychological tests of attention, verbal fluency, working memory, verbal memory, and praxis than HC. Comparisons between EO-OABD and bvFTD showed differences limited to cognitive flexibility delayed recall and intrusion errors in the memory test. SBM analysis demonstrated that several frontal, temporal, and parietal regions were altered in both bvFTD and EO-OABD compared to HC. In contrast, comparisons between bvFTD and EO-OABD evidenced differences exclusively in the right temporal pole and the left entorhinal cortex. DTI analysis showed alterations in association and projection fibers in both EO-OABD and bvFTD patients compared to HC. Commissural fibers were found to be particularly affected in EO-OABD. The middle cerebellar peduncle and the pontine crossing tract were exclusively altered in bvFTD. There were no significant differences in DTI analysis between EO-OABD and bvFTD. Discussion: EO-OABD and bvFTD may share an overlap in cognitive, brain morphometry, and structural connectivity profiles that could reflect common underlying mechanisms, even though the etiology of each disease can be different and multifactorial.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research, New Surgical, and Medical Technologies, University of Pisa, Pisa, Italy
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pablo Alexander Reyes
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Radiology Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Cristian Triviño-Martínez
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Milena García-García
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rodrigo Pardo
- Neurosciences Research Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana L. Matallana
- Ph.D. Program in Neuroscience, Department of Psychiatry, Pontificia Universidad Javeriana, Bogotá, Colombia
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Mental Health Department, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
39
|
Huo BB, Zheng MX, Hua XY, Shen J, Wu JJ, Xu JG. Metabolic Brain Network Analysis With 18F-FDG PET in a Rat Model of Neuropathic Pain. Front Neurol 2021; 12:566119. [PMID: 34276529 PMCID: PMC8284720 DOI: 10.3389/fneur.2021.566119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain has been found to be related to profound reorganization in the function and structure of the brain. We previously demonstrated changes in local brain activity and functional/metabolic connectivity among selected brain regions by using neuroimaging methods. The present study further investigated large-scale metabolic brain network changes in 32 Sprague–Dawley rats with right brachial plexus avulsion injury (BPAI). Graph theory was applied in the analysis of 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) PET images. Inter-subject metabolic networks were constructed by calculating correlation coefficients. Global and nodal network properties were calculated and comparisons between pre- and post-BPAI (7 days) status were conducted. The global network properties (including global efficiency, local efficiency and small-world index) and nodal betweenness centrality did not significantly change for all selected sparsity thresholds following BPAI (p > 0.05). As for nodal network properties, both nodal degree and nodal efficiency measures significantly increased in the left caudate putamen, left medial prefrontal cortex, and right caudate putamen (p < 0.001). The right entorhinal cortex showed a different nodal degree (p < 0.05) but not nodal efficiency. These four regions were selected for seed-based metabolic connectivity analysis. Strengthened connectivity was found among these seeds and distributed brain regions including sensorimotor area, cognitive area, and limbic system, etc. (p < 0.05). Our results indicated that the brain had the resilience to compensate for BPAI-induced neuropathic pain. However, the importance of bilateral caudate putamen, left medial prefrontal cortex, and right entorhinal cortex in the network was strengthened, as well as most of their connections with distributed brain regions.
