1
|
Bolla M, Colombo G, Falappa M, Pace M, Baravalle R, Martinez N, Montani F, Tucci V, Cancedda L. NKCC1 inhibition improves sleep quality and EEG information content in a Down syndrome mouse model. iScience 2025; 28:112220. [PMID: 40224007 PMCID: PMC11986984 DOI: 10.1016/j.isci.2025.112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
In several brain disorders, the hyperpolarizing/inhibitory effects of GABA signaling through Cl-permeable GABAA receptors are compromised, leading to an imbalance between neuronal excitation and inhibition. For example, the Ts65Dn mouse model of Down syndrome (DS) exhibits increased expression of the Cl- importer NKCC1, leading to depolarizing gamma aminobutyric acid (GABA) signaling in the mature hippocampus and cortex. Inhibiting NKCC1 with the Food and Drug Administration (FDA)-approved diuretic bumetanide rescues inhibitory GABAergic transmission, synaptic plasticity, and cognitive functions in adult Ts65Dn mice. Given that DS individuals and Ts65Dn mice show sleep disturbances, and considering the key role of GABAergic transmission in sleep, we investigated whether NKCC1 upregulation contributes to sleep abnormalities in adult Ts65Dn mice. Chronic oral administration of bumetanide ameliorated the spectral profile of sleep, sleep architecture, and electroencephalogram (EEG) entropy/complexity, accompanied by a lower hyperactivity in trisomic mice. These results offer a potential avenue for addressing common sleep disturbances in DS.
Collapse
Affiliation(s)
- Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Giulia Colombo
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Matteo Falappa
- Università Degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roman Baravalle
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
- State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Nataniel Martinez
- IFIMAR (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, B7602AYL, Mar Del Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Valter Tucci
- Genetics and Epigenetics of Behavior Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Rome, Italy
| |
Collapse
|
2
|
Horn CJ, Yuli S, Berry JA, Luong LT. A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104723. [PMID: 39551154 DOI: 10.1016/j.jinsphys.2024.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Endosymbiotic bacteria have a wide range of impacts on host physiology, behavior, metabolism, endurance, and mobility. Recent work found some endosymbionts also impact host sleep duration and quality. These effects may increase as flies age and endosymbiont titers increase. We tested the hypothesis that Spiroplasma poulsonni MSRO negatively impacts sleep in Drosophila melanogaster, and this in turn impairs fly endurance. In geotaxis climbing assays (a proxy for endurance), we found that MSRO impacted climbing endurance but in an age-dependent manner. Among younger flies, MSRO+ flies slept significantly less during dark periods (measured by a Drosophila Activity Monitoring System) compared to uninfected flies, but older MSRO+ flies did not show significant differences in amount of sleep compared to uninfected flies in the same cohort. While MSRO status impacted both sleep and endurance of hosts, endosymbiont-mediated sleep deprivation did not directly explain decreases in fly endurance. We discuss these results in the context of endosymbiont comparative biology.
Collapse
Affiliation(s)
- Collin J Horn
- Dalhousie University, Department of Psychology and Neuroscience, Canada; University of Alberta, Department of Biological Sciences, Canada.
| | - Sissi Yuli
- University of Alberta, Department of Biological Sciences, Canada
| | - Jacob A Berry
- University of Alberta, Department of Biological Sciences, Canada
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences, Canada
| |
Collapse
|
3
|
Yin D, Zhong Z, Zeng F, Xu Z, Li J, Ren W, Yang G, Wang H, Xu S. Evolution of canonical circadian clock genes underlies unique sleep strategies of marine mammals for secondary aquatic adaptation. PLoS Genet 2025; 21:e1011598. [PMID: 40101169 PMCID: PMC11919277 DOI: 10.1371/journal.pgen.1011598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
To satisfy the needs of sleeping underwater, marine mammals, including cetaceans, sirenians, and pinnipeds, have evolved an unusual form of sleep, known as unihemispheric slow-wave sleep (USWS), in which one brain hemisphere is asleep while the other is awake. All aquatic cetaceans have only evolved USWS without rapid eye movement (REM) sleep, whereas aquatic sirenians and amphibious pinnipeds display both bihemispheric slow-wave sleep (BSWS) and USWS, as well as REM sleep. However, the molecular genetic changes underlying USWS remain unknown. The present study investigated the evolution of eight canonical circadian genes and found that positive selection occurred mainly within cetacean lineages. Furthermore, convergent evolution was observed in lineages with USWS at three circadian clock genes. Remarkably, in vitro assays showed that cetacean-specific mutations increased the nuclear localization of zebrafish clocka, and enhanced the transcriptional activation activity of Clocka and Bmal1a. In vivo, transcriptome analysis showed that the overexpression of the cetacean-specific mutant clocka (clocka-mut) caused the upregulation of the wakefulness-promoting glutamatergic genes and the differential expression of multiple genes associated with sleep regulation. In contrast, the GABAergic and cholinergic pathways, which play important roles in promoting sleep, were downregulated in the bmal1a-mut-overexpressing zebrafish. Concordantly, sleep time of zebrafish overexpressing clocka-mut and bmal1a-mut were significantly less than the zebrafish overexpressing the wild-type genes, respectively. These findings support our hypothesis that canonical circadian clock genes may have evolved adaptively to enhance circadian regulation ability relating to sleep in cetaceans and, in turn, contribute to the formation of USWS.
Collapse
Affiliation(s)
- Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Fan Zeng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhikang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, PR China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Jones JD, Holder BL, Montgomery AC, McAdams CV, He E, Burns AE, Eiken KR, Vogt A, Velarde AI, Elder AJ, McEllin JA, Dissel S. The dorsal fan-shaped body is a neurochemically heterogeneous sleep-regulating center in Drosophila. PLoS Biol 2025; 23:e3003014. [PMID: 40138668 DOI: 10.1371/journal.pbio.3003014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/03/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Sleep is a behavior that is conserved throughout the animal kingdom. Yet, despite extensive studies in humans and animal models, the exact function or functions of sleep remain(s) unknown. A complicating factor in trying to elucidate the function of sleep is the complexity and multiplicity of neuronal circuits that are involved in sleep regulation. It is conceivable that distinct sleep-regulating circuits are only involved in specific aspects of sleep and may underlie different sleep functions. Thus, it would be beneficial to assess the contribution of individual circuits in sleep's putative functions. The intricacy of the mammalian brain makes this task extremely difficult. However, the fruit fly Drosophila melanogaster, with its simpler brain organization, available connectomics, and unparalleled genetics, offers the opportunity to interrogate individual sleep-regulating centers. In Drosophila, neurons projecting to the dorsal fan-shaped body (dFB) have been proposed to be key regulators of sleep, particularly sleep homeostasis. We recently demonstrated that the most widely used genetic tool to manipulate dFB neurons, the 23E10-GAL4 driver, expresses in 2 sleep-regulating neurons (VNC-SP neurons) located in the ventral nerve cord (VNC), the fly analog of the vertebrate spinal cord. Since most data supporting a role for the dFB in sleep regulation have been obtained using 23E10-GAL4, it is unclear whether the sleep phenotypes reported in these studies are caused by dFB neurons or VNC-SP cells. A recent publication replicated our finding that 23E10-GAL4 contains sleep-promoting neurons in the VNC. However, it also proposed that the dFB is not involved in sleep regulation at all, but this suggestion was made using genetic tools that are not dFB-specific and a very mild sleep deprivation protocol. In this study, using a newly created dFB-specific genetic driver line, we demonstrate that optogenetic activation of the majority of 23E10-GAL4 dFB neurons promotes sleep and that these neurons are involved in sleep homeostasis. We also show that dFB neurons require stronger stimulation than VNC-SP cells to promote sleep. In addition, we demonstrate that dFB-induced sleep can consolidate short-term memory (STM) into long-term memory (LTM), suggesting that the benefit of sleep on memory is not circuit-specific. Finally, we show that dFB neurons are neurochemically heterogeneous and can be divided in 3 populations. Most dFB neurons express both glutamate and acetylcholine, while a minority of cells expresses only one of these 2 neurotransmitters. Importantly, dFB neurons do not express GABA, as previously suggested. Using neurotransmitter-specific dFB tools, our data also points at cholinergic dFB neurons as particularly potent at regulating sleep and sleep homeostasis.
