1
|
Tagkalidou N, Goyenechea-Cunillera J, Romero-Alfano I, Martí MO, Bedrossiantz J, Prats E, Gomez-Canela C, Raldúa D. N-Acetylcysteine-Amide Protects Against Acute Acrylamide Neurotoxicity in Adult Zebrafish. TOXICS 2025; 13:362. [PMID: 40423441 DOI: 10.3390/toxics13050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/24/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025]
Abstract
Acrylamide (ACR) is a potent neurotoxicant that disrupts cellular redox homeostasis by depleting reduced glutathione (GSH) and inducing oxidative stress. Despite its well-characterized mechanism, no effective treatments for ACR-induced neurotoxicity currently exist. This study evaluates the therapeutic efficacy of N-acetylcysteine-amide (AD4), a blood-brain barrier (BBB)-permeable derivative of N-acetylcysteine, in a novel severe acute ACR neurotoxicity model in adult zebrafish. Adult zebrafish received a single intraperitoneal (i.p.) injection of ACR (800 μg/g), followed by AD4 (400 μg/g i.p.) or PBS 24 h later. ACR exposure reduced brain GSH levels by 51% reduction at 48 h, an effect fully reversed by AD4 treatment. Behavioral analyses showed that AD4 rescued ACR-induced deficits in short-term habituation of the acoustic startle response (ASR). Surprisingly, ACR exposure did not alter the neurochemical profile of key neurotransmitters or the expression of genes related to redox homeostasis, synaptic vesicle recycling, regeneration, or myelination. These results demonstrate AD4's neuroprotective effects against acute ACR-induced brain toxicity, highlighting its therapeutic potential and validating adult zebrafish as a translational model for studying neurotoxic mechanisms and neuroprotective interventions.
Collapse
Affiliation(s)
- Niki Tagkalidou
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Júlia Goyenechea-Cunillera
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Irene Romero-Alfano
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Maria Olivella Martí
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Ma J, Lu Y, Cai Y, Zhi Y, Li W, Pan X. Acrolein exposure associated with kidney damage: a cross‑sectional study. Sci Rep 2025; 15:8682. [PMID: 40082533 PMCID: PMC11906920 DOI: 10.1038/s41598-025-93698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
Acrolein (Acr) is a common volatile toxic substance excreted by the kidneys. There are no studies that specifically look at the effects of Acr on kidney function. This study was designed to investigate the relationship between Acr and kidney damage. A cross-sectional study of data (n = 4951) from the 2011-2018 National Health and Nutrition Examination Survey (NHANES) was conducted. Participants' urinary Acr concentration, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio (UACR) were recorded based on laboratory tests. The number of participants with chronic kidney disease (CKD) was counted. Urinary Acr concentration was divided into quartiles. The association of urinary Acr with CKD and eGFR was investigated using multivariate linear regression, multivariate logistic regression, and smooth curve fitting. Subgroup analyses, interaction tests and sensitivity analyses were used to examine the independence of the Acr-CKD and Acr-eGFR associations in the population. In 4951 participants, urinary Acr concentration was positively associated with CKD risk and negatively associated with eGFR. In the fully adjusted model, each log2Acr increase of one unit was associated with a 6% increased risk of CKD (OR = 1.06, 95% CI 1.01, 1.13) and a 0.54 mL/min/1.73 m2 decrease in eGFR (β = - 0.54, 95% CI - 0.95, - 0.13). For categorical log2Acr, for each log2Acr increase of one unit, the risk of CKD was 29% higher in the Q4 group than in the Q1 group (OR = 1.29, 95% CI 1.01, 1.64), while eGFR was 1.9 mL/min/1.73 m2 lower in the Q4 group than in the Q1 group (β = - 1.90, 95% CI - 3.65, - 0.14). Smooth curve fitting confirmed urinary Acr's nonlinear positive and negative correlations with CKD and eGFR. According to subgroup analyses, sensitivity analyses and interaction tests, the confounding variables did not affect the independent correlations of urinary Acr with CKD and eGFR. Our study found that Acr exposure was significantly associated with kidney damage. Our study provides a new piece of research evidence to support a link between the volatile toxic substance Acr and a decline in kidney function.
Collapse
Affiliation(s)
- Jianchao Ma
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, People's Republic of China
| | - Youqi Lu
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, People's Republic of China
| | - Yang Cai
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yuling Zhi
- The Second Ward of the Department of Affective Disorders, Nanning Fifth People's Hospital, Guangxi Province, Nanning, 530001, People's Republic of China
| | - Wei Li
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaojie Pan
- The Key Laboratory of Clinical Diagnosis and Treatment Research of High Incidence Diseases in Guangxi, Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China.
| |
Collapse
|
3
|
Zheng B, Shang J, Wei Y, Tao Q, Yin J, Kang A, Liu R, Lian H, Han S. Chemoproteomic profiling by bioorthogonal probes to reveal the novel targets of acrylamide in microglia. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136760. [PMID: 39637805 DOI: 10.1016/j.jhazmat.2024.136760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotoxicity studies caused by exposure to acrylamide (AA) are of wide interest, but the methods for direct analysis of AA targets in living neuronal cells by cysteine profiling are still lacking. To address this, we developed a specific bioorthogonal probe, AAPA-P2, for chemical proteomics analysis of AA covalent binding sites. AAPA-P2 captured 754 target proteins, increasing the number of identified target proteins by 20-fold. Further screening revealed 96 proteins that are both highly sensitive and heavily modified by AAPA-P2, with validation performed on some potential key targets and binding sites. AA was found to induce neurotoxicity by binding to newly identified targets, Proteasome 26S Subunit, non ATPase 9 (PSMD9) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 (NDUFA5), interfering with the ubiquitin-proteasome system, and inducing mitochondria-dependent apoptosis. The present work provides an effective bioorthogonal probe tool for identifying covalent binding targets of acrylamide and offers new insights into the molecular mechanisms underlying acrylamide-induced neurotoxicity.
