1
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
2
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
3
|
Pan J, Wei Y, Ni L, Li X, Deng Y, Xu B, Yang T, Sun J, Liu W. Unbalanced ER-mitochondrial calcium homeostasis promotes mitochondrial dysfunction and associated apoptotic pathways activation in methylmercury exposed rat cortical neurons. J Biochem Mol Toxicol 2022; 36:e23136. [PMID: 35678294 DOI: 10.1002/jbt.23136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Methylmercury (MeHg) is a cumulative environmental pollutant that can easily cross the blood-brain barrier and cause damage to the brain, mainly targeting the central nervous system. The purpose of this study is to investigate the role of calcium ion (Ca2+ ) homeostasis between the endoplasmic reticulum (ER) and mitochondria in MeHg-induced neurotoxicity. Rat primary cortical neurons exposed to MeHg (0.25-1 μm) underwent dose-dependent cell damage, accompanied by increased Ca2+ release from the ER and elevated levels of free Ca2+ in cytoplasm and mitochondria. MeHg also increased the protein and messenger RNA expressions of the inositol 1,4,5-triphosphate receptor, ryanodine receptor 2, and mitochondrial calcium uniporter. Ca2+ channel inhibitors 2-aminoethyl diphenylborinate and procaine reduced the release of Ca2+ from ER, while RR and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate inhibited Ca2+ uptake from mitochondria. In addition, pretreatment with Ca2+ chelator BAPTA-AM effectively restored mitochondrial membrane potential levels, inhibited over opening of mitochondrial permeability transition pore, and maintained mitochondrial function stability. Meanwhile, the expression of mitochondrial apoptosis-related proteins recovered to some extent, along with the reduction of the early apoptosis ratio. These results suggest that Ca2+ homeostasis plays an essential role in mitochondrial damage and apoptosis induced by MeHg, which may be one of the important mechanisms of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
4
|
Ke T, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Santamaria A, Aschner M. Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab014. [PMID: 34881051 PMCID: PMC8648069 DOI: 10.1093/eep/dvab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the competence of academic performance and social wellness in children and adults. The causes of ADHD are unclear. Both genetic and environmental factors contribute to the development of ADHD. The behavioral impairments in ADHD are associated with epigenetic changes in genes that are important for neurodevelopment. Among environmental causes of ADHD, the neurotoxin methylmercury (MeHg) is associated with an increased risk for ADHD. Developing children are susceptible to neurotoxic effects of prenatal MeHg exposure. Human epidemiology studies have shown that prenatal MeHg exposure could invoke epigenetic changes in genes that are involved in ADHD. In addition, the pathogenesis of ADHD involves dopaminergic system, which is a target of developmental MeHg exposure. MeHg-induced alterations in the dopaminergic system have a profound impact on behavioral functions in adults. As a trace level of MeHg (around nM) can induce long-lasting behavioral alterations, potential mechanisms of MeHg-induced functional changes in the dopaminergic system may involve epigenetic mechanisms. Here, we review the relevant evidence on developmental MeHg exposures and the risk for ADHD. We also point out research gaps in understanding environmental causes of ADHD.
Collapse
Affiliation(s)
- Tao Ke
- **Correspondence address. Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA. Tel: +1 718 430 4047; Fax: +1 718 430 8922; E-mail:
| | - Alexey A Tinkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Antoly V Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Medical Elementology, K.G. Razumovsky Moscow State University of Technologies and Management, Moscow 109004, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
6
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
7
|
Colón-Rodríguez A, Colón-Carrión NM, Atchison WD. AMPA receptor contribution to methylmercury-mediated alteration of intracellular Ca 2+ concentration in human induced pluripotent stem cell motor neurons. Neurotoxicology 2020; 81:116-126. [PMID: 32991939 DOI: 10.1016/j.neuro.2020.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
α motor neurons (MNs) are a target of the environmental neurotoxicant methylmercury (MeHg), accumulating MeHg and subsequently degenerating. In mouse spinal cord MN cultures, MeHg increased intracellular Ca2+ [Ca2+]i; the AMPA receptor (AMPAR) antagonist CNQX delayed the increase in [Ca2+]i, implicating the role of AMPARs in this response. Here we used human induced pluripotent stem cell-derived MNs (hiPSC-MNs), to characterize the role of MN AMPARs in MeHg neurotoxicity. Acute exposure to MeHg (0.1, 0.2, 0.5, 1 and 1.5 μM), fura-2 microfluorimetry, and a standard cytotoxicity assay, were used to examine MN regulation of [Ca2+]i, and cytotoxicity, respectively. Contribution of Ca2+-permeable and impermeable AMPARs was compared using either CNQX, or the Ca2+-permeable AMPAR antagonist N-acetyl spermine (NAS). MeHg-induced cytotoxicity was evaluated following a 24 h delay subsequent to 1 h exposure of hiPSC-MNs. MeHg caused a characteristic biphasic increase in [Ca2+]i, the onset of which was concentration-dependent; higher MeHg concentrations hastened onset of both phases. CNQX significantly delayed MeHg's effect on onset time of both phases. In contrast, NAS significantly delayed only the 2nd phase increase in fura-2 fluorescence. Exposure to MeHg for 1 h followed by a 24 h recovery period caused a concentration-dependent incidence of cell death. These results demonstrate for the first time that hiPSC-derived MNs are highly sensitive to effects of MeHg on [Ca2+]i, and cytotoxicity, and that both Ca2+-permeable and impermeable AMPARs contribute the elevations in [Ca2+]i.