Collapse
Affiliation(s)
- Joseph D Jones
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Andrew C Montgomery
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Chloe V McAdams
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Emily He
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Anna E Burns
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Kiran R Eiken
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alex Vogt
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Adriana I Velarde
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Alexandra J Elder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jennifer A McEllin
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| |
Collapse
|
5
|
Hopkins MA, Tabuchi M. The power of the rocking cradle: improving sleep function by gentle vibration. Sleep 2024; 47:zsae245. [PMID: 39441991 DOI: 10.1093/sleep/zsae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Makenzie A Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
Tener SJ, Kim CE, Lee J, Oraedu K, Gatto JA, Chang TY, Lam C, Schanta R, Jankowski MS, Park SJ, Hurley JM, Ulgherait M, Canman JC, Ja WW, Collins DB, Shirasu-Hiza M. Investigating the consequences of chronic short sleep for metabolism and survival of oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626207. [PMID: 39677628 PMCID: PMC11642809 DOI: 10.1101/2024.12.01.626207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In previous work, we found that short sleep caused sensitivity to oxidative stress; here we set out to characterize the physiological state of a diverse group of chronically short-sleeping mutants during hyperoxia as an acute oxidative stress. Using RNA-sequencing analysis, we found that short-sleeping mutants had a normal transcriptional oxidative stress response relative to controls. In both short-sleeping mutants and controls, hyperoxia led to downregulation of glycolytic genes and upregulation of genes involved in fatty acid metabolism, reminiscent of metabolic shifts during sleep. We hypothesized that short-sleeping mutants may be sensitive to hyperoxia because of defects in metabolism. Consistent with this, short-sleeping mutants were sensitive to starvation. Using metabolomics, we identified a pattern of low levels of long chain fatty acids and lysophospholipids in short-sleeping mutants relative to controls during hyperoxia, suggesting a defect in lipid metabolism. Though short-sleeping mutants did not have common defects in many aspects of lipid metabolism (basal fat stores, usage kinetics during hyperoxia, respiration rates, and cuticular hydrocarbon profiles), they were all sensitive to dehydration, suggesting a general defect in cuticular hydrocarbons, which protect against dehydration. To test the bi-directionality of sleep and lipid metabolism, we tested flies with both diet-induced obesity and genetic obesity. Flies with diet-induced obesity had no sleep or oxidative stress phenotype; in contrast, the lipid metabolic mutant, brummer , slept significantly more than controls but was sensitive to oxidative stress. Previously, all short sleepers tested were sensitive and all long sleepers resistant to oxidative stress. brummer mutants, the first exceptions to this rule, lack a key enzyme required to mobilize fat stores, suggesting that a defect in accessing lipid stores can cause sensitivity to oxidative stress. Taken together, we found that short-sleeping mutants have many phenotypes in common: sensitivity to oxidative stress, starvation, dehydration, and defects in lipid metabolites. These results argue against a specific role for sleep as an antioxidant and suggest the possibility that lipid metabolic defects underlie the sensitivity to oxidative stress of short-sleeping mutants.
Collapse
|
7
|
Akaarir M, Martorell-Barceló M, Morro B, Suau M, Alós J, Aspillaga E, Gamundí A, Grau A, Lana A, Nicolau MC, Pons A, Rial RV, Signaroli M, Barcelo-Serra M. Measuring activity-rest rhythms under different acclimation periods in a marine fish using automatic deep learning-based video tracking. Chronobiol Int 2024; 41:959-970. [PMID: 38975732 DOI: 10.1080/07420528.2024.2371143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Most organisms synchronize to an approximately 24-hour (circadian) rhythm. This study introduces a novel deep learning-powered video tracking method to assess the stability, fragmentation, robustness and synchronization of activity rhythms in Xyrichtys novacula. Experimental X. novacula were distributed into three groups and monitored for synchronization to a 14/10 hours of light/dark to assess acclimation to laboratory conditions. Group GP7 acclimated for 1 week and was tested from days 7 to 14, GP14 acclimated for 14 days and was tested from days 14 to 21 and GP21 acclimated for 21 days and was tested from days 21 to 28. Telemetry data from individuals in the wild depicted their natural behavior. Wild fish displayed a robust and minimally fragmented rhythm, entrained to the natural photoperiod. Under laboratory conditions, differences in activity levels were observed between light and dark phases. However, no differences were observed in activity rhythm metrics among laboratory groups related to acclimation period. Notably, longer acclimation (GP14 and GP21) led to a larger proportion of individuals displaying rhythm synchronization with the imposed photoperiod. Our work introduces a novel approach for monitoring biological rhythms in laboratory conditions, employing a specifically engineered video tracking system based on deep learning, adaptable for other species.
Collapse
Affiliation(s)
- Mourad Akaarir
- Laboratorio del Sueño y Ritmos Biológicos, Universitat de les Illes Balears IDISBA, IUNICS, Palma, Spain
| | | | - Bernat Morro
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Margalida Suau
- Laboratorio del Sueño y Ritmos Biológicos, Universitat de les Illes Balears IDISBA, IUNICS, Palma, Spain
| | - Josep Alós
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Eneko Aspillaga
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Antoni Gamundí
- Laboratorio del Sueño y Ritmos Biológicos, Universitat de les Illes Balears IDISBA, IUNICS, Palma, Spain
| | - Amalia Grau
- Laboratorio de Investigaciones Marinas y Acuicultura de Andratx (IRFAP LIMIA), Andratx, Spain
| | - Arancha Lana
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - M Cristina Nicolau
- Laboratorio del Sueño y Ritmos Biológicos, Universitat de les Illes Balears IDISBA, IUNICS, Palma, Spain
| | - Aina Pons
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Rubén V Rial
- Laboratorio del Sueño y Ritmos Biológicos, Universitat de les Illes Balears IDISBA, IUNICS, Palma, Spain
| | - Marco Signaroli
- Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
8
|
Marshall JP, Marinko E, To A, Morejon JL, Joshi R, Shea J, Gibbs AG, Meiselman MR. Circadian regulation of locomotion, respiration, and arousability in adult blacklegged ticks (Ixodes scapularis). Sci Rep 2024; 14:14804. [PMID: 38926516 PMCID: PMC11208436 DOI: 10.1038/s41598-024-65498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
The blacklegged tick, Ixodes scapularis, is an ectoparasitic arachnid and vector for infectious diseases, including Lyme borreliosis. Here, we investigate the diurnal activity and respiration of wild-caught and lab-reared adult ticks with long-term video recording, multi-animal tracking and high-resolution respirometry. We find male and female ticks are in a more active, more arousable state during circadian night. We find respiration is augmented by light, with dark onset triggering more frequent bouts of discontinuous gas exchange and a higher overall volume of CO2 respired. Observed inactivity during the day meets the criteria of sleep: homeostatic in nature, rapidly reversible, a characteristic pose, and reduced arousal threshold. Our findings indicate that blacklegged ticks are in a distinct, heightened state of activity and arousability during night and in dark, suggesting this period may carry higher risk for tick bites and subsequent contraction of tick-borne diseases.
Collapse
Affiliation(s)
- Jack P Marshall
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Emily Marinko
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Amber To
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Jilian L Morejon
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Ritika Joshi
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Matthew R Meiselman
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
9
|
Kniazkina M, Dyachuk V. Sleep deprivation effects on EGFR signaling in a zebrafish exposed to rotenone. Behav Brain Res 2024; 462:114861. [PMID: 38216060 DOI: 10.1016/j.bbr.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The objective of this study was to investigate the effects of exposure to rotenone, sleep deprivation, and the epidermal growth factor receptor (EGFR) inhibitor on the locomotor activity of zebrafish larvae. Observations were conducted on control groups, sleep-deprived groups without interventions, groups treated with rotenone or the EGFR inhibitor alone, and also groups with combined exposures. The results showed that sleep deprivation alone led to a decrease of speed of the locomotor activity compared to the control groups. The treatment with rotenone alone resulted in varied effects on the locomotor activity. However, a combined exposure to rotenone and sleep deprivation further reduced the locomotor activity compared to the control and rotenone-treated groups. The groups treated with the EGFR inhibitor alone exhibited variable effects on the locomotor activity. Furthermore, the combined exposure to the EGFR inhibitor and sleep deprivation resulted in diverse changes in the locomotor activity. However, the combined treatment with rotenone and the EGFR inhibitor produced complex alterations in the locomotor activity. These findings demonstrate the distinct effects of exposure to rotenone, sleep deprivation, and the EGFR inhibitor on the locomotor activity of zebrafish larvae. The interaction between these factors further modulates locomotor activity, suggesting a potential interplay between the EGFR system, sleep regulation, and the dopaminergic system. Understanding the relationship between the EGFR system, sleep regulation, and neurological regulation may contribute to the development of therapeutic strategies to address such issues as sleep disorders and neurodegenerative conditions.