Collapse
Affiliation(s)
- Binru Zheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Shang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanqing Wei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qianqian Tao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jizhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rui Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China.
| | - Shuying Han
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr 2022; 9:859189. [PMID: 35399689 PMCID: PMC8993146 DOI: 10.3389/fnut.2022.859189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Acrylamide (ACR), a potential neurotoxin, is produced by the Maillard reaction between reducing sugars and free amino acids during food processing. Over the past decade, the neurotoxicity of ACR has caused increasing concern, prompting many related studies. This review summarized the relevant literature published in recent years and discussed the exposure to occupational, environmental, and daily ACR contamination in food. Moreover, ACR metabolism and the potential mechanism of ACR-induced neurotoxicity were discussed, with particular focus on the axonal degeneration of the nervous system, nerve cell apoptosis, oxidative stress, inflammatory response, and gut-brain axis homeostasis. Additionally, the limitations of existing knowledge, as well as new perspectives, were examined, specifically regarding the connection between the neurotoxicity caused by ACR and neurodegenerative diseases, NOD-like receptor protein 3 (NLRP3) inflammasome-related neuroinflammation, and microbiota-gut-brain axis signaling. This review might provide systematic information for developing an alternative pathway approach to assess ACR risk.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Boya Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Linlin Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Omotoso G, Oloyede O, Lawal S, Gbadamosi I, Mutholib N, Abdulsalam F, Bature A, Babalola A, Ayeni B, Amedu N. Permethrin exposure affects neurobehavior and cellular characterization in rats' brain. Environ Anal Health Toxicol 2020; 35:e2020022-0. [PMID: 33434422 PMCID: PMC7829406 DOI: 10.5620/eaht.2020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/13/2020] [Indexed: 11/11/2022] Open
Abstract
This study investigated the neurotoxic effects of permethrin on the cerebellum, hippocampus and prefrontal cortex of Wistar rats and its effects on some behavioral patterns. Fifteen adult male Wistar rats were grouped into three categories: Group A received 0.1 mL normal saline (control), and Groups B and C received mixed feed with 500 mg/kg and 1,000 mg/kg of 0.6% permethrin, respectively, for 14 days. The animals were assessed for memory, anxiety and exploratory locomotion and thereafter anesthetized and transcardially perfused with normal saline and 4% paraformaldehyde (PFA). Cerebellum, hippocampus and prefrontal cortex were excised from the whole brain and processed for tissue histology, histochemistry and immunohistochemistry. Oxidative status and lipid peroxidation were also assessed using catalase, glutathione peroxidase, superoxide dismutase and malondialdehyde as biomarkers. Results revealed dosedependent decrease in body weights but increase in cerebellar and prefrontal weights, depletion of endogenous antioxidant markers, cognitive deficits, reduced locomotor activities, degenerative changes in the microarchitecture at high doses and presence of chromatolytic cells at both low and high doses of permethrin. Astrocytes were activated while synaptophysin expression was downregulated. Permethrin causes dose-dependent neurotoxicity on the morphology, neurochemistry and oxidative status of different brain regions, and these could affect behavioral performance and other neurologic functions.
Collapse
Affiliation(s)
- Gabriel Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Olajumoke Oloyede
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Shakirah Lawal
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Ismail Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Nafisat Mutholib
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Fatimah Abdulsalam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Abdulkabir Bature
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Abdulsalam Babalola
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Busola Ayeni
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Nathaniel Amedu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
6
|
Attoff K, Johansson Y, Cediel-Ulloa A, Lundqvist J, Gupta R, Caiment F, Gliga A, Forsby A. Acrylamide alters CREB and retinoic acid signalling pathways during differentiation of the human neuroblastoma SH-SY5Y cell line. Sci Rep 2020; 10:16714. [PMID: 33028897 PMCID: PMC7541504 DOI: 10.1038/s41598-020-73698-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Acrylamide (ACR) is a known neurotoxicant which crosses the blood–brain barrier, passes the placenta and has been detected in breast milk. Hence, early-life exposure to ACR could lead to developmental neurotoxicity. The aim of this study was to elucidate if non-cytotoxic concentrations of ACR alter neuronal differentiation by studying gene expression of markers significant for neurodevelopment in the human neuroblastoma SH-SY5Y cell model. Firstly, by using RNASeq we identified two relevant pathways that are activated during 9 days of retinoic acid (RA) induced differentiation i.e. RA receptor (RAR) activation and the cAMP response element-binding protein (CREB) signalling pathways. Next, by qPCR we showed that 1 and 70 µM ACR after 9 days exposure alter the expression of 13 out of 36 genes in the RAR activation pathway and 18 out of 47 in the CREB signalling pathway. Furthermore, the expression of established neuronal markers i.e. BDNF, STXBP2, STX3, TGFB1 and CHAT were down-regulated. Decreased protein expression of BDNF and altered ratio of phosphorylated CREB to total CREB were confirmed by western blot. Our results reveal that micromolar concentrations of ACR sustain proliferation, decrease neurite outgrowth and interfere with signalling pathways involved in neuronal differentiation in the SH-SY5Y cell model.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andrea Cediel-Ulloa
