1
|
Hasumi M, Ito H, Machida K, Niwa T, Taminato T, Nagai Y, Imataka H, Taguchi H. Dissecting the mechanism of NOP56 GGCCUG repeat-associated non-AUG translation using cell-free translation systems. J Biol Chem 2025; 301:108360. [PMID: 40015643 PMCID: PMC11979933 DOI: 10.1016/j.jbc.2025.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The repeat expansion in the human genome contributes to neurodegenerative disorders such as spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis. Transcripts with repeat expansions undergo noncanonical translation called repeat-associated non-AUG (RAN) translation. The NOP56 gene, implicated in SCA36, contains a GGCCTG repeat in its first intron. In tissues of patients with SCA36, poly (Gly-Pro) and poly (Pro-Arg) peptides, likely produced through NOP56 RAN translation in (NOP56-RAN), have been detected. However, the detailed mechanism underlying NOP56-RAN remains unclear. To address this, we used cell-free translation systems to investigate the mechanism of NOP56-RAN and identified the following features. (i) Translation occurs in all reading frames of the sense strand of NOP56 intron 1. (ii) Translation is initiated in a 5' cap-dependent manner from near-cognate start codons upstream of the GGCCUG repeat in each frame. (iii) Longer GGCCUG repeats enhance NOP56-RAN. (iv) A frameshift occurs within the GGCCUG repeat. These findings provide insights into the similarities between NOP56-RAN and other types of RAN translation.
Collapse
Affiliation(s)
- Mayuka Hasumi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Hayato Ito
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Tomoya Taminato
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan; Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan.
| |
Collapse
|
2
|
Rohrer C, Palumbo A, Paul M, Reese E, Basu S. Neurotransmitters and neural hormone-based probes for quadruplex DNA sequences associated with neurodegenerative diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39561111 DOI: 10.1080/15257770.2024.2431145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The potential of neurotransmitters and neural hormones as possible G-quadruplex DNA binders was analyzed using fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), DNA melting analysis, and molecular docking. G-quadruplex sequences, (GGC)3 and G4C2, with roles in Fragile X syndrome and amyotrophic lateral sclerosis (ALS), respectively, were selected, and their interactions with melatonin, serotonin, and gamma-aminobutyric acid (GABA), were studied. Both melatonin and serotonin demonstrated strong interactions with the DNA sequences with hydrogen bonding being the primary mode of interaction, with some non-intercalative interactions involving the π systems. GABA demonstrated much weaker interactions and may not be a suitable candidate as a probe for low concentrations of G-quadruplex DNA.
Collapse
Affiliation(s)
- Callie Rohrer
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Alexis Palumbo
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Marissa Paul
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Erin Reese
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| |
Collapse
|
3
|
Peng Y, Tu Q, Han Y, Gao L, Fu J. Incidence of different pressure patterns of spinal cerebellar ataxia (SCA) and analysis of imaging and genetic diagnosis. Biomed Signal Process Control 2024; 93:106115. [DOI: 10.1016/j.bspc.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Peng Y, Tu Q, Han Y, Gao L, Wan C. Incidence of different pressure patterns of spinal cerebellar ataxia and analysis of imaging and genetic diagnosis. Open Life Sci 2023; 18:20220762. [PMID: 38152578 PMCID: PMC10751992 DOI: 10.1515/biol-2022-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/29/2023] Open
Abstract
Neurologists have a difficult time identifying sporadic cerebellar ataxia. Multiple system atrophy of the cerebellar type (MSA-C), spontaneous late cortical cerebellar atrophy, and prolonged alcohol use are a few possible causes. In a group of people with sporadic cerebellar ataxia that was not MSA-C, an autosomal-dominant spinocerebellar ataxia (SCA) mutation was recently discovered. Chinese single-hospital cohort will be used in this study to genetic screen for SCA-related genes. One hundred forty individuals with CA were monitored over 8 years. Thirty-one individuals had familial CA, 109 patients had sporadic CA, 73 had MSA-C, and 36 had non-MSA-C sporadic CA. In 28 of the 31 non-MSA-C sporadic patients who requested the test, we carried out gene analysis, including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA31, and dentatorubro-pallidoluysian atrophy (DRPLA). The control group consisted of family members of the patients. In 57% of the instances with spontaneous CA that were not MSA-C, gene abnormalities were discovered. The most frequent exception among individuals with sporadic CA was SCA6 (36%), followed by monsters in SCA1, 2, 3, 8, and DRPLA. In contrast, 75% of the patients with familial CA had gene abnormalities, the most frequent of which was SCA6 abnormality. The age of 69 vs 59 was higher, and the CAG repeat length was a minor age of 23 vs 25 in the former instances compared to the last one among individuals with SCA6 anomalies that were sporadic as opposed to familial cases. In sporadic CA, autosomal-dominant mutations in SCA genes, notably in SCA6, are common. Although the cause of the increased incidence of SCA6 mutations is unknown, it may be related to a greater age of onset and varied penetrance of SCA6 mutations.