Collapse
Affiliation(s)
- Marina Kniazkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
10
|
Nakai A, Kashiwagi M, Fujiyama T, Iwasaki K, Hirano A, Funato H, Yanagisawa M, Sakurai T, Hayashi Y. Crucial role of TFAP2B in the nervous system for regulating NREM sleep. Mol Brain 2024; 17:13. [PMID: 38413970 PMCID: PMC10900699 DOI: 10.1186/s13041-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
The AP-2 transcription factors are crucial for regulating sleep in both vertebrate and invertebrate animals. In mice, loss of function of the transcription factor AP-2β (TFAP2B) reduces non-rapid eye movement (NREM) sleep. When and where TFAP2B functions, however, is unclear. Here, we used the Cre-loxP system to generate mice in which Tfap2b was specifically deleted in the nervous system during development and mice in which neuronal Tfap2b was specifically deleted postnatally. Both types of mice exhibited reduced NREM sleep, but the nervous system-specific deletion of Tfap2b resulted in more severe sleep phenotypes accompanied by defective light entrainment of the circadian clock and stereotypic jumping behavior. These findings indicate that TFAP2B in postnatal neurons functions at least partly in sleep regulation and imply that TFAP2B also functions either at earlier stages or in additional cell types within the nervous system.
Collapse
Affiliation(s)
- Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Kanako Iwasaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Arisa Hirano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy, Toho University Graduate School of Medicine, Tokyo, 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan
- Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
11
|
Andersen ML, Gozal D, Pires GN, Tufik S. Exploring the potential relationships among obstructive sleep apnea, erectile dysfunction, and gut microbiota: a narrative review. Sex Med Rev 2023; 12:76-86. [PMID: 37385976 DOI: 10.1093/sxmrev/qead026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Poor sleep quality is closely associated with comorbidities affecting a multitude of organ systems. Among the sleep disorders in the population, there has recently been an increase in the prevalence of obstructive sleep apnea (OSA), which has particularly affected men. The intermittent hypoxia and sleep fragmentation associated with OSA can result in the manifestation or aggravation of a number of pathophysiologic conditions, including the impairment of reproductive function in men and women. In this context, erectile dysfunction (ED) is of particular concern. Other consequences of OSA are changes in the gastrointestinal microbiota, with the resultant dysbiosis having potentially harmful consequences that promote downstream exacerbation of various comorbidities. OBJECTIVES This narrative review aims to explore the potential relationships among ED, gut microbiota, and OSA. METHODS A search of the relevant literature was performed in the PubMed, Embase, Medline, and Web of Science databases. RESULTS Sleep is important for regulating the body's functions, and sleep deprivation can negatively affect health. OSA can damage organic functions, including reproductive function, and can lead to ED. Restoring the microbiota and improving sleep can help to improve sexual function or reverse ED and enhance other associated conditions mediated through the gut-brain axis relationship. Probiotics and prebiotics can be used as supportive strategies in the prevention and treatment of OSA, as they help to reduce systemic inflammation and improve intestinal barrier function. CONCLUSION A good diet, a healthy lifestyle, and proper bowel function are essential in controlling depression and several other pathologies. Modulating the gut microbiota through probiotics and prebiotics can provide a viable strategy for developing new therapeutic options in treating many conditions. A better understanding of these a priori unrelated phenomena would foster our understanding of the effects of OSA on human fertility and how changes in gut microbiota may play a role.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| |
Collapse
|
12
|
Shao Y, Peng Z, Xu L, Lian J, An X, Cheng MY. Decrease in the P2 Amplitude of Object Working Memory after 8 h-Recovery Sleep Following 36 h-Total Sleep Deprivation: An ERP Study. Brain Sci 2023; 13:1470. [PMID: 37891837 PMCID: PMC10605542 DOI: 10.3390/brainsci13101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The impact of sleep deprivation on working memory can only be reversed by recovery sleep (RS). However, there are limited electrophysiological studies on the effect of RS on the improvement in working memory after sleep deprivation, and the changes in the early components of event-related potentials (ERPs) before and after RS are still unclear. Therefore, this study aims to explore the effects of RS on the earlier ERP components related to object working memory following 36 h of total sleep deprivation (TSD). Twenty healthy male participants performed an object working memory task after 36 h of TSD and after 8 h of RS. Electroencephalogram data were recorded accordingly while the task was performed. Repeated ANOVA showed that P2 amplitudes related to object working memory decreased significantly after 8 h of RS compared to after a 36 h period of TSD, but there was no significant difference from baseline (BS), which indicates a trend of recovery to the baseline state. An 8 h RS can partially improve impaired object working memory caused by TSD. However, a longer period of RS is needed for the complete recovery of cognitive function after a long period of TSD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Yang Cheng
- School of Psychology, Beijing Sport University, Beijing 100084, China; (Y.S.); (Z.P.); (L.X.); (J.L.); (X.A.)
| |
Collapse
|
13
|
Axelrod S, Li X, Sun Y, Lincoln S, Terceros A, O’Neil J, Wang Z, Nguyen A, Vora A, Spicer C, Shapiro B, Young MW. The Drosophila blood-brain barrier regulates sleep via Moody G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 2023; 120:e2309331120. [PMID: 37831742 PMCID: PMC10589661 DOI: 10.1073/pnas.2309331120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sleep is vital for most animals, yet its mechanism and function remain unclear. We found that permeability of the BBB (blood-brain barrier)-the organ required for the maintenance of homeostatic levels of nutrients, ions, and other molecules in the brain-is modulated by sleep deprivation (SD) and can cell-autonomously effect sleep changes. We observed increased BBB permeability in known sleep mutants as well as in acutely sleep-deprived animals. In addition to molecular tracers, SD-induced BBB changes also increased the penetration of drugs used in the treatment of brain pathologies. After chronic/genetic or acute SD, rebound sleep or administration of the sleeping aid gaboxadol normalized BBB permeability, showing that SD effects on the BBB are reversible. Along with BBB permeability, RNA levels of the BBB master regulator moody are modulated by sleep. Conversely, altering BBB permeability alone through glia-specific modulation of moody, gαo, loco, lachesin, or neuroglian-each a well-studied regulator of BBB function-was sufficient to induce robust sleep phenotypes. These studies demonstrate a tight link between BBB permeability and sleep and indicate a unique role for the BBB in the regulation of sleep.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Xiaoling Li
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin300308, China
| | - Yingwo Sun
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrea Terceros
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Jenna O’Neil
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrew Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Benjamin Shapiro
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| |
Collapse
|
14
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
15
|
Hu Y, Bringmann H. Tfap2b acts in GABAergic neurons to control sleep in mice. Sci Rep 2023; 13:8026. [PMID: 37198238 DOI: 10.1038/s41598-023-34772-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Sleep is a universal state of behavioral quiescence in both vertebrates and invertebrates that is controlled by conserved genes. We previously found that AP2 transcription factors control sleep in C. elegans, Drosophila, and mice. Heterozygous deletion of Tfap2b, one of the mammalian AP2 paralogs, reduces sleep in mice. The cell types and mechanisms through which Tfap2b controls sleep in mammals are, however, not known. In mice, Tfap2b acts during early embryonic stages. In this study, we used RNA-seq to measure the gene expression changes in brains of Tfap2b-/- embryos. Our results indicated that genes related to brain development and patterning were differentially regulated. As many sleep-promoting neurons are known to be GABAergic, we measured the expression of GAD1, GAD2 and Vgat genes in different brain areas of adult Tfap2b+/- mice using qPCR. These experiments suggested that GABAergic genes are downregulated in the cortex, brainstem and cerebellum areas, but upregulated in the striatum. To investigate whether Tfap2b controls sleep through GABAergic neurons, we specifically deleted Tfap2b in GABAergic neurons. We recorded the EEG and EMG before and after a 6-h period of sleep deprivation and extracted the time spent in NREM and in REM sleep as well as delta and theta power to assess NREM and REM sleep, respectively. During baseline conditions, Vgat-tfap2b-/- mice exhibited both shortened NREM and REM sleep time and reduced delta and theta power. Consistently, weaker delta and theta power were observed during rebound sleep in the Vgat-tfap2b-/- mice after sleep deprivation. Taken together, the results indicate that Tfap2b in GABAergic neurons is required for normal sleep.