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden.,Department for organismal biology, Uppsala University, Uppsala, Sweden
| | - Jessica Lundqvist
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rajinder Gupta
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Anda Gliga
- Unit of Toxicology Sciences, Swedish Toxicology Sciences Research Center (Swetox), Karolinska Institutet, Södertälje, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. .,Department for organismal biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Johnstone AFM, Mack CM, Valdez MC, Shafer TJ, LoPachin RM, Herr DW, Kodavanti PRS. Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology. Toxicol In Vitro 2020; 69:104989. [PMID: 32882341 DOI: 10.1016/j.tiv.2020.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 μM) with test chemical; %LDH and NLPN were measured after 48 h. 4-cyclohexylhexanone (4-C) increased %LDH release at 50 (29%) and 100 μM (56%), citronellal (Cit) and 1-bromopropane increased %LDH at 100 μM (22% and 26%). 4-C, Cit, 2,5 Hexanedione (2,5Hex), phenylacetylaldehyde (PAA) and 2-ethylhexanal decreased mean NLPN at 48 h; 50 and 100 μM for 4-C (28% and 60%), 100 μM Cit (52%), 100 μM 2,5- Hex (37%) 100 μM PAA (41%) and 100 μM for 2-ethylhexanal (23%). Separate DRG cultures were treated on DIV 14 and changes in MFR measured. Four compounds decreased MFR at 50 or 100 μM: Acrylamide (-83%), 3,4-dichloro-1-butene (-93%), 4-C (-89%) and hexane (-79%, 50 μM). Changes in MFR and NLPN occurred in absence of cytotoxicity. While the current study showed little cytotoxicity, it gave insight to initial changes in MFR. Results provide insight for future chronic exposure experiments to evaluate neurotoxicity.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- Clinical Research Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Cina M Mack
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Matthew C Valdez
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Timothy J Shafer
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY 10467, United States of America
| | - David W Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Electrophilic additions of nitrated fatty acids with biological thiols: comparison with type-2 alkenes. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology 2019; 418:62-69. [PMID: 30826385 PMCID: PMC6494464 DOI: 10.1016/j.tox.2019.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Higashi T, Mai Y, Mazaki Y. Protein kinase C-dependent cell damage by unsaturated carbonyl compounds in vascular cells. J Biosci Bioeng 2018; 126:527-532. [DOI: 10.1016/j.jbiosc.2018.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
|
11
|
Hill RL, Kulbe JR, Singh IN, Wang JA, Hall ED. Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria. Neuroscience 2018; 386:265-283. [PMID: 29960045 DOI: 10.1016/j.neuroscience.2018.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.
Collapse
Affiliation(s)
- Rachel L Hill
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Indrapal N Singh
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Juan A Wang
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States
| | - Edward D Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky College of Medicine, 741 S. Limestone St, Lexington, KY 40536-0509, United States.
| |
Collapse
|
12
|
Song G, Liu Z, Wang L, Shi R, Chu C, Xiang M, Tian Q, Liu X. Protective effects of lipoic acid against acrylamide-induced neurotoxicity: involvement of mitochondrial energy metabolism and autophagy. Food Funct 2018; 8:4657-4667. [PMID: 29159335 DOI: 10.1039/c7fo01429e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acrylamide (ACR) is a chronic neurotoxin that is generated in high-starch foods during heat processing. Alpha-lipoic acid (LA) is an antioxidant that occurs in most plants and animals. The objective of this study was to reveal the mechanism of ACR-triggered neurotoxicity and identify the protective role of LA in SH-SY5Y cells. In this study, LA restored ACR-stimulated depletion of glutathione content and mitochondrial membrane potential, moderated the activation of inflammatory pathways, and recovered the Keap1/Nrf2 pathway. Moreover, LA upregulated the activities of oxidative phosphorylation complexes and diminished ACR-induced variation in AMPK/GSK3β, Ca2+ disturbance, and ATP depletion. The Sirt1/PGC-1α pathway was inhibited by ACR. Notably, autophagy was activated in the mitochondria-mediated apoptosis induced by ACR, which was also blocked by LA. Overall, our study demonstrated the pivotal roles of the mitochondrial energy metabolism and autophagy in the protective effects of LA and cytotoxicity of ACR in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ge Song
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China. @aliyun.com
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Higashi T, Mai Y, Mazaki Y, Miwa S. Intracellular Ca 2+ is an essential factor for cell damage induced by unsaturated carbonyl compounds. J Biosci Bioeng 2017; 124:680-684. [PMID: 28751126 DOI: 10.1016/j.jbiosc.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023]
Abstract
The unsaturated carbonyl compounds are known as the environmental pollutants. Acrolein (ACR) and methyl vinyl ketone (MVK) are representative unsaturated carbonyl compounds. ACR is contained in smoke, automobile exhaust, industrial waste, and several foods. MVK is widely used as the industrial chemical. Although ACR and MVK are highly toxic, the molecular mechanism for their cytotoxicity has been unclear. We have previously reported that ACR and MVK are major cytotoxic compounds in the gas phase of cigarette smoke, and protein kinase C (PKC) inhibitor and NADPH oxidases inhibitor partially rescued cells from ACR- or MVK-induced cell death (Noya et al., Toxicology, 314, 1-10, 2013). PKC translocation, which is hallmark for PKC activation, and cell damage were induced by treatment of cultured cells with ACR or MVK. Intracellular Ca2+ chelator completely suppressed ACR- or MVK-induced PKC translocation to the cell membrane and cell damage, while extracellular Ca2+ chelator had no effects on ACR- and MVK-induced cytotoxicity. These results suggest that intracellular Ca2+ is an essential factor for cell damage caused by both PKC-dependent and PKC-independent pathways, and mobilization of Ca2+ from intracellular Ca2+ stores is induced by ACR or MVK.
