1
|
Li L, Li Y, Zeng K, Wang Q. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism. Food Chem Toxicol 2024; 186:114576. [PMID: 38458533 DOI: 10.1016/j.fct.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Cinnabar is the naturally occurring mercuric sulfide (HgS) and concerns about its safety have been grown. However, the molecular mechanism of HgS-related neurotoxicity remains unclear. S-phase kinase-associated protein 1 (Skp1), identified as the target protein of HgS, plays a crucial role in the development of neurological diseases. This study aims to investigate the neurotoxic effects and molecular mechanism of HgS based on Skp1 using the Caenorhabditis elegans (C. elegans) model. We prepared the HgS nanoparticles and conducted a comparative analysis of neurobehavioral differences in both wild-type C. elegans (N2) and a transgenic strain of C. elegans (VC1241) with a knockout of the SKP1 homologous gene after exposure to HgS nanoparticles. Our results showed that HgS nanoparticles could suppress locomotion, defecation, egg-laying, and associative learning behaviors in N2 C. elegans, while no significant alterations were observed in the VC1241 C. elegans. Furthermore, we conducted a 4D label-free proteomics analysis and screened 504 key proteins significantly affected by HgS nanoparticles through Skp1. These proteins play pivotal roles in various pathways, including SNARE interactions in vesicular transport, TGF-beta signaling pathway, calcium signaling pathway, FoxO signaling pathway, etc. In summary, HgS nanoparticles at high doses suppress the neurobehavioral functions of C. elegans through a Skp1-dependent mechanism.
Collapse
Affiliation(s)
- Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
2
|
Liu B, Li L, Xie Q, Li Y, Wang Q. Neurobehavioral effects of cinnabar and the cinnabar-containing pediatric prescription, Yi-Nian-Jin, in juvenile rats. J Trace Elem Med Biol 2023; 76:127112. [PMID: 36481603 DOI: 10.1016/j.jtemb.2022.127112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cinnabar, a mercury-containing mineral medicine, has long been widely used in pediatric prescriptions. The safety of cinnabar-containing prescriptions, particularly for children, is drawing increasing attention worldwide. However, whether cinnabar and these pediatric prescriptions have adverse effects on neurobehavior is unknown. Yi-Nian-Jin (YNJ), a classic pediatric prescription, contains 5.66% (w/w) cinnabar, along with other four herbs. YNJ is widely prescribed to promote digestion, eliminate phlegm, and prevent constipation in children (aged 0-6 years). In this study, we used YNJ as an example of cinnabar-containing pediatric prescriptions to determine mercury absorption, distribution, and accumulation and further investigate its potential neurotoxicity in juvenile rats. MATERIAL AND METHODS Low (67.9 mg/kg), middle (169.8 mg/kg), and high dose (339.6 mg/kg) of cinnabar, and low (1.2 g/kg), middle (3.0 g/kg), and high dose (6.0 g/kg) of YNJ were used in this study, corresponding to 3, 7.5, and 15 times the clinically equivalent dose, respectively. Juvenile rats were orally administered different doses of cinnabar or YNJ for 14 consecutive days. The mercury content in rat blood and tissues (brain, liver, and kidney) and serum biochemical changes on day 14 of consecutive administration and on day 14 after cessation were measured. Moreover, a series of behavioral assays (open field, elevated plus-maze, and Morris water maze assays) were performed after 14 consecutive days of administration. RESULTS The mercury absorption, distribution, and accumulation of cinnabar and YNJ in juvenile rats were substantially different. Mercury in cinnabar was absorbed to a greater extent than that in YNJ, and the mercury content in cinnabar high-dose group (cinnabar-H) was approximately seven times higher than that in YNJ high-dose group (YNJ-H) on day 14 of administration. In contrast, compared with that of cinnabar, the mercury content in YNJ accumulated more in the tissues, especially in the brain and kidney. Repeated administration of cinnabar or YNJ did not affect liver function, renal function, learning, and memory in juvenile rats. However, repeated administration of YNJ at a high dose (6.0 g/kg) affected locomotor activity in juvenile rats. Repeated administration of cinnabar (339.6 mg/kg) or YNJ (>1.2 g/kg) induced anxiety-related behavior in juvenile rats. CONCLUSIONS Mercury in YNJ exhibited lower absorption but higher accumulation in tissues than those of the mercury in cinnabar. Consecutive oral administration of cinnabar or YNJ had no impact on liver function, renal function, learning, and memory, but could cause motor dysfunction and anxiety in juvenile rats.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
