1
|
Gayer MC, Bianchini MC, Carriço MRS, Gomes Paz ME, Nogueira CL, Denardin ELG, Puntel RL, Roehrs R. Boral® 500 SC (sulfentrazone) induces accumulation of heme synthesis intermediates and changes in locomotor behavior and metabolic markers in Drosophila melanogaster. CHEMOSPHERE 2025; 380:144468. [PMID: 40344814 DOI: 10.1016/j.chemosphere.2025.144468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Sulfentrazone (SULF) is an herbicide that inhibits protoporphyrinogen oxidase, which is essential for the biosynthesis of chlorophyll and heme. Its prolonged soil half-life, low effective concentration, and the conserved nature of the heme biosynthesis pathway suggest that SULF might significantly affect non-target organisms. This study evaluated the impact of the commercial formulation Boral® 500 SC (SULF) on Drosophila melanogaster when exposed to acute concentrations. Fruit flies were exposed to 10-300 mg/L of the herbicide for seven days, which resulted in dose- and time-dependent increases in mortality. Following these results, further evaluations were conducted on flies exposed to 30 and 150 mg/L on the fourth day of treatment. The exposed flies exhibited decreased climbing locomotor capacity (negative geotaxis assay) and reduced exploratory locomotor capacity (open field assay), suggesting an increased energy demand to counteract the herbicide's effects. This was evidenced by decreased weight, reduced energy-rich molecules, and increased total protein levels. Activation of the heme biosynthesis pathway was indicated by the accumulation of protoporphyrin IX, increased total heme in the head, and induction of the porphobilinogen synthase (PBGS) enzyme (δ-aminolevulinic acid dehydratase, δ-ALA-D, in mammals). Biochemical analysis showed increased thiobarbituric acid reactive species (TBARS) levels and superoxide dismutase (SOD) activity in flies exposed to 150 mg/L, and higher glutathione-S-transferase (GST) activity in the 150 mg/L Top group. Additionally, there was an increase in MTT reduction assay in flies from the 150 mg/L Bottom group. The study highlights that species with significant diurnal activity, such as pollinators, might be especially susceptible to SULF exposure due to accumulated protoporphyrin IX and pro-oxidative activity under light conditions.
Collapse
Affiliation(s)
- Mateus Cristofari Gayer
- Laboratory of Environmental, Chemical, and Toxicological Analyses (LAQAT), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 - Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Matheus Chimelo Bianchini
- Group of Studies in Nutrition, Health, and Quality of Life (GENSQ), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Murilo Ricardo Sigal Carriço
- Laboratory of Environmental, Chemical, and Toxicological Analyses (LAQAT), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 - Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Maria Elizabeth Gomes Paz
- Laboratory of Environmental, Chemical, and Toxicological Analyses (LAQAT), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 - Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Caroline Lacerda Nogueira
- Laboratory of Physicochemical Studies and Natural Products (LEFQPN), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physicochemical Studies and Natural Products (LEFQPN), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Robson Luiz Puntel
- Group of Studies in Nutrition, Health, and Quality of Life (GENSQ), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Rafael Roehrs
- Laboratory of Environmental, Chemical, and Toxicological Analyses (LAQAT), Federal University of Pampa (UNIPAMPA), Campus Uruguaiana, BR 472 - Km 592, CEP 97508-000, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Idowu OK, Oremosu AA, Dosumu OO, Mohammed AA. Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Fly (Austin) 2024; 18:2306687. [PMID: 38286464 PMCID: PMC10826630 DOI: 10.1080/19336934.2024.2306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w1118) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.