Collapse
Affiliation(s)
- Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Department of Orthopedics, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Ku SP, Hargreaves EL, Wirth S, Suzuki WA. The contributions of entorhinal cortex and hippocampus to error driven learning. Commun Biol 2021; 4:618. [PMID: 34031534 PMCID: PMC8144598 DOI: 10.1038/s42003-021-02096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/09/2021] [Indexed: 11/12/2022] Open
Abstract
Computational models proposed that the medial temporal lobe (MTL) contributes importantly to error-driven learning, though little direct in-vivo evidence for this hypothesis exists. To test this, we recorded in the entorhinal cortex (EC) and hippocampus (HPC) as macaques performed an associative learning task using an error-driven learning strategy, defined as better performance after error relative to correct trials. Error-detection signals were more prominent in the EC relative to HPC. Early in learning hippocampal but not EC neurons signaled error-driven learning by increasing their population stimulus-selectivity following error trials. This same pattern was not seen in another task where error-driven learning was not used. After learning, different populations of cells in both the EC and HPC signaled long-term memory of newly learned associations with enhanced stimulus-selective responses. These results suggest prominent but differential contributions of EC and HPC to learning from errors and a particularly important role of the EC in error-detection. Ku et al. recorded in the entorhinal cortex (EC) and hippocampus (HPC) of macaques during associative learning tasks in order to test the computational model prediction that they contribute to error-driven learning. They demonstrate that the EC and HPC have prominent but differential contributions to learning from errors, with the EC having a particularly prominent role in error-detection.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Center for Neural Science, New York University, New York, NY, USA. .,Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Eric L Hargreaves
- Division of Neurosurgery, Rutgers University -- Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron Cedex, France
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
41
|
Werden E, Khlif MS, Bird LJ, Cumming T, Bradshaw J, Khan W, Pase M, Restrepo C, Veldsman M, Egorova N, Patel SK, Gottlieb E, Brodtmann A. APOE ɛ4 Carriers Show Delayed Recovery of Verbal Memory and Smaller Entorhinal Volume in the First Year After Ischemic Stroke. J Alzheimers Dis 2020; 71:245-259. [PMID: 31381519 DOI: 10.3233/jad-190566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) gene ɛ4 allele is a risk factor for Alzheimer's disease and cardiovascular disease. However, its relationship with cognition and brain volume after stroke is not clear. OBJECTIVE We compared cognition and medial temporal lobe volumes in APOEɛ4 carriers and non-carriers in the first year after ischemic stroke. METHODS We sampled 20 APOEɛ4 carriers and 20 non-carriers from a larger cohort of 135 ischemic stroke participants in the longitudinal CANVAS study. Participants were matched on a range of demographic and stroke characteristics. We used linear mixed-effect models to compare cognitive domain z-scores (attention, processing speed, executive function, verbal and visual memory, language, visuospatial function) and regional medial temporal lobe volumes (hippocampal, entorhinal cortex) between groups at each time-point (3, 12-months post-stroke), and within groups across time-points. APOE gene single nucleotide polymorphisms (SNPs; rs7412, rs429358) were genotyped on venous blood. RESULTS APOEɛ4 carriers and non-carriers did not differ on any demographic, clinical, or stroke variable. Carriers performed worse than non-carriers in verbal memory at 3 months post-stroke (p = 0.046), but were better in executive function at 12 months (p = 0.035). Carriers demonstrated a significant improvement in verbal memory (p = 0.012) and executive function (p = 0.015) between time-points. Non-carriers demonstrated a significant improvement in visual memory (p = 0.0005). Carriers had smaller bilateral entorhinal cortex volumes (p < 0.05), and larger right sided and contralesional hippocampal volumes, at both time-points (p < 0.05). CONCLUSION APOE ɛ4 is associated with delayed recovery of verbal memory function and reduced entorhinal cortex volumes in the first year after ischemic stroke.
Collapse
Affiliation(s)
- Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Laura J Bird
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Wasim Khan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Matthew Pase
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Carolina Restrepo
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Sheila K Patel
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Elie Gottlieb
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.,Austin Health, Heidelberg, Melbourne, VIC, Australia.,Eastern Clinical Research Unit, Box Hill Hospital, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, Steenland HW, Monje M, Josselyn SA, Frankland PW. Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron 2019; 105:150-164.e6. [PMID: 31753579 DOI: 10.1016/j.neuron.2019.10.013] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/04/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
The generation of myelin-forming oligodendrocytes persists throughout life and is regulated by neural activity. Here we tested whether experience-driven changes in oligodendrogenesis are important for memory consolidation. We found that water maze learning promotes oligodendrogenesis and de novo myelination in the cortex and associated white matter tracts. Preventing these learning-induced increases in oligodendrogenesis without affecting existing oligodendrocytes impaired memory consolidation of water maze, as well as contextual fear, memories. These results suggest that de novo myelination tunes activated circuits, promoting coordinated activity that is important for memory consolidation. Consistent with this, contextual fear learning increased the coupling of hippocampal sharp wave ripples and cortical spindles, and these learning-induced increases in ripple-spindle coupling were blocked when oligodendrogenesis was suppressed. Our results identify a non-neuronal form of plasticity that remodels hippocampal-cortical networks following learning and is required for memory consolidation.
Collapse
Affiliation(s)
- Patrick E Steadman
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Frances Xia
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Moriam Ahmed
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Amber R A Penning
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Anna C Geraghty
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Hendrik W Steenland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Max Planck Institute of Microstructure Physics, Halle 06120, Germany
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA 94305, USA
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Brain, Mind and Consciousness Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
43
|
Baker CM, Burks JD, Briggs RG, Milton CK, Conner AK, Glenn CA, Sali G, McCoy TM, Battiste JD, O'Donoghue DL, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 6: The Temporal Lobe. Oper Neurosurg (Hagerstown) 2019; 15:S245-S294. [PMID: 30260447 DOI: 10.1093/ons/opy260] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 6, we specifically address regions relevant to the temporal lobe.