3
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
4
|
Zhai M, Gong D, Gao Q, Zhang H, Sun G. Evaluating the spectrum-effect profiling and pharmacokinetics of Tieshuang Anshen Prescription with better sedative-hypnotic effect based on Fe 2+ than Hg 2. Biomed Pharmacother 2021; 141:111923. [PMID: 34328091 DOI: 10.1016/j.biopha.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Although Zhusha Anshen Pill (ZSASP) is a commonly used traditional prescription for insomnia, the safety of cinnabar in the formula has always been controversial since its initial application in medical fields. Here, we developed a new prescription, Tieshuang Anshen Prescription (TSASP), by improving ZSASP with Fe2+ instead of Hg2+. Besides, TSASP was further optimized by establishing and testing the HPLC fingerprint and its sedative-hypnotic effect of formulas with different compatibility ratios and performing correlation spectrum analysis. The safety of TSASP was also evaluated by HE staining of liver and kidney. In addition, a validated and robust UHPLC-MS/MS method was established to demonstrate the pharmacokinetic characteristics of berberine, palmatine, jatrorrhizine, ligustilide, catalpol, loganin, liquiritin and liquiritigenin after oral administration of TSASP. Our study originally provides a new non-toxic prescription, TSASP, with better sedative-hypnotic effect in comparison with ZSASP, revealing that Fe2+ could replace Hg2+ to eliminate its toxicity and play a sedative role. Meanwhile, we believe that our pharmacokinetics results may contribute valuable reference to both TSASP's specific mechanism of action and its further clinical efficacy and effectiveness research.
Collapse
Affiliation(s)
- Manhuayun Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dandan Gong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiannan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
6
|
Yang M, Wang L, Zhang T, Zhu A, Sun Y, Zhao J, Liu D, Wang Q, Zeng K. Different proteomic profiles of cinnabar upon therapeutic and toxic exposure reveal distinctive biological manifestations. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112668. [PMID: 32068139 DOI: 10.1016/j.jep.2020.112668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinnabar, a traditional Chinese mineral medicine with sedative and tranquilizing effects, is known to be toxic to the neural system, but its detailed pharmacological and toxicological mechanisms are still unclear. AIM OF THE STUDY This study aimed to explore the potential neuropharmacological and neurotoxicological mechanisms of cinnabar by investigating the differentially expressed proteins in cerebral cortices of mice exposed to therapeutic and toxic doses of cinnabar. MATERIALS AND METHODS Label-free quantitative proteomics and bioinformatics analysis were used to characterize the proteins, pathways, and potential targets associated with therapeutic (50 mg/kg) and toxic (1000 mg/kg) doses of cinnabar in cerebral cortices of mice. Proteomic analysis was verified by parallel reaction monitoring. RESULTS A total of 6370 and 6299 proteins were identified in the cerebral cortices of mice after exposure to therapeutic and toxic doses of cinnabar, among which 130 and 119 proteins were differentially expressed, respectively. Functional/pathway enrichment analysis showed that both exposure doses of cinnabar could affect transport processes in the cerebral cortex through different proteins. The changes induced by the therapeutic dose included pathways involved in translation and sphingolipid metabolism. Interestingly, for the toxic dose, differentially expressed proteins were enriched for functions and pathways related to RNA splicing, transcription, synaptic plasticity regulation and developmental processes, among which RNA splicing was the most significantly affected function. ATP6V1D and CX3CL1 were shown to be possible key proteins affected by cinnabar, leading to multiple functional changes in the cerebral cortex at the therapeutic and toxic doses, respectively. Furthermore, Connectivity Map (CMap) analysis predicted LRRK2 to be a potential therapeutic target and FTase to be a potential toxic target for cinnabar. CONCLUSION Our results suggest that the pathways and potential targets identified in the mouse cerebral cortex exposed to therapeutic and toxic doses of cinnabar are different, which provides novel insights into the potential molecular mechanisms underlying the pharmacological and toxicological effects of cinnabar.