Collapse
Affiliation(s)
- Olumayowa K. Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ademola A. Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O. Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A. Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
3
|
Otenaike TA, Farodoye OM, de Silva MM, Loreto JS, Adedara AO, Dos Santos MM, de Prestes AS, Barbosa NV, da Rocha JBT, Lobo LE, Wagner R, Abolaji AO, Loreto ELS. Nicotine and Vape: Drugs of the Same Profile Flock Together. J Biochem Mol Toxicol 2024; 38:e70075. [PMID: 39601203 DOI: 10.1002/jbt.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Smoking, a major behavioral health burden, causes preventable and premature deaths globally. Nicotine, the addictive component present in tobacco products and Electronic cigarettes (E-cigarettes, vape), can bind to nicotinic acetylcholine receptors in the brain to trigger a dopamine release that reinforces smoking. Despite the widespread usage of nicotine, its mechanisms of toxicity, particularly in e-cigarettes, are poorly understood. Using Drosophila melanogaster as a model organism, this study aims to investigate the mechanism of the toxicity of nicotine and vape. Behavioral parameters, oxidative stress indicators, mRNA expression levels of Dopamine 1- receptor 1 (Dop1R1), Acetyl-coenzyme A synthetase (AcCoAs), and apoptotic proteins were assessed in the flies after a 5-day exposure to varying concentrations of nicotine (0.15, 0.25, and 0.35 mg/mL diet) and vape (0.06, 0.08, and 0.12 mg/mL diet). Furthermore, Gas Chromatography-Mass Spectrometry (GC/MS) and Gas Chromatography-Flame Ionization Detection (GC/FID) analyzes were conducted to gain more insight on the composition of the vape used in study. Findings indicate that both nicotine and vape exposure significantly reduced lifespan, impaired locomotor activity, and disrupted sleep patterns. Notably, nicotine exposure stimulated Dop1R1 transcription and altered Acetyl-CoA gene expression, impacting the viability and behavior of the flies. Elevated levels of reactive oxygen biomarkers were observed, contributing to cellular damage through oxidative stress and apoptotic mechanisms mediated by the Reaper and DIAP1 proteins. Additionally, the composition analysis of vape liquid revealed the presence of propylene glycol, nicotine, methyl esters, and an unidentified compound. This study highlights the complex interplay between nicotine, gene expression, and physiological responses in Drosophila.
Collapse
Affiliation(s)
- Titilayomi A Otenaike
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Oluwabukola M Farodoye
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Monica M de Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Julia S Loreto
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Adeola O Adedara
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Matheus M Dos Santos
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Alessandro S de Prestes
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Nilda V Barbosa
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - João B T da Rocha
- Center for Natural and Exact Sciences, Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Luiz E Lobo
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Roger Wagner
- Department of Technology and Food Science, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| | - Amos O Abolaji
- Drosophila Research and Training Centre, Ibadan, Nigeria
- Drosophila Laboratory, Department of Biochemistry, College of Medicine, Molecular Drug Metabolism and Toxicology Unit, Ibadan, Nigeria
| | - Elgion L S Loreto
- Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), CEP, Santa Maria, Brazil
| |
Collapse
|
4
|
Idowu OK, Dosumu OO, Boboye AS, Oremosu AA, Mohammed AA. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav 2024; 14:e70001. [PMID: 39245995 PMCID: PMC11381577 DOI: 10.1002/brb3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.
Collapse
Affiliation(s)
- Olumayowa K Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodeji S Boboye
- Department of Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
5
|
Dos Santos Nunes RG, de Amorim LC, Bezerra IC, da Silva AJ, Dos Santos CAL, Gubert P, de Menezesa IRA, Duarte AE, Barros LM, da Silveira Andrade-da-Costa BL, Dos Santos MV, Dos Santos Correia MT, da Rosa MM. Syagrus coronata fixed oil prevents rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:497-515. [PMID: 38619158 DOI: 10.1080/15287394.2024.2338431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.