Collapse
Affiliation(s)
- Tsunehito Higashi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Yosuke Mai
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
14
|
Sárközi K, Papp A, Horváth E, Máté Z, Hermesz E, Kozma G, Zomborszki ZP, Kálomista I, Galbács G, Szabó A. Protective effect of green tea against neuro-functional alterations in rats treated with MnO 2 nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1717-1724. [PMID: 27435261 DOI: 10.1002/jsfa.7919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Inhalation of manganese-containing metal fumes at workplaces can cause central nervous damage including a Parkinson-like syndrome. Oxidative stress is likely to be involved in the pathomechanism, due to the presence of nano-sized metal oxide particles with high biological and chemical activity. Oxidative damage of the nervous system could be prevented or ameliorated by properly applied antioxidants, preferably natural ones such as green tea, a popular drink. The aim of this work was to see if orally applied green tea brew could diminish the functional neurotoxicity of manganese dioxide nanoparticles introduced into the airways of rats. RESULTS Young adult male Wistar rats were treated intratracheally for 6 weeks with a suspension of synthetic MnO2 nanoparticles (4 mg/kg body weight), and received green tea brew (1 g leaves 200 mL-1 water) as drinking fluid. Reduced body weight gain, indicating general toxicity of the nanoparticles, was not influenced by green tea. However, in rats receiving green tea the nervous system effects - changes in the spontaneous and evoked cortical activity and peripheral nerve action potential - were diminished. CONCLUSION The use of green tea as a neuroprotective functional drink seems to be a viable approach. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kitti Sárközi
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary
| | - András Papp
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary
| | - Edina Horváth
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary
| | - Zsuzsanna Máté
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | | | - Ildikó Kálomista
- Department of Inorganic and Analytical Chemistry, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Andrea Szabó
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary
| |
Collapse
|
15
|
Zhang L, Geohagen BC, Gavin T, LoPachin RM. Joint toxic effects of the type-2 alkene electrophiles. Chem Biol Interact 2016; 254:198-206. [PMID: 27288850 DOI: 10.1016/j.cbi.2016.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 02/01/2023]
Abstract
Human populations are exposed to complex environmental mixtures of acrolein, methylvinyl ketone (MVK) and other type-2 alkenes. Many members of this chemical class are electrophiles that possess a common molecular mechanism of toxicity; i.e., protein inactivation via formation of stable cysteine adducts. Therefore, acute or chronic exposure to type-2 alkene mixtures could represent a health risk due to additive or synergistic interactions among component chemicals. Despite this risk, there is little experimental information regarding the joint effects of type-2 alkenes. In the present study we used sum of toxic units (TUsum = ∑TUi) to assess the relative toxicity of different type-2 alkene mixtures. These studies involved well characterized environmental type-2 alkene toxicants and included amide (acrylamide; ACR), ketone (methyl vinyl ketone; MVK), aldehyde (2-ethylacrolein; EA) and ester (methyl acrylate; MA) derivatives. In chemico analyses revealed that both binary and ternary mixtures could deplete thiol groups according to an additive joint effect at equitoxic and non-equitoxic ratios; i.e., TUsum = 1.0 ± 0.20. In contrast, analyses of joint effects in SNB19 cell cultures indicated that different permutations of type-2 alkene mixtures produced mostly synergistic joint effects with respect to cell lethality; i.e., TUsum < 0.80. A mixture of ACR and MA was shown to produce joint toxicity in a rat model. This mixture accelerated the onset and development of neurotoxicity relative to the effects of the individual toxicants. Synergistic effects in biological models might occur when different cellular proteomes are targeted, whereas additive effects develop when the mixtures encompasses a similar proteome.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Terrence Gavin
- Department of Chemistry, Iona College, New Rochelle, NY, United States
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
16
|
Attoff K, Kertika D, Lundqvist J, Oredsson S, Forsby A. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y. Toxicol In Vitro 2016; 35:100-11. [PMID: 27241584 DOI: 10.1016/j.tiv.2016.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/08/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide.
Collapse
Affiliation(s)
- K Attoff
- Department of Neurochemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - D Kertika
- Department of Neurochemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - J Lundqvist
- Department of Neurochemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - S Oredsson
- Department of Biology, Lund University, Lund 223 62, Sweden.
| | - A Forsby
- Department of Neurochemistry, Stockholm University, Stockholm 106 91, Sweden; Swedish Toxicology Science Center (Swetox), Södertälje, Sweden.