Collapse
Affiliation(s)
- Mimi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lichao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - An Zhu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Yuqing Sun
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Jingwei Zhao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Jain A, Sarsaiya S, Wu Q, Shi J, Lu Y. New insights and rethinking of cinnabar for chemical and its pharmacological dynamics. Bioengineered 2020; 10:353-364. [PMID: 31431119 PMCID: PMC6738451 DOI: 10.1080/21655979.2019.1652491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cinnabar is an attractive mineral with many different uses. It is reported that cinnabar is one of the traditional Chinese’s medicines extensively use. The main objective of this critical review is to identify the current overview, concept and chemistry of cinnabar, which includes the process developments, challenges, and diverse options for pharmacology research. It is used as a medicine through probable toxicity, especially when taking overdoes. This review is the first to describe the toxicological effects of cinnabar and its associated compounds. Nuclear magnetic resonance (NMR) dependent metabolomics could be useful for examination of the pharmaceutical consequence. The analysis indicated that the accurate preparation methods, appropriate doses, disease status, ages with drug combinations are significant factors for impacting the cinnabar toxicity. Toxicologically, synthetic mercury sulfide or cinnabar should be notable for mercuric chloride, mercury vapor and methyl mercury for future protection and need several prominent advancements in cinnabar research.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University , Guizhou , China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| |
Collapse
|
8
|
Zhou LL, Chen HJ, He QQ, Li C, Wei LX, Shang J. Evaluation of hepatotoxicity potential of a potent traditional Tibetan medicine Zuotai. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:112-118. [PMID: 30580024 DOI: 10.1016/j.jep.2018.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuotai (gTso thal) has a long history in the treatment of cardiovascular disease, liver and bile diseases, spleen and stomach diseases as a precious adjuvant in Tibetan medicine. However, Zuotai is a mercury preparation that contains 54.5% HgS. Its application has always been controversial. AIM OF THE STUDY To evaluate the toxicological effects of Zuotai in hepatocytes and in zebrafish. MATERIALS AND METHODS MTT was used to determine the survival rate of hepatocytes; Hoechst and TUNEL staining were used to detect the apoptosis cells; Western blot and RT-qPCR assay were used to determine the expression levels of the protein and mRNA; Liver morphology observation and H&E staining were used to evaluate the hepatotoxicity of Zuotai in Zebfrafish. RESULTS The survival rate of L-02 cells, HepG2 cells and RBL-2A cells reduced by Zuotai (10-4-0.1 mg/mL) in a dose and time-dependent manner. Zuotai (0.1 mg/mL) induced HepG2 cells shrinkage, condensation and fragmentation and increased the number of apoptosis cells. The protein expression levels of cleaved Caspase-3 and Bax were increased and the expression levels of Bcl-2 were reduced after HepG2 cells exposed to Zuotai (10-4-0.1 mg/mL) for 24 h. In addition, Zuotai (0.2 mg/mL) induced the darker liver color of the larval zebrafish and changed the liver morphologic of adult zebrafish. Zuotai (0.2 mg/mL) also increased the mRNA levels of CYP1A1, CYP1B1 and MT-1 in the liver of adult zebrafish. However, no significantly hepatotoxicity was observed after hepatocytes and zebrafish exposed to HgS at the same dose. CONCLUSIONS Results showed that Zuotai induced hepatotoxicity effectively under a certain dose but its hepatotoxicity likely occurs via other mechanisms that did not depend on HgS.