Collapse
Affiliation(s)
| | | | | | - Artur José da Silva
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | | | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | | | - Antonia Eliene Duarte
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Luiz Marivando Barros
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | | | | | | | - Michelle Melgarejo da Rosa
- Department of Biochemistry, Federal University of Pernambuco, Recife, Brazil
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
6
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
7
|
Zhang W, Ju Y, Ren Y, Miao Y, Wang Y. Exploring the Efficient Natural Products for the Therapy of Parkinson's Disease via Drosophila Melanogaster (Fruit Fly) Models. Curr Drug Targets 2024; 25:77-93. [PMID: 38213160 DOI: 10.2174/0113894501281402231218071641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, partly attributed to mutations, environmental toxins, oxidative stress, abnormal protein aggregation, and mitochondrial dysfunction. However, the precise pathogenesis of PD and its treatment strategy still require investigation. Fortunately, natural products have demonstrated potential as therapeutic agents for alleviating PD symptoms due to their neuroprotective properties. To identify promising lead compounds from herbal medicines' natural products for PD management and understand their modes of action, suitable animal models are necessary. Drosophila melanogaster (fruit fly) serves as an essential model for studying genetic and cellular pathways in complex biological processes. Diverse Drosophila PD models have been extensively utilized in PD research, particularly for discovering neuroprotective natural products. This review emphasizes the research progress of natural products in PD using the fruit fly PD model, offering valuable insights into utilizing invertebrate models for developing novel anti-PD drugs.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
8
|
Subhan I, Siddique YH. Effect of Rotenone on the Neurodegeneration among Different Models. Curr Drug Targets 2024; 25:530-542. [PMID: 38698744 DOI: 10.2174/0113894501281496231226070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 05/05/2024]
Abstract
Rotenone is a naturally occurring plant product used as an insecticide, pesticide and piscicide. It is lipophilic in nature and can cross the blood-brain barrier and induce the degeneration of neurons. It inhibits the mitochondrial respiratory chain complex I and stops the transfer of electrons. It induces ROS generation, which impairs mitochondrial activity. Rotenone is a toxic agent which causes the death of neurons. The present review describes the effect of rotenone on neurodegeneration with an emphasis on behavioral, pathological and neuropathological components carried out on various experimental models such as cell lines, Drosophila melanogaster, mice and rats.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
9
|
Pradhan SP, Tejaswani P, Behera A, Sahu PK. Phytomolecules from conventional to nano form: Next-generation approach for Parkinson's disease. Ageing Res Rev 2024; 93:102136. [PMID: 38000511 DOI: 10.1016/j.arr.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The incidence of neurodegenerative diseases is increasing exponentially worldwide. Parkinson's disease (PD) is a neurodegenerative disease caused by factors like oxidative stress, gene mutation, mitochondrial dysfunction, neurotoxins, activation of microglial inflammatory mediators, deposition of Lewy's bodies, and α- synuclein proteins in the neurons leading to neuroinflammation and neurodegeneration in the substantia nigra. Hence the development of efficacious neuro-therapy is in demand which can prevent neurodegeneration and protect the nigrostriatal pathway. One of the approaches for managing PD is reducing oxidative stress due to aging and other co-morbid diseased conditions. The phytomolecules are reported as safe and efficacious antioxidants as they contain different secondary metabolites. However, the limitations of low solubility restricted permeability through the blood-brain barrier, and low bioavailability limits their clinical evaluation and application. This review discusses the therapeutic efficacy of phytomolecules in PD and different nanotechnological approaches to improve their brain permeability.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Hanumanthappa R, Venugopal DM, P C N, Shaikh A, B.M S, Heggannavar GB, Patil AA, Nanjaiah H, Suresh D, Kariduraganavar MY, Raghu SV, Devaraju KS. Polyvinylpyrrolidone-Capped Copper Oxide Nanoparticles-Anchored Pramipexole Attenuates the Rotenone-Induced Phenotypes in a Drosophila Parkinson's Disease Model. ACS OMEGA 2023; 8:47482-47495. [PMID: 38144104 PMCID: PMC10734007 DOI: 10.1021/acsomega.3c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.