Collapse
Affiliation(s)
- Yang Hu
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
- Cellular Circuits and Systems, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
16
|
Troup M, Tainton-Heap LAL, van Swinderen B. Neural Ensemble Fragmentation in the Anesthetized Drosophila Brain. J Neurosci 2023; 43:2537-2551. [PMID: 36868857 PMCID: PMC10082453 DOI: 10.1523/jneurosci.1657-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
General anesthetics cause a profound loss of behavioral responsiveness in all animals. In mammals, general anesthesia is induced in part by the potentiation of endogenous sleep-promoting circuits, although "deep" anesthesia is understood to be more similar to coma (Brown et al., 2011). Surgically relevant concentrations of anesthetics, such as isoflurane and propofol, have been shown to impair neural connectivity across the mammalian brain (Mashour and Hudetz, 2017; Yang et al., 2021), which presents one explanation why animals become largely unresponsive when exposed to these drugs. It remains unclear whether general anesthetics affect brain dynamics similarly in all animal brains, or whether simpler animals, such as insects, even display levels of neural connectivity that could be disrupted by these drugs. Here, we used whole-brain calcium imaging in behaving female Drosophila flies to investigate whether isoflurane anesthesia induction activates sleep-promoting neurons, and then inquired how all other neurons across the fly brain behave under sustained anesthesia. We were able to track the activity of hundreds of neurons simultaneously during waking and anesthetized states, for spontaneous conditions as well as in response to visual and mechanical stimuli. We compared whole-brain dynamics and connectivity under isoflurane exposure to optogenetically induced sleep. Neurons in the Drosophila brain remain active during general anesthesia as well as induced sleep, although flies become behaviorally inert under both treatments. We identified surprisingly dynamic neural correlation patterns in the waking fly brain, suggesting ensemble-like behavior. These become more fragmented and less diverse under anesthesia but remain wake-like during induced sleep.SIGNIFICANCE STATEMENT When humans are rendered immobile and unresponsive by sleep or general anesthetics, their brains do not shut off - they just change how they operate. We tracked the activity of hundreds of neurons simultaneously in the brains of fruit flies that were anesthetized by isoflurane or genetically put to sleep, to investigate whether these behaviorally inert states shared similar brain dynamics. We uncovered dynamic patterns of neural activity in the waking fly brain, with stimulus-responsive neurons constantly changing through time. Wake-like neural dynamics persisted during induced sleep but became more fragmented under isoflurane anesthesia. This suggests that, like larger brains, the fly brain might also display ensemble-like behavior, which becomes degraded rather than silenced under general anesthesia.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
17
|
Kawano T, Kashiwagi M, Kanuka M, Chen CK, Yasugaki S, Hatori S, Miyazaki S, Tanaka K, Fujita H, Nakajima T, Yanagisawa M, Nakagawa Y, Hayashi Y. ER proteostasis regulators cell-non-autonomously control sleep. Cell Rep 2023; 42:112267. [PMID: 36924492 DOI: 10.1016/j.celrep.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Sleep is regulated by peripheral tissues under fatigue. The molecular pathways in peripheral cells that trigger systemic sleep-related signals, however, are unclear. Here, a forward genetic screen in C. elegans identifies 3 genes that strongly affect sleep amount: sel-1, sel-11, and mars-1. sel-1 and sel-11 encode endoplasmic reticulum (ER)-associated degradation components, whereas mars-1 encodes methionyl-tRNA synthetase. We find that these machineries function in non-neuronal tissues and that the ER unfolded protein response components inositol-requiring enzyme 1 (IRE1)/XBP1 and protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α)/activating transcription factor-4 (ATF4) participate in non-neuronal sleep regulation, partly by reducing global translation. Neuronal epidermal growth factor receptor (EGFR) signaling is also required. Mouse studies suggest that this mechanism is conserved in mammals. Considering that prolonged wakefulness increases ER proteostasis stress in peripheral tissues, our results suggest that peripheral ER proteostasis factors control sleep homeostasis. Moreover, based on our results, peripheral tissues likely cope with ER stress not only by the well-established cell-autonomous mechanisms but also by promoting the individual's sleep.
Collapse
Affiliation(s)
- Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Toshiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yoshimi Nakagawa
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
18
|
Blanco-Centurion C, Vidal-Ortiz A, Sato T, Shiromani PJ. Activity of GABA neurons in the zona incerta and ventral lateral periaqueductal grey is biased towards sleep. Sleep 2023; 46:6902001. [PMID: 36516419 DOI: 10.1093/sleep/zsac306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES As in various brain regions the activity of gamma-aminobutyric acid (GABA) neurons is largely unknown, we measured in vivo changes in calcium fluorescence in GABA neurons in the zona incerta (ZI) and the ventral lateral periaqueductal grey (vlPAG), two areas that have been implicated in regulating sleep. METHODS vGAT-Cre mice were implanted with sleep electrodes, microinjected with rAAV-DIO-GCaMP6 into the ZI (n = 6) or vlPAG (n = 5) (isoflurane anesthesia) and a GRIN (Gradient-Index) lens inserted atop the injection site. Twenty-one days later, fluorescence in individual vGAT neurons was recorded over multiple REM cycles. Regions of interest corresponding to individual vGAT somata were automatically extracted with PCA-ICA analysis. RESULTS In the ZI, 372 neurons were identified. Previously, we had recorded the activity of 310 vGAT neurons in the ZI and we combined the published dataset with the new dataset to create a comprehensive dataset of ZI vGAT neurons (total neurons = 682; mice = 11). In the vlPAG, 169 neurons (mice = 5) were identified. In both regions, most neurons were maximally active in REM sleep (R-Max; ZI = 51.0%, vlPAG = 60.9%). The second most abundant group was W-Max (ZI = 23.9%, vlPAG = 25.4%). In the ZI, but not in vlPAG, there were neurons that were NREMS-Max (11.7%). vlPAG had REMS-Off neurons (8.3%). In both areas, there were two minor classes: wake/REMS-Max and state indifferent. In the ZI, the NREMS-Max neurons fluoresced 30 s ahead of sleep onset. CONCLUSIONS These descriptive data show that the activity of GABA neurons is biased in favor of sleep in two brain regions implicated in sleep.
Collapse
Affiliation(s)
| | - Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| | - Takashi Sato
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Priyattam J Shiromani
- Department of Psychiatry and Behavioral Sciences, Charleston, SC, USA
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| |
Collapse
|
19
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
20
|
Liu F, Qu B, Wang L, Xu Y, Peng X, Zhang C, Xu D. Effect of selective sleep deprivation on heart rate variability in post-90s healthy volunteers. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13851-13860. [PMID: 36654070 DOI: 10.3934/mbe.2022645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The 5-minute frequency domain method was used to examine the effects of polysomnography (PSG)-guided acute selective sleep deprivation (REM/SWS) on the cardiovascular autonomic nervous system, heart rate, and rhythm in healthy volunteers to understand the relationship between cardiac neuro regulatory homeostasis and cardiovascular system diseases in healthy subjects. The study included 30 healthy volunteers selected through the randomized-controlled method, randomly divided into REM sleep deprivation and SWS sleep deprivation groups. PSG analyses and dynamic electrocardiogram monitoring were done at night, during slow wave sleep or REM sleep. An all-night sleep paradigm, without any interruptions, was tested 3 times for comparison. The frequency domain parameter method was further used to monitor the volunteers 5 min before and after a period of sleep deprivation. According to the characteristics of the all-night sleep scatter plot, healthy volunteers were divided into abnormal and normal scatter plot groups. When compared with the period before sleep deprivation, high frequency (HF) and normalized high-frequency component (HFnu) were found to be decreased. Normalized low-frequency component (LFnu) increased in the abnormal scatter plot group after sleep deprivation, and this difference was statistically significant (P < 0.05). The scatter plot also showed that very low frequency (VLF) increased only in the normal group after deprivation and this difference, as well, was statistically significant (P < 0.05). The increase in diastolic blood pressure in the abnormal group was statistically significant (P < 0.05), but the change in blood pressure in the normal group was not statistically significant (P > 0.05). There are 62.5% of the patients and 20% of the employees that were observed to have abnormal whole-night sleep patterns during the uninterrupted whole-night sleep regime. Patients with atrial or ventricular premature beats (more than 0.1%), and those with ST-t changes during sleep, were all ascertained as abnormal. We concluded that some healthy people could face unstable autonomic nervous functioning related to their long-term tension, anxiety, time urgency, hostility, and other chronic stress states. In the face of acute sleep deprivation selectivity, mild stress based excitability of the vagus nerve is reduced, which diminishes the protective function, making them susceptible to conditions such as premature ventricular arrhythmia.
Collapse
Affiliation(s)
- Fengjuan Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
- Clinical Trial Research Center, the Affiliated Central Hospital of Qingdao University, Qingdao 266035, China
| | - Binbin Qu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Lili Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yahui Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Xiufa Peng
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Chunling Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| | - Dexiang Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Central Hospital of Qingdao University, Qingdao 266042, China
| |
Collapse
|
21
|
Walker WE. GOODNIGHT, SLEEP TIGHT, DON'T LET THE MICROBES BITE: A REVIEW OF SLEEP AND ITS EFFECTS ON SEPSIS AND INFLAMMATION. Shock 2022; 58:189-195. [PMID: 35959798 PMCID: PMC9489678 DOI: 10.1097/shk.0000000000001976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Sleep is a restorative biological process that is crucial for health and homeostasis. However, patient sleep is frequently interrupted in the hospital environment, particularly within the intensive care unit. Suboptimal sleep may alter the immune response and make patients more vulnerable to infection and sepsis. In addition, hospitalized patients with sepsis experience altered sleep relative to patients without infectious disease, suggesting a bidirectional interplay. Preclinical studies have generated complementary findings, and together, these studies have expanded our mechanistic understanding. This review article summarizes clinical and preclinical studies describing how sleep affects inflammation and the host's susceptibility to infection. We also highlight potential strategies to reverse the detrimental effects of sleep interruption in the intensive care unit.