Collapse
Affiliation(s)
- Liang-Liang Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Juan Chen
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, University of the Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang-Qiang He
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, University of the Chinese Academy of Sciences, Xining 810008, China
| | - Cen Li
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, University of the Chinese Academy of Sciences, Xining 810008, China
| | - Li-Xin Wei
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, University of the Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Korkmaz S, Ceylan ME, Ceylan G, Dalgıç A, İnan S, Olgun L, Özüer MZ. Auditory and Histopathological Effects of Topical Mercurochrome Treatment in Rats with Tympanic Membrane Perforation. J Int Adv Otol 2018; 15:22-27. [PMID: 30541727 DOI: 10.5152/iao.2018.5489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Topical treatment is first choice in the treatment of uncomplicated chronic otitis media. It was intended to assess auditory and histopathological safety of ototopical use of mercurochrome solution in rats with induced tympanic membrane perforation. MATERIALS AND METHODS The study was conducted on 21 female Wistar-Albino rats which were randomly assigned into 3 groups. In all rats, perforation was performed at right tympanic membrane. Distortion product otoacoustic emissions (DPOAEs) measurements were performed at frequencies of 2000, 3000 and 4000 Hz (with L1/L2: 70 /70 dB at 2f1-f2 frequency; f2/f1 ratio: 1:22) before recovery from anesthesia and signal-to-noise ratio (SNR) were recorded. Normal saline, 2% mercurochrome and gentamicin were given to group 1, 2 and 3 twice daily over a week, respectively. Rats were sacrificed after DPOAE measurements on day 14. Right temporal bone specimens were examined under light microscope after processing. RESULTS Based on DPOAE results, there was no significant difference among groups before treatment. On day 14, significant differences were found in DPOAE measurements at 3000 and 4000 Hz, and in mean SNR values in 2% mercurochrome and gentamicin groups when compared to normal saline group while no significant difference was detected at 2000 Hz among groups. In addition, significant degeneration was detected in Corti organs, spiral ganglions and stria vascularis in groups 2 and 3. CONCLUSION In this study, it was observed that mercurochrome use in external otitis and otitis media with tympanic membrane perforation could cause ototoxicity and concluded that the solution should be used cautiously.
Collapse
Affiliation(s)
- Süleyman Korkmaz
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Mehmet Emrah Ceylan
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Gözde Ceylan
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Abdullah Dalgıç
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Sevinç İnan
- Department of Histology and Embryology, İzmir Economy University School of Medicine, İzmir, Turkey
| | - Levent Olgun
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| | - Mehmet Ziya Özüer
- Department of Otorhinolaryngology, Health Sciences University, İzmir Bozyaka Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
10
|
Afolabi BA, Adedara IA, Souza DO, Rocha JBT. Dietary co-exposure to methylmercury and monosodium glutamate disrupts cellular and behavioral responses in the lobster cockroach, Nauphoeta cinerea model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:70-77. [PMID: 30300794 DOI: 10.1016/j.etap.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to investigate the effect of monosodium glutamate (MSG) both separately and combined with a low dose of methylmercury (MeHg) on behavioral and biochemical parameters in Nauphoeta cinerea (lobster cockroach). Cockroaches were fed with the basal diet alone, basal diet + 2% NaCl, basal diet + 2% MSG; basal diet + 0.125 mg/g MeHg, basal diet + 0.125 mg/g MeHg + 2% NaCl; and basal diet + 0.125 mg/g MeHg + 2% MSG for 21 days. Behavioral parameters such as distance traveled, immobility and turn angle were automatically measured using ANY-maze video tracking software (Stoelting, CO, USA). Biochemical end-points such as acetylcholinesterase (AChE), glutathione-S-transferase (GST), total thiol and TBARS were also evaluated. Results show that MeHg + NaCl, increased distance traveled while MeHg + MSG increased time immobile. AChE activity was significantly reduced in cockroaches across all the groups when compared to the control. There was no significant alteration in GST activity and total thiol levels. It could be that both NaCl and MSG potentiates the neurotoxic effect of MeHg in cockroaches.