Collapse
Affiliation(s)
- Yufen Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Tu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Han
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Liang Gao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Abdi MH, Zamiri B, Pazuki G, Sardari S, Pearson CE. Pathogenic CANVAS-causing but not nonpathogenic RFC1 DNA/RNA repeat motifs form quadruplex or triplex structures. J Biol Chem 2023; 299:105202. [PMID: 37660923 PMCID: PMC10563062 DOI: 10.1016/j.jbc.2023.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Biallelic expansions of various tandem repeat sequence motifs are possible in RFC1 (replication factor C subunit 1), encoding the DNA replication/repair protein RFC1, yet only certain repeat motifs cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). CANVAS presents enigmatic puzzles: The pathogenic path for CANVAS neither is known nor is it understood why some, but not all expanded, motifs are pathogenic. The most common pathogenic repeat is (AAGGG)n•(CCCTT)n, whereas (AAAAG)n•(CTTTT)n is the most common nonpathogenic motif. While both intronic motifs can be expanded and transcribed, only r(AAGGG)n is retained in the mutant RFC1 transcript. We show that only the pathogenic forms unusual nucleic acid structures. Specifically, DNA and RNA of the pathogenic d(AAGGG)4 and r(AAGGG)4 form G-quadruplexes in potassium solution. Nonpathogenic repeats did not form G-quadruplexes. Triple-stranded structures are formed by the pathogenic motifs but not by the nonpathogenic motifs. G- and C-richness of the pathogenic strands favor formation of G•G•G•G-tetrads and protonated C+-G Hoogsteen base pairings, involved in quadruplex and triplex structures, respectively, stabilized by increased hydrogen bonds and pi-stacking interactions relative to A-T Hoogsteen pairs that could form by the nonpathogenic motif. The ligand, TMPyP4, binds the pathogenic quadruplexes. Formation of quadruplexes and triplexes by pathogenic repeats supports toxic-DNA and toxic-RNA modes of pathogenesis at the RFC1 gene and the RFC1 transcript. Our findings with short repeats provide insights into the disease specificity of pathogenic repeat motif sequences and reveal nucleic acid structural features that may be pathogenically involved and targeted therapeutically.
Collapse
Affiliation(s)
- Mohammad Hossein Abdi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Bita Zamiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Christopher E Pearson
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
7
|
Lopez S, He F. Spinocerebellar Ataxia 36: From Mutations Toward Therapies. Front Genet 2022; 13:837690. [PMID: 35309140 PMCID: PMC8931325 DOI: 10.3389/fgene.2022.837690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia 36 (SCA36) is a type of repeat expansion-related neurodegenerative disorder identified a decade ago. Like other SCAs, the symptoms of SCA36 include the loss of coordination like gait ataxia and eye movement problems, but motor neuron-related symptoms like muscular atrophy are also present in those patients. The disease is caused by a GGCCTG hexanucleotide repeat expansion in the gene Nop56, and the demographic incidence map showed that this disease was more common among the ethnic groups of Japanese and Spanish descendants. Although the exact mechanisms are still under investigation, the present evidence supports that the expanded repeats may undergo repeat expansion-related non-AUG-initiated translation, and these dipeptide repeat products could be one of the important ways to lead to pathogenesis. Such studies may help develop potential treatments for this disease.
Collapse
|
8
|
Yi J, Wan L, Liu Y, Lam SL, Chan HYE, Han D, Guo P. NMR solution structures of d(GGCCTG)n repeats associated with spinocerebellar ataxia type 36. Int J Biol Macromol 2022; 201:607-615. [DOI: 10.1016/j.ijbiomac.2022.01.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/03/2023]
|