Collapse
Affiliation(s)
- Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX
| |
Collapse
|
22
|
López-Muciño LA, García-García F, Cueto-Escobedo J, Acosta-Hernández M, Venebra-Muñoz A, Rodríguez-Alba JC. Sleep loss and addiction. Neurosci Biobehav Rev 2022; 141:104832. [PMID: 35988803 DOI: 10.1016/j.neubiorev.2022.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Reducing sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric disorders. Furthermore, previous studies have shown that reduction in sleep time is a factor that favors relapse in addicted patients. Additionally, animal models have demonstrated that both sleep restriction and sleep deprivation increase the preference for alcohol, methylphenidate, and the self-administration of cocaine. Therefore, the present review discusses current knowledge about the influence of sleep hours reduction on addictivebehaviors; likewise, we discuss the neuronal basis underlying the sleep reduction-addiction relationship, like the role of the orexin and dopaminergic system and neuronal plasticity (i.e., delta FosB expression). Potentially, chronic sleep restriction could increase brain vulnerability and promote addictive behavior.
Collapse
Affiliation(s)
- Luis Angel López-Muciño
- Health Sciences Ph.D. Program, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Fabio García-García
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Jonathan Cueto-Escobedo
- Department of Clinical and Translational Research, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Mario Acosta-Hernández
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Arturo Venebra-Muñoz
- Laboratory of Neurobiology of Addiction and Brain Plasticity, Faculty of Science, Autonomous University of Mexico State, Edomex 50295, Mexico.
| | - Juan Carlos Rodríguez-Alba
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| |
Collapse
|
23
|
Greening L, McBride S. A Review of Equine Sleep: Implications for Equine Welfare. Front Vet Sci 2022; 9:916737. [PMID: 36061116 PMCID: PMC9428463 DOI: 10.3389/fvets.2022.916737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is a significant biological requirement for all living mammals due to its restorative properties and its cognitive role in memory consolidation. Sleep is ubiquitous amongst all mammals but sleep profiles differ between species dependent upon a range of biological and environmental factors. Given the functional importance of sleep, it is important to understand these differences in order to ensure good physical and psychological wellbeing for domesticated animals. This review focuses specifically on the domestic horse and aims to consolidate current information on equine sleep, in relation to other species, in order to (a) identify both quantitatively and qualitatively what constitutes normal sleep in the horse, (b) identify optimal methods to measure equine sleep (logistically and in terms of accuracy), (c) determine whether changes in equine sleep quantity and quality reflect changes in the animal's welfare, and (d) recognize the primary factors that affect the quantity and quality of equine sleep. The review then discusses gaps in current knowledge and uses this information to identify and set the direction of future equine sleep research with the ultimate aim of improving equine performance and welfare. The conclusions from this review are also contextualized within the current discussions around the “social license” of horse use from a welfare perspective.
Collapse
Affiliation(s)
- Linda Greening
- Hartpury University and Hartpury College, Gloucester, United Kingdom
- *Correspondence: Linda Greening
| | - Sebastian McBride
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
24
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Murillo-Rodríguez E, Coronado-Álvarez A, López-Muciño LA, Pastrana-Trejo JC, Viana-Torre G, Barberena JJ, Soriano-Nava DM, García-García F. Neurobiology of dream activity and effects of stimulants on dreams. Curr Top Med Chem 2022; 22:1280-1295. [PMID: 35761491 DOI: 10.2174/1568026622666220627162032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The sleep-wake cycle is the result of the activity of a multiple neurobiological network interaction. Dreaming feature is one interesting sleep phenomena that represents sensorial components, mostly visual perceptions, accompanied with intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dreams generation by the current data that suggests the influence of drugs on dream generation. Here, we discuss the review on some of the neurobiological mechanism of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Luis Angel López-Muciño
- Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| | - José Carlos Pastrana-Trejo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Gerardo Viana-Torre
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Juan José Barberena
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group.,Escuela de Psicología, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Fabio García-García
- Intercontinental Neuroscience Research Group.,Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| |
Collapse
|
26
|
Acute Sleep Deprivation Impairs Motor Inhibition in Table Tennis Athletes: An ERP Study. Brain Sci 2022; 12:brainsci12060746. [PMID: 35741631 PMCID: PMC9221109 DOI: 10.3390/brainsci12060746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Excellent response inhibition is the basis for outstanding competitive athletic performance, and sleep may be an important factor affecting athletes’ response inhibition. This study investigates the effect of sleep deprivation on athletes’ response inhibition, and its differentiating effect on non-athlete controls’ performance, with the aim of helping athletes effectively improve their response inhibition ability through sleep pattern manipulation. Behavioral and event-related potential (ERP) data were collected from 36 participants (16 table tennis athletes and 20 general college students) after 36 h of sleep deprivation using ERP techniques and a stop-signal task. Sleep deprivation’s different effects on response inhibition in the two groups were explored through repeated-measures ANOVA. Behavioral data showed that in a baseline state, stop-signal response time was significantly faster in table tennis athletes than in non-athlete controls, and appeared significantly longer after sleep deprivation in both groups. ERP results showed that at baseline state, N2, ERN, and P3 amplitudes were lower in table tennis athletes than in non-athlete controls, and corresponding significant decreases were observed in non-athlete controls after 36 h of sleep deprivation. Table tennis athletes showed a decrease in P3 amplitude and no significant difference in N2 and ERN amplitudes, after 36 h of sleep deprivation compared to the baseline state. Compared to non-athlete controls, table tennis athletes had better response inhibition, and the adverse effects of sleep deprivation on response inhibition occurred mainly in the later top-down motor inhibition process rather than in earlier automated conflict detection and monitoring.
Collapse
|
27
|
Miyazaki S, Kawano T, Yanagisawa M, Hayashi Y. Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. iScience 2022; 25:104452. [PMID: 35707721 PMCID: PMC9189131 DOI: 10.1016/j.isci.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying sleep homeostasis are poorly understood. The nematode Caenorhabditis elegans exhibits 2 types of sleep: lethargus, or developmentally timed, and stress-induced sleep. Lethargus is characterized by alternating cycles of sleep and motion bouts. Sleep bouts are homeostatically regulated, i.e., prolonged active bouts lead to prolonged sleep bouts. Here we reveal that the interneuron ALA is crucial for homeostatic regulation during lethargus. Intracellular Ca2+ in ALA gradually increased during active bouts and rapidly decayed upon transitions to sleep bouts. Longer active bouts were accompanied by higher intracellular Ca2+ peaks. Optogenetic activation of ALA during active bouts caused transitions to sleep bouts. Dysfunction of CEH-17, which is an LIM homeodomain transcription factor selectively expressed in ALA, impaired the characteristic patterns of ALA intracellular Ca2+ and abolished the homeostatic regulation of sleep bouts. These findings indicate that ALA encodes sleep pressure and contributes to sleep homeostasis. ALA gradually increases its activity during motion bouts during lethargus in C. elegans Dysfunction or artificial activation of ALA perturbs the sleep structure ALA plays a crucial role in homeostatic sleep regulation
Collapse
Affiliation(s)
- Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 603-8363, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Corresponding author
| |
Collapse
|
28
|
Rial RV, Canellas F, Akaârir M, Rubiño JA, Barceló P, Martín A, Gamundí A, Nicolau MC. The Birth of the Mammalian Sleep. BIOLOGY 2022; 11:biology11050734. [PMID: 35625462 PMCID: PMC9138988 DOI: 10.3390/biology11050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Mammals evolved from reptiles as a consequence of an evolutionary bottleneck. Some diurnal reptiles extended their activity, first to twilight and then to the entire dark time. This forced the change of the visual system. Pursuing maximal sensitivity, they abandoned the filters protecting the eyes against the dangerous diurnal light, which, in turn, forced immobility in lightproof burrows during light time. This was the birth of the mammalian sleep. Then, the Cretacic-Paleogene extinction of dinosaurs leaved free the diurnal niche and allowed the expansion of a few early mammals to diurnal life and the high variability of sleep traits. On the other hand, we propose that the idling rest is a state showing homeostatic regulation. Therefore, the difference between behavioral rest and wakeful idling is rather low: both show quiescence, raised sensory thresholds, reversibility, specific sleeping-resting sites and body positions, it is a pleasing state, and both are dependent of circadian and homeostatic regulation. Indeed, the most important difference is the unconsciousness of sleep and the consciousness of wakeful idling. Thus, we propose that sleep is a mere upgrade of the wakeful rest, and both may have the same function: guaranteeing rest during a part of the daily cycle. Abstract Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This was the birth of the mammalian sleep, the main finding of this report. Improved audition and olfaction counterweighed the visual impairments and facilitated the cortical development. This process is called “The Nocturnal Evolutionary Bottleneck”. Pre-mammals were nocturnal until the Cretacic-Paleogene extinction of dinosaurs. Some early mammals returned to diurnal activity, and this allowed the high variability in sleeping patterns observed today. The traits of Waking Idleness are almost identical to those of behavioral sleep, including homeostatic regulation. This is another important finding of this report. In summary, behavioral sleep seems to be an upgrade of Waking Idleness Indeed, the trait that never fails to show is quiescence. We conclude that the main function of sleep consists in guaranteeing it during a part of the daily cycle.