Collapse
Affiliation(s)
- Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Department of Biochemistry, Bowen University Iwo, Osun State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Freire C, Amaya E, Gil F, Fernández MF, Murcia M, Llop S, Andiarena A, Aurrekoetxea J, Bustamante M, Guxens M, Ezama E, Fernández-Tardón G, Olea N. Prenatal co-exposure to neurotoxic metals and neurodevelopment in preschool children: The Environment and Childhood (INMA) Project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:340-351. [PMID: 29190557 DOI: 10.1016/j.scitotenv.2017.11.273] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 05/04/2023]
Abstract
We sought to determine whether prenatal co-exposure to As, Cd, Hg, Mn, and Pb was associated with impaired neurodevelopment in preschool children from the Spanish Environment and Childhood (INMA) Project, using the placenta as exposure matrix. We measured metal levels in placenta tissue samples randomly selected from five of the seven population-based birth cohorts participating in the INMA Project, collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was carried through the use of the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5years. Data on placental metal levels, MSCA scores, and relevant covariates was available for 302 children. Mn was detected in all placental samples, Cd in nearly all placentas (99%) and As, Hg, and Pb in 22%, 58%, and 17% of the placentas, respectively. After adjusting for potential confounders, detectable As levels were associated with decrements in global and verbal executive functions and quantitative abilities; detectable Hg was associated with lower scores on the verbal function of posterior cortex in a dose-response manner, and non-linearly related to poorer motor function and gross motor skills; and Mn levels were associated with decrement in perceptual-performance skills in a dose-response manner but with better memory span and quantitative skills. A synergistic interactive effect was found between As and Pb with respect to the general cognitive score, whereas an antagonistic interaction was found between Mn and Hg. Prenatal exposure to As and Hg may be a risk factor for cognitive and motor impairment in children, while the effects of Cd and Mn on neurodevelopment are less clear. Future studies should examine combined and interactive effects of exposure to multiple metals during vulnerable periods of brain development prospectively.
Collapse
Affiliation(s)
- Carmen Freire
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Esperanza Amaya
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Mariana F Fernández
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, School of Medicine, and Centre for Biomedical Research, University of Granada, 18071 Granada, Spain.
| | - Mario Murcia
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020 Valencia, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020 Valencia, Spain
| | - Ainara Andiarena
- BIODONOSTIA Health Research Institute, 20014 San Sebastián, Spain; University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - Juanjo Aurrekoetxea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; BIODONOSTIA Health Research Institute, 20014 San Sebastián, Spain; Department of Preventive Medicine and Public Health, University of Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Subdirección de Salud Pública de Gipuzkoa, Department of Health of the Basque Government, 20013 San Sebastián, Spain
| | - Mariona Bustamante
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08036 Barcelona, Spain; Pompeu Fabra Universtiy (UPF), 08002 Barcelona, Spain; Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), 08036 Barcelona, Spain; Pompeu Fabra Universtiy (UPF), 08002 Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Esteban Ezama
- Cicom, Alternativa en Salud Mental, 33001 Oviedo, Spain
| | - Guillermo Fernández-Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Nicolás Olea
- Health Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology, School of Medicine, and Centre for Biomedical Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|
12
|
Su G, Wang H, Gao Y, Chen G, Pei Y, Bai J. ¹H-NMR-Based Metabonomics of the Protective Effect of Coptis chinensis and Berberine on Cinnabar-Induced Hepatotoxicity and Nephrotoxicity in Rats. Molecules 2017; 22:molecules22111855. [PMID: 29099071 PMCID: PMC6150353 DOI: 10.3390/molecules22111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/15/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis. The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuxian Gao
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Al-Saleh I, Elkhatib R, Al-Rouqi R, Abduljabbar M, Eltabache C, Al-Rajudi T, Nester M. Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant's neurodevelopment. Int J Hyg Environ Health 2016; 219:898-914. [PMID: 27453562 DOI: 10.1016/j.ijheh.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023]
Abstract
This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995μg/l, 0.716μg/l, 0.118μg/g dw, 0.101μg/g dw, 0.635μg/l, and 0.884μg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132μg/g dw, 0.091μg/g dw, and 2.341μg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during pregnancy and/or neonatal life, promoted oxidative stress that might have played a role in infant neurodevelopmental delays that we reported previously. The results confirmed that the interaction between infant's MeHg in hair and 8-OHdG and MDA levels was significantly associated with a delay in DDST-II performance (ß=-0.188, p=0.028). This finding provides an insight into the potential consequences of Hg-induced oxidative stress to infant's cognitive neurodevelopment for the first time. This observation still needs future studies to be validated. Given the low MeHg levels in our population, these findings are of particular importance.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Michael Nester
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
14
|
Wei L, Xue R, Zhang P, Wu Y, Li X, Pei F. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:490-8. [PMID: 26110755 DOI: 10.1089/omi.2015.0042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.