| |
Collapse
|
17
|
Alwis KU, deCastro BR, Morrow JC, Blount BC. Acrolein Exposure in U.S. Tobacco Smokers and Non-Tobacco Users: NHANES 2005-2006. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1302-8. [PMID: 26024353 PMCID: PMC4671235 DOI: 10.1289/ehp.1409251] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/27/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Acrolein is a highly reactive α,β unsaturated aldehyde and respiratory irritant. Acrolein is formed during combustion (e.g., burning tobacco or biomass), during high-temperature cooking of foods, and in vivo as a product of oxidative stress and polyamine metabolism. No biomonitoring reference data have been reported to characterize acrolein exposure for the U.S. OBJECTIVES Our goals were to a) evaluate two acrolein metabolites in urine--N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA) and N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA)--as biomarkers of exposure to acrolein for the U.S. population by age, sex, race, and smoking status; and b) assess tobacco smoke as a predictor of acrolein exposure. METHODS We analyzed urine from National Health and Nutrition Examination Survey (NHANES 2005-2006) participants ≥ 12 years old (n = 2,866) for 3HPMA and CEMA using ultra-high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC/ESI-MSMS). Sample-weighted linear regression models stratified for non-tobacco users versus tobacco smokers (as defined by serum cotinine and self-report) characterized the association of urinary 3HPMA and CEMA with tobacco smoke exposure, adjusting for urinary creatinine, sex, age, and race/ethnicity. RESULTS 3HPMA and CEMA levels were higher among tobacco smokers (cigarettes, cigars, and pipe users) than among non-tobacco users. The median 3HPMA levels for tobacco smokers and non-tobacco users were 1,089 and 219 μg/g creatinine, respectively. Similarly, median CEMA levels were 203 μg/g creatinine for tobacco smokers and 78.8 μg/g creatinine for non-tobacco users. Regression analysis showed that serum cotinine was a significant positive predictor (p < 0.0001) of both 3HPMA and CEMA among tobacco smokers. CONCLUSIONS Tobacco smoke was a significant predictor of acrolein exposure in the U.S. population.
Collapse
Affiliation(s)
- K Udeni Alwis
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
18
|
Pelcovits A, Marriotti R, Heath J, Perry G, Castellani RJ. Simultaneous onset of Alzheimer's disease in a husband and wife in their mid-fifties: what do we really know about environmental factors? Open Neurol J 2015; 9:1-3. [PMID: 25932054 PMCID: PMC4391217 DOI: 10.2174/1874205x01509010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
Introduction: Environmental factors can play a role in the pathogenesis of Alzheimer’s disease. We present a case of the simultaneous onset of Alzheimer’s disease in two middle aged adults. Case presentation: A married couple ages 54 year and 51-year-old female cohabiting together were diagnosed with Alzheimer’s disease within the same year. The patient’s both developed cognitive decline shortly after a major renovation of their property and followed a similar disease course. The diagnosis was supported by clinical presentation and tissue pathology on autopsy. Conclusion: Environmental factors may play a role in the pathogenesis of Alzheimer’s disease. Further understanding of the disease cascade is required.
Collapse
Affiliation(s)
- Ari Pelcovits
- Division of Neuropathology, 22 South Greene Street, Baltimore, MD 21201
| | - Rachel Marriotti
- Division of Neuropathology, 22 South Greene Street, Baltimore, MD 21201
| | - Jonathan Heath
- Division of Neuropathology, 22 South Greene Street, Baltimore, MD 21201
| | - George Perry
- Division of Neuropathology, 22 South Greene Street, Baltimore, MD 21201
| | - Rudy J Castellani
- Division of Neuropathology, 22 South Greene Street, Baltimore, MD 21201
| |
Collapse
|
19
|
Modified Lipoproteins by Acrylamide Showed More Atherogenic Properties and Exposure of Acrylamide Induces Acute Hyperlipidemia and Fatty Liver Changes in Zebrafish. Cardiovasc Toxicol 2014; 15:300-8. [DOI: 10.1007/s12012-014-9294-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 2014; 27:1081-91. [PMID: 24911545 PMCID: PMC4106693 DOI: 10.1021/tx5001046] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 01/19/2023]
Abstract
Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.
Collapse
Affiliation(s)
- Richard M. LoPachin
- Department
of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th Street, Bronx, New York 10467, United
States
| | - Terrence Gavin
- Department
of Chemistry, Iona College, New Rochelle, New York 10804, United States
| |
Collapse
|
21
|
deCastro BR. Acrolein and asthma attack prevalence in a representative sample of the United States adult population 2000-2009. PLoS One 2014; 9:e96926. [PMID: 24816802 PMCID: PMC4016153 DOI: 10.1371/journal.pone.0096926] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/12/2014] [Indexed: 01/29/2023] Open
Abstract
Background Acrolein is an air toxic and highly potent respiratory irritant. There is little epidemiology available, but US EPA estimates that outdoor acrolein is responsible for about 75 percent of non-cancer respiratory health effects attributable to air toxics in the United States, based on the Agency's 2005 NATA (National-Scale Air Toxics Assessment) and acrolein's comparatively potent inhalation reference concentration of 0.02 µg/m3. Objectives Assess the association between estimated outdoor acrolein exposure and asthma attack reported by a representative cross-sectional sample of the adult United States population. Methods NATA 2005 chronic outdoor acrolein exposure estimates at the census tract were linked with residences oif adults (≥18 years old) in the NHIS (National Health Interview Survey) 2000 – 2009 (n = 271,348 subjects). A sample-weighted logistic regression model characterized the association between the prevalence of reporting at least one asthma attack in the 12 months prior to survey interview and quintiles of exposure to outdoor acrolein, controlling for potential confounders. Results In the highest quintile of outdoor acrolein exposure (0.05 – 0.46 µg/m3), there was a marginally significant increase in the asthma attack pOR (prevalence-odds ratio [95% CI] = 1.08 [0.98∶1.19]) relative to the lowest quintile. The highest quintile was also associated with a marginally significant increase in prevalence-odds (1.13 [0.98∶1.29]) in a model limited to never smokers (n = 153,820). Conclusions Chronic exposure to outdoor acrolein of 0.05 – 0.46 µg/m3 appears to increase the prevalence-odds of having at least one asthma attack in the previous year by 8 percent in a representative cross-sectional sample of the adult United States population.