Collapse
Affiliation(s)
- Rubén V. Rial
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971-173-147; Fax: +34-971-173-184
| | - Francesca Canellas
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Mourad Akaârir
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - José A. Rubiño
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Barceló
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Aida Martín
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Antoni Gamundí
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - M. Cristina Nicolau
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
29
|
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022; 32:1895-1908.e5. [PMID: 35303417 PMCID: PMC9090989 DOI: 10.1016/j.cub.2022.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tobias Stork
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Xu L, Yang X, Peng Z, Song T, Wang L, Dai C, Xu M, Shao Y, Lv J. Modafinil ameliorates the decline in pronunciation-related working memory caused by 36-h acute total sleep deprivation: an ERP study. Neurobiol Learn Mem 2022; 192:107625. [DOI: 10.1016/j.nlm.2022.107625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023]
|
31
|
Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021; 15:768762. [PMID: 34803618 PMCID: PMC8602873 DOI: 10.3389/fnsys.2021.768762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising, and this typically evokes prediction error signatures in mammalian brains. In humans such mismatched expectations are often associated with an emotional response as well, and emotional dysregulation can lead to cognitive disorders such as depression or schizophrenia. Emotional responses are understood to be important for memory consolidation, suggesting that positive or negative 'valence' cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely (as could happen by generalization or habituation) is probably maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain function as an ongoing balance between prediction and surprise suggests a compelling approach to study and understand the evolution of consciousness in animals. In particular, this view may provide insight into the function and evolution of 'active' sleep. Here, we propose that active sleep - when animals are behaviorally asleep but their brain seems awake - is widespread beyond mammals and birds, and may have evolved as a mechanism for optimizing predictive processing in motile creatures confronted with constantly changing environments. To explore our hypothesis, we progress from humans to invertebrates, investigating how a potential role for rapid eye movement (REM) sleep in emotional regulation in humans could be re-examined as a conserved sleep function that co-evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness in animals.
Collapse
Affiliation(s)
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Bode A, Kuula L. Romantic Love and Sleep Variations: Potential Proximate Mechanisms and Evolutionary Functions. BIOLOGY 2021; 10:923. [PMID: 34571801 PMCID: PMC8468029 DOI: 10.3390/biology10090923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
This article provides a narrative review of what is known about romantic love and sleep variations and provides possible explanations for the association. Romantic love and sleep are described using a comprehensive, unifying framework advocated by Tinbergen. We summarise the findings of studies investigating the relationship between romantic love and sleep. Sleep variations are associated with romantic love in adolescents and young adults. We then detail some proximate mechanisms that may contribute to sleep variations in people experiencing romantic love before considering potential evolutionary functions of sleep variations in people experiencing romantic love. The relationship between symptoms of psychopathology and sleep variations in people experiencing romantic love is described. With the current state of knowledge, it is not possible to determine whether sleep variations associated with romantic love are adaptations or by-products of romantic love. We conclude by proposing areas for future research.
Collapse
Affiliation(s)
- Adam Bode
- School of Archaeology and Anthropology, ANU College of Arts and Social Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
33
|
Smidt SDE, Hitt T, Zemel BS, Mitchell JA. Sex differences in childhood sleep and health implications. Ann Hum Biol 2021; 48:474-484. [PMID: 35105205 PMCID: PMC9254351 DOI: 10.1080/03014460.2021.1998624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT Sleep is critical for optimal childhood metabolic health and neurodevelopment. However, there is limited knowledge regarding childhood sex differences in sleep, including children with neurodevelopmental disorders, and the impact of such differences on metabolic health. OBJECTIVE To evaluate if sex differences in childhood sleep exist and if sleep associates with metabolic health outcomes equally by sex. Using autism spectrum disorder (ASD) as a case study, we also examine sleep sex differences in children with a neurodevelopmental disorder. METHODS A narrative review explored the literature focussing on sex differences in childhood sleep. RESULTS Sex differences in sleep were not detected among pre-adolescents. However, female adolescents were more likely to report impaired sleep than males. Childhood obesity is more common in males. Shorter sleep duration may be associated with obesity in male pre-adolescents/adolescents; although findings are mixed. ASD is male-predominant; yet, there was an indication that pre-adolescent female children with ASD had more impaired sleep. CONCLUSION Sex differences in sleep appear to emerge in adolescence with more impaired sleep in females. This trend was also observed among pre-adolescent female children with ASD. Further research is needed on sex differences in childhood sleep and metabolic health and the underlying mechanisms driving these differences.
Collapse
Affiliation(s)
- Stacey D. Elkhatib Smidt
- Division of Neurology, Children’s Hospital of Philadelphia, PA
- Sleep Center, Children’s Hospital of Philadelphia, PA
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Talia Hitt
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, PA
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan A. Mitchell
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Affiliation(s)
- Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Icahn School of Medicine at Mount Sinai, New York, USA
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| |
Collapse
|
35
|
Turan I, Sayan Ozacmak H, Ozacmak VH, Ergenc M, Bayraktaroğlu T. The effects of glucagon-like peptide 1 receptor agonist (exenatide) on memory impairment, and anxiety- and depression-like behavior induced by REM sleep deprivation. Brain Res Bull 2021; 174:194-202. [PMID: 34146656 DOI: 10.1016/j.brainresbull.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Previous investigations have shown that REM sleep deprivation impairs the hippocampus-dependent memory, long-term potentiation and causing mood changes. The aim of the present study was to explore the effects of exenatide on memory performance, anxiety- and depression like behavior, oxidative stress markers, and synaptic protein levels in REM sleep deprived rats. A total of 40 male Wistar rats were randomly divided to control, exenatide-treated control, sleep deprivation (SD), wide platform (WP) and exenatide-treated SD groups. During experiments, exenatide treatment (0.5 μg/kg, subcutaneously) was applied daily in a single dose for 9 days. Modified multiple platform method was employed to generate REM sleep deprivation for 72 h. The Morris water maze test was used to assess memory performance. Anxiety- and depression-like behaviors were evaluated by open field test (OFT), elevated plus maze (EPM) forced swimming test (FST), respectively 72 h after REMSD. The levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and postsynaptic density proteins 95 (PSD95) were measured in tissues of hippocampus and prefrontal cortex. The content of malondialdehyde (MDA) and reduced glutathione (GSH) were also measured. In the present study, an impairment in memory was observed in SD rats at the 24th hour of SD in compare to those of other groups. REMSD increased depression-like behavior in FST as well as the number of rearing and crossing square in OFT. Anxiety is the most common comorbid condition with depressive disorders. Contents of CaMKII and PSD95 decreased in hippocampus of SD rats. Exenatide treatment improved the impaired memory of SD rats and increased CaMKII content in hippocampus There was no difference in MDA and GSH levels among groups. Exenatide treatment also diminished locomotor activity in OFT. In conclusion, treatment with exenatide, at least in part, prevented from these cognitive and behavioral changes possibly through normalizing CaMKII levels in the hippocampus.
Collapse
Affiliation(s)
- Inci Turan
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - V Haktan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Meryem Ergenc
- Zonguldak Bulent Ecevit University Faculty of Medicine, Institute of Health Sciences Department of Physiology, Zonguldak, Turkey
| | - Taner Bayraktaroğlu
- Zonguldak Bulent Ecevit Unıversity Faculty of Medicine, Department of Endocrinology, Zonguldak, Turkey
| |
Collapse
|
36
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Hui L, Benca R. The Bidirectional Relationship Between Obstructive Sleep Apnea and Chronic Kidney Disease. J Stroke Cerebrovasc Dis 2021; 30:105652. [PMID: 33608118 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Sleep apnea is a condition with significant health risks and increased risk of mortality and is prevalent in patients with chronic kidney disease. This paper describes the detrimental cardiovascular sequelae of sleep-disordered breathing and explores the bidirectional relationship between chronic kidney disease and obstructive sleep apnea. Obstructive sleep apnea-related hypoxia produces a range of harmful systemic effects including oxidative stress, inflammation, and sympathetic activation that collectively worsen the progression of renal disease. In turn, chronic kidney disease can result in increased severity of sleep apnea through inducing (1) uremic neuropathy and myopathy, (2) altered chemosensitivity, and (3) hypervolemia. Continuous positive airway pressure therapy remains the mainstay of treatment for reversing the health risks of apnea. Other strategies aimed at decreasing the high prevalence and associated morbidity of sleep apnea include weight loss, oral appliances, and corrective surgery in the case of airway obstruction.