Collapse
Affiliation(s)
- Lai Wei
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Rong Xue
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Panpan Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Yijie Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Fengkui Pei
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| |
Collapse
|
15
|
Dziorny AC, Orlando MS, Strain JJ, Davidson PW, Myers GJ. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury. Neurotoxicology 2013; 38:147-57. [PMID: 23064205 PMCID: PMC3657326 DOI: 10.1016/j.neuro.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily be quantified, and might be helpful additions to testing. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. OBJECTIVES We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. METHODS We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. RESULTS Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. CONCLUSION The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants and whether they are associated with children's neurodevelopment.
Collapse
Affiliation(s)
- Adam C. Dziorny
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark S. Orlando
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J. J. Strain
- Center for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Philip W. Davidson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gary J. Myers
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Llop S, Lopez-Espinosa MJ, Rebagliato M, Ballester F. Gender differences in the neurotoxicity of metals in children. Toxicology 2013; 311:3-12. [DOI: 10.1016/j.tox.2013.04.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
|
17
|
Hoshino ACH, Ferreira HP, Malm O, Carvallo RM, Câmara VM. A systematic review of mercury ototoxicity. CAD SAUDE PUBLICA 2013; 28:1239-48. [PMID: 22729255 DOI: 10.1590/s0102-311x2012000700003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/28/2012] [Indexed: 11/22/2022] Open
Abstract
Mercury is neurotoxic, and numerous studies have confirmed its ototoxic effect. However, the diagnosis and follow-up of mercury exposure require understanding the pathophysiology of the chemical substance. Based on a systematic literature review, this study aimed to demonstrate whether mercury is ototoxic and to analyze its mechanism of action on the peripheral and central auditory system, in order to contribute to the diagnosis and follow-up of exposure. This was a systematic review of studies published on the effects of mercury exposure on the auditory system. The full text of the studies and their methodological quality were analyzed. The review identified 108 studies published on the theme, of which 28 met the inclusion criteria. All the articles in the analysis showed that mercury exposure is ototoxic and produces peripheral and/or central damage. Acute and long-term exposure produces irreversible damage to the central auditory system. Biomarkers were unable to predict the relationship between degree of mercury poisoning and degree of lesion in the auditory system.
Collapse
|
18
|
Wang H, Bai J, Chen G, Li W, Xiang R, Su G, Pei Y. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using (1)H NMR spectroscopy. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:572-80. [PMID: 23376283 DOI: 10.1016/j.jep.2013.01.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhusha Anshen Wan (ZSASW), a traditional Chinese medicine (TCM) prescription, composed of cinnabar (cinnabaris), Coptidis Rhizoma (Coptis chinensis French.), Angelicae Sinensis Radix (Angelica sinensis (oliv.) Diels), uncooked Rehmanniae Radix (Rehmannia glutinosa Libosch.), honey fried Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza uralensis Fisch.), has been widely used for sedative therapy. Cinnabar, the chief component of ZSASW, has been proved to possess the toxicities. AIM OF THE STUDY In this study, a metabonomics approach based on high-resolution (1)H nuclear magnetic resonance spectroscopy was applied to investigate the protective effects of ZSASW on the toxic effects induced by cinnabar alone. MATERIALS AND METHODS Male Wistar rats were divided into three groups: control group, ZSASW group and cinnabar group. Partial least squares-discriminant analysis (PLS-DA) was performed to identify different metabolic profiles of urine and serum from rats. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. RESULTS The significant difference in metabolic profiling of urine and serum of the rats was observed between cinnabar treated group, control group, and the changes of endogenous metabolites related to the toxicities were identified. The results were also certified by the liver and kidney histopathology examinations and biochemical analysis of blood. CONCLUSION Our results suggested that the four combined herbal medicines of ZSASW had the effects of protecting from the toxicity induced by cinnabar alone. This work showed that the NMR-based metabonomics approach might be a promising approach to study detoxification of Chinese medicines and reasonable combination of TCM prescriptions.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Mercury toxicity on sodium pump and organoseleniums intervention: a paradox. J Biomed Biotechnol 2012; 2012:924549. [PMID: 22927724 PMCID: PMC3425867 DOI: 10.1155/2012/924549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/01/2012] [Indexed: 12/21/2022] Open
Abstract
Mercury is an environmental poison, and the damage to living system is generally severe. The severity of mercury poisoning is consequent from the fact that it targets the thiol-containing enzymes, irreversibly oxidizing their critical thiol groups, consequently leading to an inactivation of the enzyme. The Na+/K+-ATPase is a sulfhydryl protein that is sensitive to Hg2+ assault. On the other hand, organoseleniums are a class of pharmacologically promising compounds with potent antioxidant effects. While Hg2+ oxidizes sulfhydryl groups of Na+/K+-ATPase under in vitro and in vivo conditions, the organoselenium compounds inhibit Na+/K+-ATPase in vitro but enhance its activities under in vivo conditions with concomitant increase in the level of endogenous thiols. Paradoxically, it appears that these two thiol oxidants can be used to counteract one another under in vivo conditions, and this hypothesis serves as the basis for this paper.