Collapse
Affiliation(s)
- B. Rey deCastro
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States
- * E-mail:
| |
Collapse
|
22
|
Abstract
Acrylamide, a food contaminant, belongs to a large class of structurally similar toxic chemicals, 'type-2 alkenes', to which humans are widely exposed. Besides, occupational exposure to acrylamide has received wide attention through the last decades. It is classified as a neurotoxin and there are three important hypothesis considering acrylamide neurotoxicity: inhibition of kinesin-based fast axonal transport, alteration of neurotransmitter levels, and direct inhibition of neurotransmission. While many researchers believe that exposure of humans to relatively low levels of acrylamide in the diet will not result in clinical neuropathy, some neurotoxicologists are concerned about the potential for its cumulative neurotoxicity. It has been shown in several studies that the same neurotoxic effects can be observed at low and high doses of acrylamide, with the low doses simply requiring longer exposures. This review is focused on the neurotoxicity of acrylamide and its possible outcomes.
Collapse
|
23
|
Lee SE, Park YS. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Rashedinia M, Lari P, Abnous K, Hosseinzadeh H. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity. Toxicol Appl Pharmacol 2013; 272:199-207. [PMID: 23743302 DOI: 10.1016/j.taap.2013.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
Abstract
Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- Marzieh Rashedinia
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | |
Collapse
|
26
|
LoPachin RM, Gavin T. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1650-7. [PMID: 23060388 PMCID: PMC3548275 DOI: 10.1289/ehp.1205432] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/24/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. OBJECTIVES In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. METHODS In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. DISCUSSION ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. CONCLUSIONS These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467 , USA.
| | | |
Collapse
|
27
|
Goldman SM, Quinlan PJ, Ross GW, Marras C, Meng C, Bhudhikanok GS, Comyns K, Korell M, Chade AR, Kasten M, Priestley B, Chou KL, Fernandez HH, Cambi F, Langston JW, Tanner CM. Solvent exposures and Parkinson disease risk in twins. Ann Neurol 2012; 71:776-84. [PMID: 22083847 PMCID: PMC3366287 DOI: 10.1002/ana.22629] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Several case reports have linked solvent exposure to Parkinson disease (PD), but few studies have assessed associations with specific agents using an analytic epidemiologic design. We tested the hypothesis that exposure to specific solvents is associated with PD risk using a discordant twin pair design. METHODS Ninety-nine twin pairs discordant for PD ascertained from the National Academy of Sciences/National Research Council World War II Veteran Twins Cohort were interviewed regarding lifetime occupations and hobbies using detailed job task-specific questionnaires. Exposures to 6 specific solvents selected a priori were estimated by expert raters unaware of case status. RESULTS Ever exposure to trichloroethylene (TCE) was associated with significantly increased risk of PD (odds ratio [OR], 6.1; 95% confidence interval [CI] 1.2-33; p = 0.034), and exposure to perchloroethylene (PERC) and carbon tetrachloride (CCl(4) ) tended toward significance (respectively: OR, 10.5; 95% CI, 0.97-113; p = 0.053; OR, 2.3; 95% CI, 0.9-6.1; p = 0.088). Results were similar for estimates of exposure duration and cumulative lifetime exposure. INTERPRETATION Exposure to specific solvents may increase risk of PD. TCE is the most common organic contaminant in groundwater, and PERC and CCl(4) are also ubiquitous in the environment. Our findings require replication in other populations with well-characterized exposures, but the potential public health implications are substantial.
Collapse
Affiliation(s)
- Samuel M Goldman
- The Parkinson's Institute, 675 Almanor Avenue, Sunnyvale, CA 94085, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
LoPachin RM, Gavin T, DeCaprio A, Barber DS. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions. Chem Res Toxicol 2012; 25:239-51. [PMID: 22053936 PMCID: PMC3288258 DOI: 10.1021/tx2003257] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic electrophiles. Clearly, the difficult task of delineating molecular sites and mechanisms of toxicant action can be facilitated by the application of this quantitative approach.