Collapse
Affiliation(s)
- Lily Hui
- University of California Irvine Medical Center, Medicine, 40 Palatine, Irvine, CA 92868, United States.
| | - Ruth Benca
- University of California, Irvine, 101 The City Drive South, Bldg 3, Rt. 88, Irvine, CA 92697, United States
| |
Collapse
|
38
|
Delic V, Ratliff WA, Citron BA. Sleep Deprivation, a Link Between Post-Traumatic Stress Disorder and Alzheimer's Disease. J Alzheimers Dis 2021; 79:1443-1449. [PMID: 33459652 DOI: 10.3233/jad-201378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An estimated 5 million Americans are living with Alzheimer's disease (AD), and there is also a significant impact on caregivers, with an additional 16 million Americans providing unpaid care for individuals with AD and other dementias. These numbers are projected to increase in the coming years. While AD is still without a cure, continued research efforts have led to better understanding of pathology and potential risk factors that could be exploited to slow disease progression. A bidirectional relationship between sleep deprivation and AD has been suggested and is well supported by both human and animal studies. Even brief episodes of inadequate sleep have been shown to cause an increase in amyloidβ and tau proteins, both well-established contributors toAD pathology. Sleep deprivation is also the most common consequence of post-traumatic stress disorder (PTSD). Patients with PTSD frequently present with sleep disturbances and also develop dementia at twice the rate of the general population accounting for a disproportionate representation of AD among U.S. Veterans. The goal of this review is to highlight the relationship triad between sleep deprivation, AD, and PTSD as well as their impact on molecular mechanisms driving AD pathology.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ, USA
| | - Whitney A Ratliff
- Laboratory of Molecular Biology, Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ, USA.,Department of Pharmacology, Physiology, & Neuroscience ,Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
39
|
Hu Y, Korovaichuk A, Astiz M, Schroeder H, Islam R, Barrenetxea J, Fischer A, Oster H, Bringmann H. Functional Divergence of Mammalian TFAP2a and TFAP2b Transcription Factors for Bidirectional Sleep Control. Genetics 2020; 216:735-752. [PMID: 32769099 PMCID: PMC7648577 DOI: 10.1534/genetics.120.303533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Sleep is a conserved behavioral state. Invertebrates typically show quiet sleep, whereas in mammals, sleep consists of periods of nonrapid-eye-movement sleep (NREMS) and REM sleep (REMS). We previously found that the transcription factor AP-2 promotes sleep in Caenorhabditiselegans and Drosophila In mammals, several paralogous AP-2 transcription factors exist. Sleep-controlling genes are often conserved. However, little is known about how sleep genes evolved from controlling simpler types of sleep to govern complex mammalian sleep. Here, we studied the roles of Tfap2a and Tfap2b in sleep control in mice. Consistent with our results from C. elegans and Drosophila, the AP-2 transcription factors Tfap2a and Tfap2b also control sleep in mice. Surprisingly, however, the two AP-2 paralogs play contrary roles in sleep control. Tfap2a reduction of function causes stronger delta and theta power in both baseline and homeostasis analysis, thus indicating increased sleep quality, but did not affect sleep quantity. By contrast, Tfap2b reduction of function decreased NREM sleep time specifically during the dark phase, reduced NREMS and REMS power, and caused a weaker response to sleep deprivation. Consistent with the observed signatures of decreased sleep quality, stress resistance and memory were impaired in Tfap2b mutant animals. Also, the circadian period was slightly shortened. Taken together, AP-2 transcription factors control sleep behavior also in mice, but the role of the AP-2 genes functionally diversified to allow for a bidirectional control of sleep quality. Divergence of AP-2 transcription factors might perhaps have supported the evolution of more complex types of sleep.
Collapse
Affiliation(s)
- Yang Hu
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Alejandra Korovaichuk
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Mariana Astiz
- Institute of Neurobiology, University of Lübeck, 23562, Germany
| | - Henning Schroeder
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Rezaul Islam
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Jon Barrenetxea
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center, Göttingen 37075, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562, Germany
| | - Henrik Bringmann
- Max Planck Research Group "Sleep and Waking", Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
- Department of Animal Physiology/Neurophysiology, Philipps University Marburg, Marburg 35043, Germany
- BIOTEC of the Technical University Dresden, Dresden 01307, Germany
| |
Collapse
|
40
|
Nakai A, Fujiyama T, Nagata N, Kashiwagi M, Ikkyu A, Takagi M, Tatsuzawa C, Tanaka K, Kakizaki M, Kanuka M, Kawano T, Mizuno S, Sugiyama F, Takahashi S, Funato H, Sakurai T, Yanagisawa M, Hayashi Y. Sleep Architecture in Mice Is Shaped by the Transcription Factor AP-2β. Genetics 2020; 216:753-764. [PMID: 32878901 PMCID: PMC7648583 DOI: 10.1534/genetics.120.303435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanism regulating sleep largely remains to be elucidated. In humans, families that carry mutations in TFAP2B, which encodes the transcription factor AP-2β, self-reported sleep abnormalities such as short-sleep and parasomnia. Notably, AP-2 transcription factors play essential roles in sleep regulation in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster Thus, AP-2 transcription factors might have a conserved role in sleep regulation across the animal phyla. However, direct evidence supporting the involvement of TFAP2B in mammalian sleep was lacking. In this study, by using the CRISPR/Cas9 technology, we generated two Tfap2b mutant mouse strains, Tfap2bK144 and Tfap2bK145 , each harboring a single-nucleotide mutation within the introns of Tfap2b mimicking the mutations in two human kindreds that self-reported sleep abnormalities. The effects of these mutations were compared with those of a Tfap2b knockout allele (Tfap2b-). The protein expression level of TFAP2B in the embryonic brain was reduced to about half in Tfap2b+/- mice and was further reduced in Tfap2b-/- mice. By contrast, the protein expression level was normal in Tfap2bK145/+ mice but was reduced in Tfap2bK145/K145 mice to a similar extent as Tfap2b-/- mice. Tfap2bK144/+ and Tfap2bK144/K144 showed normal protein expression levels. Tfap2b+/- female mice showed increased wakefulness time and decreased nonrapid eye movement sleep (NREMS) time. By contrast, Tfap2bK145/+ female mice showed an apparently normal amount of sleep but instead exhibited fragmented NREMS, whereas Tfap2bK144/+ male mice showed reduced NREMS time specifically in the dark phase. Finally, in the adult brain, Tfap2b-LacZ expression was detected in the superior colliculus, locus coeruleus, cerebellum, and the nucleus of solitary tract. These findings provide direct evidence that TFAP2B influences NREMS amounts in mice and also show that different mutations in Tfap2b can lead to diverse effects on sleep architecture.
Collapse
Affiliation(s)
- Ayaka Nakai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- PhD Program in Neuroscience, Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Faculty of Medicine, University of Tsukuba, 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- R&D Center for Frontiers of MIRAI in Policy and Technology, University of Tsukuba, 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 305-8575, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 606-8507, Japan
| |
Collapse
|
41
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
42
|
Unadkat K, Whittall JB. Unexpected predicted length variation for the coding sequence of the sleep related gene, BHLHE41 in gorilla amidst strong purifying selection across mammals. PLoS One 2020; 15:e0223203. [PMID: 32287315 PMCID: PMC7156063 DOI: 10.1371/journal.pone.0223203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 12/05/2022] Open
Abstract
There is a molecular basis for many sleep patterns and disorders involving circadian clock genes. In humans, "short-sleeper" behavior has been linked to specific amino acid substitutions in BHLHE41 (DEC2), yet little is known about variation at these sites and across this gene in mammals. We compare BHLHE41 coding sequences for 27 mammals. Approximately half of the coding sequence was invariable at the nucleotide level and close to three-quarters of the amino acid alignment was identical. No other mammals had the same "short-sleeper" amino acid substitutions previously described from humans. Phylogenetic analyses based on the nucleotides of the coding sequence alignment are consistent with established mammalian relationships confirming orthology among the sampled sequences. Significant purifying selection was detected in about two-thirds of the variable codons and no codons exhibited significant signs of positive selection. Unexpectedly, the gorilla BHLHE41 sequence has a 318 bp insertion at the 5' end of the coding sequence and a deletion of 195 bp near the 3' end of the coding sequence (including the two short sleeper variable sites). Given the strong signal of purifying selection across this gene, phylogenetic congruence with expected relationships and generally conserved function among mammals investigated thus far, we suggest the indels predicted in the gorilla BHLHE41 may represent an annotation error and warrant experimental validation.