Collapse
|
20
|
Huang CF, Yang RS, Liu SH, Hsieh PC, Lin-Shiau SY. Evidence for Improved Neuropharmacological Efficacy and Decreased Neurotoxicity in Mice with Traditional Processing of Rhizoma Arisaematis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:981-98. [DOI: 10.1142/s0192415x11009354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizoma Arisaematis (RA, the rhizome of Pinellia pedatisecta Schott) is a traditional Chinese medicine commonly used in the treatment of convulsions, inflammation, and cancer. Despite the fact that it has been used for more than 2000 years, the pharmacological and toxic effects of traditionally processed products of RA are still unclear. In this study, we attempted to investigate the effects exerted by untreated crude RA and different preparations of RA treated with alumen in combination with ginger juice (Zhinanxing) or bile juice (Dannanxing) in ICR mice. The results showed that both the Zhinanxing and Dannanxing water extracts exerted significantly increased sedative effects, as indicated by the inhibitory effects on ambulatory distances, jumps, vertical-plane entries, and prolonged pentobarbital-induced sleeping time. The extracts also exerted significantly increased analgesic effects (increase of tail flick latency in nociceptive testing) in mice than did the unprocessed crude RA after oral administration for one to three days, and effects persisted 18 days after the cessation of treatment. By contrast, the toxic effects, such as an increase in stereotype-1 episodes of locomotor activities and reduction of the retention time on a rotating rod (motor equilibrium dysfunction), were observed only in mice treated with the unprocessed crude RA for three consecutive days, and effects persisted for 18 days after the cessation of treatment. These neurotoxic effects were accompanied by an increase in plasma lipid peroxidation (LPO), decrease in whole blood nitric oxide (NOx) levels, and inhibition of Na +/ K +-ATPase activities in membrane fractions of erythrocytes and in the cerebral cortex. In conclusion, these findings provide scientific evidence that the processed RA indeed possesses not only enhanced neuropharmacological efficacy but also reduced neurotoxic effects as compared to the unprocessed crude RA. The signaling of NO x/oxidative stress/ Na +- K +- ATPase activities played a role, at least in part, in the underlying mechanisms of neurotoxic effects induced by the crude RA.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chow Hsieh
- Division of Chinese Pharmacy, Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taipei, Taiwan
| | - Shoei-Yn Lin-Shiau
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Kamath SU, Pemiah B, Sekar RK, Krishnaswamy S, Sethuraman S, Krishnan UM. Mercury-based traditional herbo-metallic preparations: a toxicological perspective. Arch Toxicol 2012; 86:831-8. [DOI: 10.1007/s00204-012-0826-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
22
|
Abstract
The modern era of evidence-based ototoxicity emerged in the 1940s following the discovery of aminoglycosides and their ototoxic side effects. New classes of ototoxins have been identified in subsequent decades, notably loop diuretics, antineoplastic drugs, and metal chelators. Ototoxic drugs are frequently nephrotoxic, as both organs regulate fluid and ion composition. The mechanisms of ototoxicity are as diverse as the pharmacological properties of each ototoxin, though the generation of toxic levels of reactive oxygen species appears to be a common denominator. As mechanisms of cytotoxicity for each ototoxin continue to be elucidated, a new frontier in ototoxicity is emerging: How do ototoxins cross the blood-labyrinth barrier that tightly regulates the composition of the inner ear fluids? Increased knowledge of the mechanisms by which systemic ototoxins are trafficked across the blood-labyrinth barrier into the inner ear is critical to developing new pharmacotherapeutic agents that target the blood-labyrinth barrier to prevent trafficking of ototoxic drugs and their cytotoxic sequelae.