Collapse
Affiliation(s)
- Richard M. LoPachin
- Department of Anesthesiology, Montefiore Medical Center, 111 E.210 St., Bronx, NY 10467
| | - Terrence Gavin
- Department of Chemistry, Iona College, New Rochelle, NY 10804
| | - Anthony DeCaprio
- Department of Chemistry and Biochemistry, Florida International University, 11200 S.W. 8 St. Miami, FL 33199
| | - David S. Barber
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
29
|
Martyniuk CJ, Fang B, Koomen JM, Gavin T, Zhang L, Barber DS, Lopachin RM. Molecular mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by α,β-unsaturated carbonyl derivatives. Chem Res Toxicol 2011; 24:2302-11. [PMID: 22084934 PMCID: PMC3243798 DOI: 10.1021/tx200437y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
α,β-Unsaturated carbonyls make up an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction. To address these data gaps, we incubated purified human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with acrylamide (ACR), acrolein, or methylvinyl ketone (MVK). Results show that these α,β-unsaturated carbonyl toxicants inhibited GAPDH activity in a concentration- and time-dependent manner. The rank order of enzyme inhibition (K(I)) (i.e., ACR ≪ MVK < acrolein) was related to the calculated electrophilic reactivity of each compound and to the corresponding kinetics of cysteine adduct formation. Tandem mass spectrometry revealed that adduct formation was selective at lower concentrations; i.e., ACR preferentially formed adducts with Cys152 (residues 146-162). At higher concentrations, ACR also formed adducts with Cys156 and Cys247 (residues 235-248). Adduct formation at Cys152 was correlated to enzyme inhibition, which is consistent with the regulatory role of this residue in enzyme function and its location within the GAPDH active site. Further analyses indicated that Cys152 was present in a pK(a)-lowering microenvironment (pK(a) = 6.03), and at physiological pH, the corresponding sulfhydryl group exists in the highly reactive nucleophilic thiolate state. These data suggest a general cytotoxic mechanism in which electrophilic α,β-unsaturated carbonyls selectively form adducts with reactive nucleophilic cysteine residues specifically associated with the active sites of proteins. These specialized cysteine residues are toxicologically relevant molecular targets, because chemical derivatization causes loss of protein function.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32601, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Aldini G, Orioli M, Carini M. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents. Mol Nutr Food Res 2011; 55:1301-19. [PMID: 21805620 DOI: 10.1002/mnfr.201100182] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/15/2011] [Indexed: 01/08/2023]
Abstract
Acrolein (ACR) is a toxic and highly reactive α,β-unsaturated aldehyde widely distributed in the environment as a common pollutant and generated endogenously mainly by lipoxidation reactions. Its biological effects are due to its ability to react with the nucleophilic sites of proteins, to form covalently modified biomolecules which are thought to be involved as pathogenic factors in the onset and progression of many pathological conditions such as cardiovascular and neurodegenerative diseases. Functional impairment of structural proteins and enzymes by covalent modification (crosslinking) and triggering of key cell signalling systems are now well-recognized signs of cell and tissue damage induced by reactive carbonyl species (RCS). In this review, we mainly focus on the in vitro and in vivo evidence demonstrating the ability of ACR to covalently modify protein structures, in order to gain a deeper insight into the dysregulation of cellular and metabolic pathways caused by such modifications. In addition, by considering RCS and RCS-modified proteins as drug targets, this survey will provide an overview on the newly developed molecules specifically tested for direct or indirect ACR scavenging, and the more significant studies performed in the last years attesting the efficacy of compounds already recognized as promising aldehyde-sequestering agents.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
31
|
|
32
|
Picklo MJ, Azenkeng A, Hoffmann MR. Trans-4-oxo-2-nonenal potently alters mitochondrial function. Free Radic Biol Med 2011; 50:400-7. [PMID: 21092757 DOI: 10.1016/j.freeradbiomed.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/27/2022]
Abstract
Alzheimer disease elevates lipid peroxidation in the brain and data indicate that the resulting lipid-aldehydes are pathological effectors of lipid peroxidation. The disposition of 4-substituted nonenals derived from arachidonate (20:4, n-6) and linoleate (18:2, n-6) oxidation is modulated by their protein adduction targets, their metabolism, and the nature of the 4-substitutent. Trans-4-oxo-2-nonenal (4-ONE) has a higher toxicity in some systems than the more commonly studied trans-4-hydroxy-2-nonenal (HNE). In this work, we performed a structure-function analysis of 4-hydroxy/oxoalkenal upon mitochondrial endpoints. We tested the hypotheses that 4-ONE, owing to a highly reactive nature, is more toxic than HNE and that HNE toxicity is enantioselective. We chose to study freshly isolated brain mitochondria because of the role of mitochondrial dysfunction in neurodegenerative disorders. Whereas there was little effect related to HNE chirality, our data indicate that in the mitochondrial environment, the order of toxic potency under most conditions was 4-ONE>HNE. 4-ONE uncoupled mitochondrial respiration at a concentration of 5μM and inhibited aldehyde dehydrogenase 2 (ALDH2) activity with an IC(50) of approximately 0.5μM. The efficacy of altering mitochondrial endpoints was ALDH2 inhibition>respiration=mitochondrial swelling=ALDH5A inhibition>GSH depletion. Thiol-based alkenal scavengers, but not amine-based scavengers, were effective in blocking the effects of 4-ONE upon respiration. Quantum mechanical calculations provided insights into the basis for the elevated reactivity of 4-ONE>HNE. Our data demonstrate that 4-ONE is a potent effector of lipid peroxidation in the mitochondrial environment.
Collapse
Affiliation(s)
- Matthew J Picklo
- Agricultural Research Center, Grand Forks Human Nutrition Research Center, U.S. Department of Agriculture, Grand Forks, ND 58203-9034, USA.