Collapse
Affiliation(s)
- Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Institute for Integrative Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B331 Life Science Bldg., East Lansing, MI 48824, United States.
| | - Nicole M Colón-Carrión
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States.
| | - William D Atchison
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Institute for Integrative Toxicology, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B338 Life Science Bldg., East Lansing, MI 48824, United States; Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, 1355 Bogue St., B331 Life Science Bldg., East Lansing, MI 48824, United States.
| |
Collapse
|
8
|
Sceniak MP, Spitsbergen JB, Sabo SL, Yuan Y, Atchison WD. Acute neurotoxicant exposure induces hyperexcitability in mouse lumbar spinal motor neurons. J Neurophysiol 2020; 123:1448-1459. [PMID: 32159428 DOI: 10.1152/jn.00775.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal motor neurons (MNs) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS, has not been systematically studied. The goal of this study was to test the ability of a well-known environmental neurotoxicant to induce hyperexcitability in mouse lumbar MNs. Methylmercury (MeHg) causes neurotoxicity through mechanisms involving elevated intracellular Ca2+ concentration ([Ca2+]i), a hallmark of excitotoxicity. We tested whether acute exposure to MeHg induces hyperexcitability in MNs by altering synaptic transmission, using whole cell patch-clamp recordings of lumbar spinal MNs in vitro. Acute MeHg exposure (20 μM) led to an increase in the frequency of both spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs. The frequency of inhibitory postsynaptic currents (IPSCs) was also increased by MeHg. Action potential firing rates, both spontaneous and evoked, were increased by MeHg, despite increases in both EPSCs and IPSCs, indicating a shift toward hyperexcitability. Also consistent with hyperexcitability, fluo 4-AM microfluorimetry indicated that MeHg exposure induced an increase in [Ca2+]i. Spinal cord hyperexcitability is partially mediated by Ca2+-permeable AMPA receptors, as MeHg-dependent increases in EPSCs were blocked by 1-napthyl spermine. Therefore, spinal MNs appear highly susceptible to MeHg exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to eventual neurodegeneration and loss of motor function as observed in spinal cord after MeHg exposure in vivo and may contribute to MeHg-induced acceleration of ALS symptoms.NEW & NOTEWORTHY Spinal motor neurons (MN) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). This study investigated MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS. Spinal MNs appear highly susceptible to methylmercury exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to neurodegeneration and loss of motor function as observed in ALS spinal cord symptoms.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jake B Spitsbergen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
9
|
Prince LM, Aschner M, Bowman AB. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Biochim Biophys Acta Gen Subj 2019; 1863:129300. [PMID: 30742955 DOI: 10.1016/j.bbagen.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 01/07/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant affecting both the developing and mature central nervous system (CNS) with apparent indiscriminate disruption of multiple homeostatic pathways. However, genetic and environmental modifiers contribute significant variability to neurotoxicity associated with human exposures. MeHg displays developmental stage and neural lineage selective neurotoxicity. To identify mechanistic-based neuroprotective strategies to mitigate human MeHg exposure risk, it will be critical to improve our understanding of the basis of MeHg neurotoxicity and of this selective neurotoxicity. Here, we propose that human-based pluripotent stem cell cellular approaches may enable mechanistic insight into genetic pathways that modify sensitivity of specific neural lineages to MeHg-induced neurotoxicity. Such studies are crucial for the development of novel disease modifying strategies impinging on MeHg exposure vulnerability.