Collapse
Affiliation(s)
- Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Camille K Milton
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tressie M McCoy
- Department of Physical Therapy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
44
|
Buss SS, Padmanabhan J, Saxena S, Pascual-Leone A, Fried PJ. Atrophy in Distributed Networks Predicts Cognition in Alzheimer's Disease and Type 2 Diabetes. J Alzheimers Dis 2019; 65:1301-1312. [PMID: 30149455 DOI: 10.3233/jad-180570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and type 2 diabetes (T2DM) are common causes of cognitive decline among older adults and share strong epidemiological links. Distinct patterns of cortical atrophy are observed in AD and T2DM, but robust comparisons between structure-function relationships across these two disease states are lacking. OBJECTIVE To compare how atrophy within distributed brain networks is related to cognition across the spectrum of cognitive aging. METHODS The relationship between structural MRI changes and cognition was studied in 22 mild-to-moderate AD, 28 T2DM, and 27 healthy participants. Cortical thickness measurements were obtained from networks of interest (NOIs) matching the limbic, default, and frontoparietal resting-state networks. Composite cognitive scores capturing domains of global cognition, memory, and executive function were created. Associations between cognitive scores and the NOIs were assessed using linear regression, with age as a covariate. Within-network General Linear Model (GLM) analysis was run in Freesurfer 6.0 to visualize differences in patterns of cortical atrophy related to cognitive function in each group. A secondary analysis examined hemispheric differences in each group. RESULTS Across all groups, cortical atrophy within the limbic NOI was significantly correlated with Global Cognition (p = 0.009) and Memory Composite (p = 0.002). Within-network GLM analysis and hemispheric analysis revealed qualitatively different patterns of atrophy contributing to cognitive dysfunction between AD and T2DM. CONCLUSION Brain network atrophy is related to cognitive function across AD, T2DM, and healthy participants. Differences in cortical atrophy patterns were seen between AD and T2DM, highlighting neuropathological differences.
Collapse
Affiliation(s)
- Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jaya Padmanabhan
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sadhvi Saxena
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Institut Guttman, Universitat Autonoma de Barcelona, Badalona, Barcelona, Spain
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Pilarzyk K, Klett J, Pena EA, Porcher L, Smith AJ, Kelly MP. Loss of Function of Phosphodiesterase 11A4 Shows that Recent and Remote Long-Term Memories Can Be Uncoupled. Curr Biol 2019; 29:2307-2321.e5. [PMID: 31303492 DOI: 10.1016/j.cub.2019.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Systems consolidation is a process by which memories initially require the hippocampus for recent long-term memory (LTM) but then become increasingly independent of the hippocampus and more dependent on the cortex for remote LTM. Here, we study the role of phosphodiesterase 11A4 (PDE11A4) in systems consolidation. PDE11A4, which degrades cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is preferentially expressed in neurons of CA1, the subiculum, and the adjacently connected amygdalohippocampal region. In male and female mice, deletion of PDE11A enhances remote LTM for social odor recognition and social transmission of food preference (STFP) despite eliminating or silencing recent LTM for those same social events. Measurement of a surrogate marker of neuronal activation (i.e., Arc mRNA) suggests the recent LTM deficits observed in Pde11 knockout mice correspond with decreased activation of ventral CA1 relative to wild-type littermates. In contrast, the enhanced remote LTM observed in Pde11a knockout mice corresponds with increased activation and altered functional connectivity of anterior cingulate cortex, frontal association cortex, parasubiculum, and the superficial layer of medial entorhinal cortex. The apparent increased neural activation observed in prefrontal cortex of Pde11a knockout mice during remote LTM retrieval may be related to an upregulation of the N-methyl-D-aspartate receptor subunits NR1 and NR2A. Viral restoration of PDE11A4 to vCA1 alone is sufficient to rescue both the LTM phenotypes and upregulation of NR1 exhibited by Pde11a knockout mice. Together, our findings suggest remote LTM can be decoupled from recent LTM, which may have relevance for cognitive deficits associated with aging, temporal lobe epilepsy, or transient global amnesia.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Jennifer Klett
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Edsel A Pena
- Department of Statistics, University of South Carolina, 1523 Green Street, Columbia, SC 29201, USA
| | - Latarsha Porcher