Collapse
Affiliation(s)
- Peter S Steyger
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
23
|
Kaur P, Aschner M, Syversen T. Biochemical factors modulating cellular neurotoxicity of methylmercury. J Toxicol 2011; 2011:721987. [PMID: 21941541 PMCID: PMC3177097 DOI: 10.1155/2011/721987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022] Open
Abstract
Methylmercury (MeHg), an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH), fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s) of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC); diethyl maleate, (DEM); docosahexaenoic acid, (DHA); selenomethionine, SeM; Trolox) and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.
Collapse
Affiliation(s)
- Parvinder Kaur
- Department of Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology and The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, B-3307 Medical Center North, 1162 21st Avenue, Nashville, TN 37232-2495, USA
| | - Tore Syversen
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 3, 7489 Trondheim, Norway
| |
Collapse
|
24
|
Maternal Depression Model: Long-Lasting Effects on the Mother Following Separation from Pups. Neurochem Res 2011; 37:126-33. [DOI: 10.1007/s11064-011-0590-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/24/2011] [Accepted: 08/29/2011] [Indexed: 12/12/2022]
|
25
|
Huang CF, Liu SH, Hsu CJ, Lin-Shiau SY. Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicol Lett 2010; 201:196-204. [PMID: 21195143 DOI: 10.1016/j.toxlet.2010.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/16/2022]
Abstract
Mercury is a well-known toxic metal and potently induces severe neurotoxicological effects, especially in infants and children. The purpose of this study was to explore the underlying mechanisms of neurotoxic effects of mercurial compounds on the different stages of developing mice. Low-doses (the probability of human exposure in mercury-contaminated areas) of methylmercury (MeHg) (M, 0.02mg/kg/day) and mercury chloride (HgCl(2)) (H, 0.5mg/kg/day) were administered to mice of the following groups: (1) treatment with distilled water for 7 consecutive weeks after weaning (control-vehicle (CV)); exposure to mercurial compounds at different stages; (2) for 7 consecutive weeks after weaning (control-MeHg (CM) and control-HgCl(2) (CH)); (3) only during perinatal and weaning stages (MeHg-vehicle (MV) and HgCl-vehicle (HV)); and (4) in all experimental stages (MeHg-MeHg (MM) and HgCl(2)-HgCl(2) (HH)). Results revealed the neurobehavioral defects (increased locomotor activities, motor equilibrium impairment, and auditory dysfunction) that correlated with increasing Hg accumulation in CM and CH groups. However, it revealed a decrease and an increase in locomotor activities in MV and HV groups, respectively; these became more severe in MM and HH groups than in MV and HV groups. Motor equilibrium performance in MV and HV groups remained normal, while that in MM and HH groups was decreased. The most severe auditory defects (altered auditory brainstem response, ABR test) found in MM and HH groups than those in the respective CM and CH, MV and HV, including absolute wave III delays and interwave I-III latencies, which suggested that the irreversible auditory dysfunction caused by mercurial compounds. Furthermore, the alteration of lipid peroxidation (LPO), Na(+)/K(+)-ATPase activities, and nitric oxide (NO(x)) in the brain tissues contributed to the observed neurobehavioral dysfunction and hearing impairment. These findings provide evidence that fetuses were much more susceptible to the effects of mercurial compounds with regard to inducing severely neurotoxicological injuries as that found in human beings. The signaling of ROS/Na(+)-K(+)-ATPase/NO(x) plays a crucial role in the underlying mechanism for mercurial compound-induced toxic effects in offspring.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|