Collapse
Affiliation(s)
- Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States.
| |
Collapse
|
10
|
Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 2019; 187:341-356. [PMID: 29777524 DOI: 10.1007/s12011-018-1380-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis are characterized by a chronic and selective process of neuronal cell death. Although the causes of neurodegenerative diseases remain still unknown, it is now a well-established idea that more factors, such as genetic, endogenous, and environmental, are involved. Among environmental causes, the accumulation of mercury, a heavy metal considered a toxic agent, was largely studied as a probable factor involved in neurodegenerative disease course. Mercury exists in three main forms: elemental mercury, inorganic mercury, and organic mercury (methylmercury and ethylmercury). Sources of elemental mercury can be natural (volcanic emission) or anthropogenic (coal-fired electric utilities, waste combustion, hazardous-waste incinerators, and gold extraction). Moreover, mercury is still used as an antiseptic, as a medical preservative, and as a fungicide. Dental amalgam can emit mercury vapor. Mercury vapor, being highly volatile and lipid soluble, can cross the blood-brain barrier and the lipid cell membranes and can be accumulated into the cells in its inorganic forms. Also, methylmercury can pass through blood-brain and placental barriers, causing serious damage in the central nervous system. This review describes the toxic effects of mercury in cell cultures, in animal models, and in patients with neurodegenerative diseases. In vitro experiments showed that mercury exposure was principally involved in oxidative stress and apoptotic processes. Moreover, motor and cognitive impairment and neural loss have been confirmed in various studies performed in animal models. Finally, observational studies on patients with neurodegenerative diseases showed discordant data about a possible mercury involvement.
Collapse
Affiliation(s)
- Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Annalisa Samà
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
11
|
Farina M, Aschner M, da Rocha JBT. The catecholaminergic neurotransmitter system in methylmercury-induced neurotoxicity. ADVANCES IN NEUROTOXICOLOGY 2017; 1:47-81. [PMID: 32346666 DOI: 10.1016/bs.ant.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
12
|
Bailey JM, Colón-Rodríguez A, Atchison WD. Evaluating a Gene-Environment Interaction in Amyotrophic Lateral Sclerosis: Methylmercury Exposure and Mutated SOD1. Curr Environ Health Rep 2017; 4:200-207. [PMID: 28397096 PMCID: PMC5494256 DOI: 10.1007/s40572-017-0144-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Gene-environment (GxE) interactions likely contribute to numerous diseases, but are often difficult to model in the laboratory. Such interactions have been widely hypothesized for amyotrophic lateral sclerosis (ALS); recent controlled laboratory studies are discussed here and hypotheses related to possible mechanisms of action are offered. Using methylmercury exposure and mutated SOD1 to model the impacts of such an interaction, we interpret evidence about their respective mechanisms of toxicity to interrogate the possibility of additive (or synergistic) effects when combined. RECENT FINDINGS Recent work has converged on mechanisms of calcium-mediated glutamate excitotoxicity as a likely contributor in one model of a gene-environment interaction affecting the onset and progression of ALS-like phenotype. The current experimental literature on mechanisms of metal-induced neuronal injury and their relevant interactions with genetic contributions in ALS is sparse, but we describe those studies here and offer several integrative hypotheses about the likely mechanisms involved.
Collapse
Affiliation(s)
- Jordan M Bailey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
| | - Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824-1317, USA.
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, 48824-1317, USA.
- , Life Science Building, 1355 Bogue St. Room B331A, East Lansing, MI, 48824-1317, USA.
| |
Collapse
|
13
|
Colón-Rodríguez A, Hannon HE, Atchison WD. Effects of methylmercury on spinal cord afferents and efferents-A review. Neurotoxicology 2017; 60:308-320. [PMID: 28041893 PMCID: PMC5447474 DOI: 10.1016/j.neuro.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRP channels, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels.