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Abigail J Smith
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
46
|
Krautwald K, Mahnke L, Angenstein F. Electrical Stimulation of the Lateral Entorhinal Cortex Causes a Frequency-Specific BOLD Response Pattern in the Rat Brain. Front Neurosci 2019; 13:539. [PMID: 31191231 PMCID: PMC6547013 DOI: 10.3389/fnins.2019.00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Although deep brain stimulation of the entorhinal cortex has recently shown promise in the treatment of early forms of cognitive decline, the underlying neurophysiological processes remain elusive. Therefore, the lateral entorhinal cortex (LEC) was stimulated with trains of continuous 5 Hz and 20 Hz pulses or with bursts of 100 Hz pulses to visualize activated neuronal networks, i.e., neuronal responses in the dentate gyrus and BOLD responses in the entire brain were simultaneously recorded. Electrical stimulation of the LEC caused a wide spread pattern of BOLD responses. Dependent on the stimulation frequency, BOLD responses were only triggered in the amygdala, infralimbic, prelimbic, and dorsal peduncular cortex (5 Hz), or in the nucleus accumbens, piriform cortex, dorsal medial prefrontal cortex, hippocampus (20 Hz), and contralateral entorhinal cortex (100 Hz). In general, LEC stimulation caused stronger BOLD responses in frontal cortex regions than in the hippocampus. Identical stimulation of the perforant pathway, a fiber bundle projecting from the entorhinal cortex to the dentate gyrus, hippocampus proper, and subiculum, mainly elicited significant BOLD responses in the hippocampus but rarely in frontal cortex regions. Consequently, BOLD responses in frontal cortex regions are mediated by direct projections from the LEC rather than via signal propagation through the hippocampus. Thus, the beneficial effects of deep brain stimulation of the entorhinal cortex on cognitive skills might depend more on an altered prefrontal cortex than hippocampal function.
Collapse
Affiliation(s)
- Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Liv Mahnke
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
47
|
The Localization Research of Brain Plasticity Changes after Brachial Plexus Pain: Sensory Regions or Cognitive Regions? Neural Plast 2019; 2019:7381609. [PMID: 30728834 PMCID: PMC6341257 DOI: 10.1155/2019/7381609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Neuropathic pain after brachial plexus injury remains an increasingly prevalent and intractable disease due to inadequacy of satisfactory treatment strategies. A detailed mapping of cortical regions concerning the brain plasticity was the first step of therapeutic intervention. However, the specific mapping research of brachial plexus pain was limited. We aimed to provide some localization information about the brain plasticity changes after brachial plexus pain in this preliminary study. Methods 24 Sprague-Dawley rats received complete brachial plexus avulsion with neuropathic pain on the right forelimb successfully. Through functional imaging of both resting-state and block-design studies, we compared the amplitude of low-frequency fluctuations (ALFF) of premodeling and postmodeling groups and the changes of brain activation when applying sensory stimulation. Results The postmodeling group showed significant decreases on the mechanical withdrawal threshold (MWT) in the bilateral hindpaws and thermal withdrawal latency (TWL) in the left hindpaw than the premodeling group (P < 0.05). The amplitude of low-frequency fluctuations (ALFF) of the postmodeling group manifested increases in regions of the left anterodorsal hippocampus, left mesencephalic region, left dorsal midline thalamus, and so on. Decreased ALFF was observed in the bilateral entorhinal cortex compared to that of the premodeling group. The results of block-design scan showed significant differences in regions including the limbic/paralimbic system and somatosensory cortex. Conclusion We concluded that the entorhinal-hippocampus pathway, which was part of the Papez circuit, was involved in the functional integrated areas of brachial plexus pain processing. The regions in the “pain matrix” showed expected activation when applying instant nociceptive stimulus but remained silent in the resting status. This research confirmed the involvement of cognitive function, which brought novel information to the potential new therapy for brachial plexus pain.
Collapse
|
48
|
DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, Guenthner CJ, Tessier-Lavigne M, Luo L. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci 2019; 22:460-469. [PMID: 30692687 PMCID: PMC6387639 DOI: 10.1038/s41593-018-0318-7] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
Memories of fearful events can last a lifetime. The prelimbic (PL) subregion of prefrontal cortex plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in PL are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.