| | | | | |
Collapse
|
33
|
LoPachin RM, Gavin T, Geohagen BC, Zhang L, Casper D, Lekhraj R, Barber DS. β-dicarbonyl enolates: a new class of neuroprotectants. J Neurochem 2011; 116:132-43. [PMID: 21054388 PMCID: PMC2998570 DOI: 10.1111/j.1471-4159.2010.07091.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the β-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,β-unsaturated aldehyde. The 1,3-dicarbonyl compounds also provided substantial cytoprotection against toxicity induced by hydrogen peroxide in a cellular model of oxidative stress. Initial chemical characterization in cell-free systems indicated that the 1,3-dicarbonyl compounds acted as surrogate nucleophilic targets that slowed the rate of sulfhydryl loss caused by acrolein. Although the selected 1,3-dicarbonyl congeners did not scavenge free radicals, metal ion chelation was a significant property of both acetylacetone and 2-acetylcyclopentanone. Our data suggest that the 1,3-dicarbonyl enols represent a new class of neuroprotectants that scavenge electrophilic metal ions and unsaturated aldehydes through their nucleophilic enolate forms. As such, these enols might be rational candidates for treatment of acute or chronic neurodegenerative conditions that have oxidative stress as a common molecular etiology.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10467-2409 USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rauniyar N, Prokai-Tatrai K, Prokai L. Identification of carbonylation sites in apomyoglobin after exposure to 4-hydroxy-2-nonenal by solid-phase enrichment and liquid chromatography-electrospray ionization tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:398-410. [PMID: 20222068 DOI: 10.1002/jms.1725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Identification of protein carbonylation because of covalent attachment of a lipid peroxidation end-product was performed by combining proteolytic digestion followed by solid-phase hydrazide enrichment and liquid chromatography (LC)-electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using both collision-induced dissociation (CID) and electron capture dissociation (ECD). To evaluate this approach, we selected apomyoglobin and 4-hydroxy-2-nonenal (4-HNE) as a model protein and a representative end-product of lipid peroxidation, respectively. Although the characteristic elimination of 4-HNE (156 Da) in CID was found to serve as a signature tag for the modified peptides, generation of nearly complete fragment ion series because of efficient peptide backbone cleavage (in most cases over 75%) and the capability to retain the labile 4-HNE moiety of the tryptic peptides significantly aided the elucidation of primary structural information and assignment of exact carbonylation sites in the protein, when ECD was employed. We have concluded that solid-phase enrichment with both CID- and ECD-MS/MS are advantageous during an in-depth interrogation and unequivocal localization of 4-HNE-induced carbonylation of apomyoglobin that occurs via Michael addition to its histidine residues.
Collapse
Affiliation(s)
- Navin Rauniyar
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | |
Collapse
|
35
|
LoPachin RM, Gavin T, Petersen DR, Barber DS. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 2009; 22:1499-508. [PMID: 19610654 PMCID: PMC4452948 DOI: 10.1021/tx900147g] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure. This structure is a conjugated system that contains mobile pi-electrons. The carbonyl oxygen atom is electronegative and can promote the withdrawal of mobile electron density from the beta-carbon atom causing regional electron deficiency. On the basis of this type of electron polarizability, both acrolein and HNE are considered to be soft electrophiles that preferentially form 1,4-Michael type adducts with soft nucleophiles. Proteomic, quantum mechanical, and kinetic data will be presented, indicating that cysteine sulfhydryl groups are the primary soft nucleophilic targets of acrolein and HNE. This is in contrast to nitrogen groups on harder biological nucleophiles such as lysine or histidine residues. The toxicological outcome of adduct formation is not only dependent upon residue selectivity but also the importance of the targeted amino acid in protein function or structure. In attempting to discern the toxicological significance of a given adduct, we will consider the normal roles of cysteine, lysine, and histidine residues in proteins and the relative merits of corresponding adducts in the manifestations of diseases or toxic states. Understanding the molecular actions of acrolein and HNE could provide insight into many pathogenic conditions that involve initial cellular oxidative stress and could, thereby, offer new efficacious avenues of pharmacological defense.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467, USA.
| | | | | | | |
Collapse
|
36
|
Lourenssen S, Miller KG, Blennerhassett MG. Discrete responses of myenteric neurons to structural and functional damage by neurotoxins in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G228-39. [PMID: 19407212 DOI: 10.1152/ajpgi.90705.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Damage to the enteric nervous system is implicated in human disease and animal models of inflammatory bowel disease, diabetes, and Parkinson's disease, but the mechanism of death and the response of surviving neurons are poorly understood. We explored this in a coculture model of myenteric neurons, glia, and smooth muscle during exposure to the established or potential neurotoxins botulinum A, hydrogen peroxide, and acrylamide. Neuronal survival, axonal degeneration and regeneration, and neurotransmitter release were assessed during acute exposure (0-24 h) to neurotoxin and subsequent recovery (96-144 h). Unique and selective responses to each neurotoxin were found with acrylamide (0.5-2.0 mM) causing a 30% decrease in axon number without neuronal loss, whereas hydrogen peroxide (1-200 microM) caused a parallel loss in both axon and neuron number. Immunoblotting identified the loss of synaptic vesicle proteins that paralleled axon damage and was associated with marked suppression of depolarization-induced release of acetylcholine (ACh). The caspase inhibitor zVAD, but not DEVD, significantly prevented neuronal death, implying a largely caspase-3/7-independent mechanism of apoptotic death that was supported by staining for annexin V and cleaved caspase-3. In contrast, botulinum A (2 microg/ml) caused a 40% decrease in ACh release without effect on neuronal survival or axon structure. By 96 h after exposure to acrylamide or hydrogen peroxide, axon number was restored to or even surpassed the level of time-matched controls, regardless of partial neuronal loss, but ACh release remained markedly suppressed. Neural responses to toxic factors are initially unique but then converge upon robust axonal regeneration, whereas neurotransmitter release is both vulnerable to damage and slow to recover.
Collapse
Affiliation(s)
- Sandra Lourenssen
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario K7L 2V6, Canada
| | | | | |
Collapse
|
37
|
Lopachin RM, Geohagen BC, Gavin T. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal. Toxicol Sci 2008; 107:171-81. [PMID: 18996889 PMCID: PMC2638640 DOI: 10.1093/toxsci/kfn226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.
Collapse
Affiliation(s)
- Richard M Lopachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467, USA
| | | | | |
Collapse
|