Collapse
Affiliation(s)
- Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - Heidi E Hannon
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - William D Atchison
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
14
|
Hoffman DJ, Newland M. A microstructural analysis distinguishes motor and motivational influences over voluntary running in animals chronically exposed to methylmercury and nimodipine. Neurotoxicology 2016; 54:127-139. [DOI: 10.1016/j.neuro.2016.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
|
15
|
Ohkubo M, Miyamoto A, Shiraishi M. Heavy metal chelator TPEN attenuates fura-2 fluorescence changes induced by cadmium, mercury and methylmercury. J Vet Med Sci 2016; 78:761-7. [PMID: 26781706 PMCID: PMC4905828 DOI: 10.1292/jvms.15-0620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stimulation with heavy metals is known to induce calcium (Ca2+)
mobilization in many cell types. Interference with the measurement of intracellular
Ca2+ concentration by the heavy metals in cells loaded with Ca2+
indicator fura-2 is an ongoing problem. In this study, we analyzed the effect of heavy
metals on the fura-2 fluorescence ratio in human SH-SY5Y neuroblastoma cells by using
TPEN, a specific cell-permeable heavy metal chelator. Manganese chloride (30–300
µM) did not cause significant changes in the fura-2 fluorescence ratio.
A high concentration (300 µM) of lead acetate induced a slight elevation
in the fura-2 fluorescence ratio. In contrast, stimulation with cadmium chloride, mercury
chloride or MeHg (3–30 µM) elicited an apparent elevation of the fura-2
fluorescence ratio in a dose-dependent manner. In cells stimulated with 10 or 30
µM cadmium chloride, the addition of TPEN decreased the elevated fura-2
fluorescence ratio to basal levels. In cells stimulated with mercury or MeHg, the addition
of TPEN significantly decreased the elevation of the fura-2 fluorescence ratio induced by
lower concentrations (10 µM) of mercury or MeHg, but not by higher
concentrations (30 µM). Pretreatment with Ca2+ channel
blockers, such as verapamil, 2-APB or lanthanum chloride, resulted in different effects on
the fura-2 fluorescence ratio. Our study provides a characterization of the effects of
several heavy metals on the mobilization of divalent cations and the toxicity of heavy
metals to neuronal cells.
Collapse
Affiliation(s)
- Masato Ohkubo
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | |
Collapse
|
16
|
Bradford AB, Mancini JD, Atchison WD. Methylmercury-Dependent Increases in Fluo4 Fluorescence in Neonatal Rat Cerebellar Slices Depend on Granule Cell Migrational Stage and GABAA Receptor Modulation. J Pharmacol Exp Ther 2016; 356:2-12. [PMID: 26514794 PMCID: PMC4702075 DOI: 10.1124/jpet.115.226761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023] Open
Abstract
Methylmercury (MeHg) disrupts cerebellar function, especially during development. Cerebellar granule cells (CGC), which are particularly susceptible to MeHg by unknown mechanisms, migrate during this process. Transient changes in intracellular Ca(2+) (Ca(2+) i) are crucial to proper migration, and MeHg is well known to disrupt CGC Ca(2+) i regulation. Acutely prepared slices of neonatal rat cerebellum in conjunction with confocal microscopy and fluo4 epifluorescence were used to track changes induced by MeHg in CGC Ca(2+) i regulation in the external (EGL) and internal granule cell layers (IGL) as well as the molecular layer (ML). MeHg caused no cytotoxicity but did cause a time-dependent increase in fluo4 fluorescence that depended on the stage of CGC development. CGCs in the EGL were most susceptible to MeHg-induced increases in fluo4 fluorescence. MeHg increased fluorescence in CGC processes but only diffusely; Purkinje cells rarely fluoresced in these slices. Neither muscimol nor bicuculline alone altered baseline fluo4 fluorescence in any CGC layer, but each delayed the onset and reduced the magnitude of effect of MeHg on fluo4 fluorescence in the EGL and ML. In the IGL, both muscimol and bicuculline delayed the onset of MeHg-induced increases in fluo4 fluorescence but did not affect fluorescence magnitude. Thus, acute exposure to MeHg causes developmental stage-dependent increases in Ca(2+) i in CGCs. Effects are most prominent in CGCs during development or early stages of migration. GABAA receptors participate in an as yet unclear manner to MeHg-induced Ca(2+) i dysregulation of CGCs.