Collapse
Affiliation(s)
- Krishna Unadkat
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| |
Collapse
|
43
|
Abstract
Rapid-eye movement (REM) sleep is a paradoxical sleep state characterized by brain activity similar to wakefulness, rapid-eye-movement, and lack of muscle tone. REM sleep is a fundamental brain function, evolutionary conserved across species, including human, mouse, bird, and even reptiles. The physiological importance of REM sleep is highlighted by severe sleep disorders incurred by a failure in REM sleep regulation. Despite the intense interest in the mechanism of REM sleep regulation, the molecular machinery is largely left to be investigated. In models of REM sleep regulation, acetylcholine has been a pivotal component. However, even newly emerged techniques such as pharmacogenetics and optogenetics have not fully clarified the function of acetylcholine either at the cellular level or neural-circuit level. Recently, we discovered that the Gq type muscarinic acetylcholine receptor genes, Chrm1 and Chrm3, are essential for REM sleep. In this review, we develop the perspective of current knowledge on REM sleep from a molecular viewpoint. This should be a starting point to clarify the molecular and cellular machinery underlying REM sleep regulation and will provide insights to explore physiological functions of REM sleep and its pathological roles in REM-sleep-related disorders such as depression, PTSD, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Briguglio M, Vitale JA, Galentino R, Banfi G, Zanaboni Dina C, Bona A, Panzica G, Porta M, Dell'Osso B, Glick ID. Healthy Eating, Physical Activity, and Sleep Hygiene (HEPAS) as the Winning Triad for Sustaining Physical and Mental Health in Patients at Risk for or with Neuropsychiatric Disorders: Considerations for Clinical Practice. Neuropsychiatr Dis Treat 2020; 16:55-70. [PMID: 32021199 PMCID: PMC6955623 DOI: 10.2147/ndt.s229206] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Neuropsychiatric disorders stem from gene-environment interaction and their development can be, at least in some cases, prevented by the adoption of healthy and protective lifestyles. Once full blown, neuropsychiatric disorders are prevalent conditions that patients live with a great burden of disability. Indeed, the determinants that increase the affliction of neuropsychiatric disorders are various, with unhealthy lifestyles providing a significant contribution in the interplay between genetic, epigenetic, and environmental factors that ultimately represent the pathophysiological basis of these impairing conditions. On one hand, the adoption of Healthy Eating education, Physical Activity programs, and Sleep hygiene promotion (HEPAS) has the potential to become one of the most suitable interventions to reduce the risk to develop neuropsychiatric disorders, while, on the other hand, its integration with pharmacological and psychological therapies seems to be essential in the overall management of neuropsychiatric disorders in order to reduce the disability and improve the quality of life of affected patients. We present an overview of the current evidence in relation to HEPAS components in the prevention and management of neuropsychiatric disorders and provide suggestions for clinical practice.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy
| | | | - Roberta Galentino
- IRCCS Orthopedic Institute Galeazzi, Tourette's Syndrome and Movement Disorders Centre, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alberto Bona
- Neurosurgery Department, ICCS Istituto Clinico Città Studi, Milan, Italy
| | - Giancarlo Panzica
- Department of Neuroscience, Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Mauro Porta
- IRCCS Orthopedic Institute Galeazzi, Tourette's Syndrome and Movement Disorders Centre, Milan, Italy
| | - Bernardo Dell'Osso
- University of Milan, Department of Clinical and Biomedical Sciences Luigi Sacco, ASST Fatebenefratelli-Sacco, Ospedale Sacco Polo Universitario, Milan, Italy.,"Aldo Ravelli" Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Ira David Glick
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
45
|
Abrahao KP, Pava MJ, Lovinger DM. Dose-dependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology 2019; 164:107913. [PMID: 31843396 DOI: 10.1016/j.neuropharm.2019.107913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Alcohol is commonly used as a sleep inducer/aid by humans. However, individuals diagnosed with alcohol use disorders have sleep problems. Few studies have examined the effect of ethanol on physiological features of sedation and anesthesia, particularly at high doses. This study used polysomnography and a rapid, unbiased scoring of vigilance states with an automated algorithm to provide a thorough characterization of dose-dependent acute ethanol effects on sleep and electroencephalogram (EEG) power spectra in C57BL/6J male mice. Ethanol had a narrow dose-response effect on sleep. Only a high dose (4.0 g/kg) produced a unique, transient state that could not be characterized in terms of canonical sleep-wake states, so we dubbed this novel state Drug-Induced State with a Characteristic Oscillation in the Theta Band (DISCO-T). After this anesthetic effect, the high dose of alcohol promoted NREM sleep by increasing the duration of NREM bouts while reducing wake. REM sleep was differentially responsive to the circadian timing of ethanol administration. EEG power spectra proved more sensitive to ethanol than sleep measures as there were clear effects of ethanol at 2.0 and 4.0 g/kg doses. Ethanol promoted delta oscillations and suppressed faster frequencies, but there were clear, differential effects on wake and REM EEG power based on the timing of the ethanol injection. Understanding the neural basis of the extreme soporific effects of high dose ethanol may aid in treating acute toxicity brought about by patterns of excessive binge consumption commonly observed in young people.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Matthew J Pava
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Montano N, Fiorelli E, Tobaldini E. Sleep Duration and the Heart. J Am Coll Cardiol 2019; 74:1315-1316. [DOI: 10.1016/j.jacc.2019.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
|
47
|
Hartman N, Greening LM. A Preliminary Study Investigating the Influence of Auditory Stimulation on the Occurrence of Nocturnal Equine Sleep-Related Behavior in Stabled Horses. J Equine Vet Sci 2019; 82:102782. [PMID: 31732116 DOI: 10.1016/j.jevs.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
The physical environment is known to influence nocturnal behavioral time budgets of the stabled horse, but less evidence exists to suggest how this might be affected by including additional sensory stimuli. This study aimed to establish the impact of novel auditory stimuli on the frequency of equine sleep-related behavior. Seven horses stabled for 24 hours per day on the same yard receiving the same daily management routine were observed from 2030 to 0630 over nine nights. Frequency of nocturnal behavior was recorded using focal intermittent sampling against a predetermined ethogram and an infrared CCTV camera system. Data were recorded under the following conditions: without music for two nights (phase A1), exposure to music for five nights (Beethoven's ninth Symphony) played at an average of 62.3 decibels (phases B1 [nights 3-4] and B2 [nights 6-7]), and two further nonconsecutive nights (phase A2) when music was no longer played. A general linear model was used to determine differences in the frequency of parametric behavioral data with a significantly higher occurrence of "ingestion" (F [3,18] = 7.910, P = .001) during phases in B compared with A, and a significant decrease in the occurrence of "other" behavior (F [3,18] = 10.25, P = .000) comparing phase A1 with all other phases. The Wilcoxon signed rank test highlighted significant differences in the frequency of "lateral recumbency" between specific phases (P < .05). The addition of music appears to have a significant effect on the equine nocturnal time budget that might be beneficial from an equine sleep perspective.
Collapse
Affiliation(s)
- Naomi Hartman
- Equine Science Department, Hartpury University, Gloucester, Gloucestershire, UK
| | | |
Collapse
|
48
|
The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish. BMC Evol Biol 2018; 18:89. [PMID: 29909776 PMCID: PMC6004695 DOI: 10.1186/s12862-018-1199-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time. Electronic supplementary material The online version of this article (10.1186/s12862-018-1199-9) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell 2018; 17:e12757. [PMID: 29573324 PMCID: PMC5946070 DOI: 10.1111/acel.12757] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
The African turquoise killifish has recently gained significant traction as a new research organism in the aging field. Our understanding of aging has strongly benefited from canonical research organisms—yeast, C. elegans, Drosophila, zebrafish, and mice. Many characteristics that are essential to understand aging—for example, the adaptive immune system or the hypothalamo‐pituitary axis—are only present in vertebrates (zebrafish and mice). However, zebrafish and mice live more than 3 years and their relatively long lifespans are not compatible with high‐throughput studies. Therefore, the turquoise killifish, a vertebrate with a naturally compressed lifespan of only 4–6 months, fills an essential gap to understand aging. With a recently developed genomic and genetic toolkit, the turquoise killifish not only provides practical advantages for lifespan and longitudinal experiments, but also allows more systematic characterizations of the interplay between genetics and environment during vertebrate aging. Interestingly, the turquoise killifish can also enter a long‐term dormant state during development called diapause. Killifish embryos in diapause already have some organs and tissues, and they can last in this state for years, exhibiting exceptional resistance to stress and to damages due to the passage of time. Understanding the diapause state could give new insights into strategies to prevent the damage caused by aging and to better preserve organs, tissues, and cells. Thus, the African turquoise killifish brings two interesting aspects to the aging field—a compressed lifespan and a long‐term resistant diapause state, both of which should spark new discoveries in the field.
Collapse
Affiliation(s)
- Chi-Kuo Hu
- Department of Genetics; Stanford University; Stanford CA USA
| | - Anne Brunet
- Department of Genetics; Stanford University; Stanford CA USA
- Glenn Laboratories for the Biology of Aging; Stanford CA USA
| |
Collapse
|
50
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|