Collapse
Affiliation(s)
- Laura A DeNardo
- Department of Biology, Stanford University, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Cindy D Liu
- Department of Biology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - William E Allen
- Department of Biology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.,Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Eliza L Adams
- Department of Biology, Stanford University, Stanford, CA, USA.,Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Drew Friedmann
- Department of Biology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lisa Fu
- Department of Biology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Casey J Guenthner
- Department of Biology, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.,Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Marc Tessier-Lavigne
- Department of Biology, Stanford University, Stanford, CA, USA.,Neurosciences Program, Stanford University, Stanford, CA, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Neurosciences Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Hannon E, Marzi SJ, Schalkwyk LS, Mill J. Genetic risk variants for brain disorders are enriched in cortical H3K27ac domains. Mol Brain 2019; 12:7. [PMID: 30691483 PMCID: PMC6348673 DOI: 10.1186/s13041-019-0429-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Most variants associated with complex phenotypes in genome-wide association studies (GWAS) do not directly index coding changes affecting protein structure. Instead they are hypothesized to influence gene regulation, with common variants associated with disease being enriched in regulatory domains including enhancers and regions of open chromatin. There is interest, therefore, in using epigenomic annotation data to identify the specific regulatory mechanisms involved and prioritize risk variants. We quantified lysine H3K27 acetylation (H3K27ac) - a robust mark of active enhancers and promoters that is strongly correlated with gene expression and transcription factor binding - across the genome in entorhinal cortex samples using chromatin immunoprecipitation followed by highly parallel sequencing (ChIP-seq). H3K27ac peaks were called using high quality reads combined across all samples and formed the basis of partitioned heritability analysis using LD score regression along with publicly-available GWAS results for seven psychiatric and neurodegenerative traits. Heritability for all seven brain traits was significantly enriched in these H3K27ac peaks (enrichment ranging from 1.09-2.13) compared to regions of the genome containing other active regulatory and functional elements across multiple cell types and tissues. The strongest enrichments were for amyotrophic lateral sclerosis (ALS) (enrichment = 2.19; 95% CI = 2.12-2.27), autism (enrichment = 2.11; 95% CI = 2.05-2.16) and major depressive disorder (enrichment = 2.04; 95% CI = 1.92-2.16). Much lower enrichments were observed for 14 non-brain disorders, although we identified enrichment in cortical H3K27ac domains for body mass index (enrichment = 1.16; 95% CI = 1.13-1.19), ever smoked (enrichment = 2.07; 95% CI = 2.04-2.10), HDL (enrichment = 1.53; 95% CI = 1.45-1.62) and trigylcerides (enrichment = 1.33; 95% CI = 1.24-1.42). These results indicate that risk alleles for brain disorders are preferentially located in regions of regulatory/enhancer function in the cortex, further supporting the hypothesis that genetic variants for these phenotypes influence gene regulation in the brain.
Collapse
Affiliation(s)
- Eilis Hannon
- University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital, University of Exeter, Barrack Rd, Exeter, EX2 5DW UK
| | - Sarah J. Marzi
- Blizard Institute, Queen Mary University of London, London, E1 2AD UK
| | | | - Jonathan Mill
- University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital, University of Exeter, Barrack Rd, Exeter, EX2 5DW UK
| |
Collapse
|
50
|
Altered Functional Network Affects Amyloid and Structural Covariance in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8565620. [PMID: 30627575 PMCID: PMC6304529 DOI: 10.1155/2018/8565620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Background We aimed to investigate how altered intrinsic connectivity networks (ICNs) affect pathologic changes of Alzheimer's disease (AD) at a network-based level. Methods Thirty normal controls (NCs), 23 patients with AD-mild cognitive impairment (MCI), and 20 patients with AD-dementia were enrolled. We compared the organization of grey matter structural covariance and functional connectivity in ICNs between NCs and all AD patients who were amyloid β (Aβ)-positive. We further used seed-based interregional covariance analysis to compare structural and Aβ plaque covariance in default mode network (DMN) between AD-MCI and AD-dementia groups. Results The patients with AD had increased functional interregional covariance among the regions of the ICN anchored to dorsal caudate (DC) seeds compared to the NCs. The increased connectivity was associated with extended patterns of reduced Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group within the striatal network anchored to DC seeds. Patterns of lower Aβ plaque covariance in the AD-dementia group compared to the AD-MCI group were more extended within the network anchored to DC seeds than within the DMN, which was undergoing functional failure in the patients with AD. Significant decreased structural covariance in the AD-dementia group compared to the AD-MCI group was more extended in the DMN during functional failure. Conclusions Functional connectivity in ICNs affects the topographic spread of molecular pathologies. The temporal trajectory of pathologic alterations can be well demonstrated by pathologic covariance comparisons between different clinical stages. Pathologic covariance can provide critical support to pathologic interactions at network and molecular levels.
Collapse
|