Collapse
Affiliation(s)
- Aaron B Bradford
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| | - Jayme D Mancini
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology (W.D.A.), Department of Biochemistry and Molecular Biology (A.A.B.), Institute for Integrative Toxicology (A.A.B., W.D.A.), and Neuroscience Program (J.D.M.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Shiraishi M, Hangai M, Yamamoto M, Sasaki M, Tanabe A, Sasaki Y, Miyamoto A. Alteration in MARCKS phosphorylation and expression by methylmercury in SH-SY5Y cells and rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1256-1263. [PMID: 24835554 DOI: 10.1016/j.etap.2014.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/27/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The molecular mechanisms mediating methylmercury (MeHg)-induced neurotoxicity are not completely understood. Because myristoylated alanine-rich C kinase substrate (MARCKS) plays an essential role in the differentiation and development of neuronal cells, we studied the alteration of MARCKS expression and phosphorylation in MeHg-induced neurotoxicity of neuroblastoma SH-SY5Y cells and in the rat brain. Exposure to MeHg induced a decrease in cell viability of SH-SY5Y cells, which was accompanied by a significant increase in phosphorylation and a reduction in MARCKS expression. Pretreatment of cells with a protein kinase C inhibitor or an extracellular Ca(2+) chelator suppressed MeHg-induced MARCKS phosphorylation. In MARCKS knock-down cells, MeHg-induced cell death was significantly augmented in comparison to control siRNA. In brain tissue from MeHg-treated rats, MARCKS phosphorylation was enhanced in the olfactory bulb in comparison to control rats. The present study may indicate that alteration in MARCKS expression or phosphorylation has consequences for MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Makoto Hangai
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Megumi Yamamoto
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masanori Sasaki
- Department of Basic Medical Sciences, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Atsuhiro Tanabe
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Yasuharu Sasaki
- Laboratory of Pharmacology, School of Pharmaceutical Science, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
18
|
Hayess K, Riebeling C, Pirow R, Steinfath M, Sittner D, Slawik B, Luch A, Seiler AEM. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro. Toxicology 2013; 314:135-47. [PMID: 24096155 DOI: 10.1016/j.tox.2013.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
As the developing brain is exquisitely vulnerable to chemical disturbances, testing for developmental neurotoxicity of a substance is an important aspect of characterizing its tissue specific toxicity. Mouse embryonic stem cells (mESCs) can be differentiated toward a neural phenotype, and this can be used as a model for early brain development. We developed a new in vitro assay using mESCs to predict adverse effects of chemicals and other compounds on neural development - the so-called DNT-EST. After treatment of differentiating stem cells for 48h or 72h, at two key developmental stages endpoint for neural differentiation, viability, and proliferation were assessed. As a reference, we similarly treated undifferentiated stem cells 2 days after plating for 48h or 72h in parallel to the differentiating stem cells. Here, we show that chemical testing of a training set comprising nine substances (six substances of known developmental toxicity and three without specific developmental neurotoxicity) enabled a mathematical prediction model to be formulated that provided 100% predictivity and accuracy for the given substances, including in leave-one-out cross-validation. The described test method can be performed within two weeks, including data analysis, and provides a prediction of the developmental neurotoxicity potency of a substance.
Collapse
Affiliation(s)
- Katrin Hayess
- German Federal Institute for Risk Assessment (BfR), Department of Experimental Toxicology and ZEBET, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dórea JG, Farina M, Rocha JBT. Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol 2013; 33:700-11. [PMID: 23401210 DOI: 10.1002/jat.2855] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).
Collapse
Affiliation(s)
- José G Dórea
- Department of Nutrition, Faculty of Health Sciences, Universidade de Brasilia, 70919-970, Brasilia, DF, Brazil.
| | | | | |
Collapse
|
20
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
21
|
Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol 2012; 2012:248764. [PMID: 22927718 PMCID: PMC3425894 DOI: 10.1155/2012/248764] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 11/17/2022] Open
Abstract
Methylmercury (MeHg) mediated cytotoxicity is associated with loss of intracellular calcium (Ca2+) homeostasis. The imbalance in Ca2+ physiology is believed to be associated with dysregulation of Ca2+ intracellular stores and/or increased permeability of the biomembranes to this ion. In this paper we summarize the contribution of glutamate dyshomeostasis in intracellular Ca2+ overload and highlight the mitochondrial dysfunctions induced by MeHg via Ca2+ overload. Mitochondrial disturbances elicited by Ca2+ may involve several molecular events (i.e., alterations in the activity of the mitochondrial electron transport chain complexes, mitochondrial proton gradient dissipation, mitochondrial permeability transition pore (MPTP) opening, thiol depletion, failure of energy metabolism, reactive oxygen species overproduction) that could culminate in cell death. Here we will focus on the role of oxidative stress in these phenomena. Additionally, possible antioxidant therapies that could be effective in the treatment of MeHg intoxication are briefly discussed.
Collapse
|