Collapse
Affiliation(s)
- Ramesha Hanumanthappa
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Deepa Mugudthi Venugopal
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
| | - Nethravathi P C
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | - Ahesanulla Shaikh
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | - Siddaiah B.M
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
| | | | - Akshay A. Patil
- Department
of Botany, Karnataka Science College, Dharwad, Karnataka 580001, India
| | - Hemalatha Nanjaiah
- Neuro-chemistry
Lab, Department of Biochemistry, Karnatak
University, Dharwad, Karnataka 580003, India
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, 685 W. Baltimore St. HSFI-380, Baltimore, Maryland 21201, United States
| | - D. Suresh
- Department
of Studies and Research in Organic Chemistry, and Department of Chemistry,
University Collage of Science, Tumkur University, Tumkur, Karnataka 572103, India
| | | | - Shamprasad Varija Raghu
- Neurogenetics
Lab, Department of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka 574199, India
- Division
of Neuroscience, Yenepoya Research Centre (YRC), Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | | |
Collapse
|
11
|
Li M, Luo S, Li Y, Li Y, Ma B, Liu F, Wang H, Guo J, Ling L. Dyclonine relieves the Parkinson's disease progression in rotenone-induced Drosophila model. Behav Brain Res 2023; 452:114561. [PMID: 37394123 DOI: 10.1016/j.bbr.2023.114561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
It has been estimated that there will be 930 million Parkinson's disease (PD) patients in 2030 in the whole world. However, no therapy has been effective for PD until now. Only levodopa is the available primary drug for the treatment of motor symptoms. Therefore, it is an urgent task to develop new drugs to inhibit the progression of PD and improve the quality of the patient's life. Dyclonine which was found to have antioxidant activity and would benefit patients with Friedreich's ataxia, is a commonly used local anesthetic. Here, we reported that dyclonine improved the motor ability and loss of dopaminergic neurons in the rotenone-induced Drosophila PD model for the first time. Furthermore, dyclonine upregulated the Nrf2/HO pathway, decreased the ROS and MDA levels, and inhibited the apoptosis of neurons in the brain of PD model flies. Hence, dyclonine might be an attractive FDA-approved drug for the exploration of effective PD therapy.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Shiying Luo
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Ying Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yixian Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China
| | - Bo Ma
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Feng Liu
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, China; Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding, China.
| | - Li Ling
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, China.
| |
Collapse
|
12
|
Bressan GN, Cardoso PM, Reckziegel J, Fachinetto R. Reserpine and PCPA reduce heat tolerance in Drosophila melanogaster. Life Sci 2023; 318:121497. [PMID: 36780938 DOI: 10.1016/j.lfs.2023.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Drosophila melanogaster is a model organism to study molecular mechanisms and the role of the genes and proteins involved in thermal nociception. Monoamines (i.e. dopamine) have been involved in temperature preference behavior in D. melanogaster. Therefore, we investigated whether the monoamines, particularly dopamine and serotonin, participate in the response to thermal nociceptive stimuli in D. melanogaster. Flies were treated with reserpine (an inhibitor of vesicular monoamines transporter, 3-300 μM), 3-Iodo-L-tyrosine (3-I-T, an inhibitor of tyrosine hydroxylase, 16.28-65.13 mM), and para-Chloro-DL-phenylalanine (PCPA, an inhibitor of tryptophan hydroxylase, 20-80 mM); then, the flies were subjected to tests of thermal tolerance and avoidance of noxious heat. Climbing behavior was used as a test to evaluate locomotor activity. Reserpine reduces the thermal tolerance profile of the D. melanogaster, as well as the avoidance of noxious heat and locomotor activity depending on the concentration. PCPA, but not 3-I-T, decreased heat tolerance and avoidance of noxious heat. These data suggest that monoamines, particularly serotonin, are associated with the impaired avoidance of noxious heat which could be related to the reduction of heat tolerance in D. melanogaster.
Collapse
Affiliation(s)
- Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Adedara AO, Wildner G, Loreto JS, Dos Santos MM, Abolaji AO, Barbosa NV. Kaempferol counteracts toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in D. melanogaster: An implication of its mitoprotective activity. Neurotoxicology 2023; 95:23-34. [PMID: 36592898 DOI: 10.1016/j.neuro.2022.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
The current study aimed to investigate whether kaempferol (KMP), the major bioactive component of green leafy vegetables, could counteract the toxicity elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Drosophila melanogaster or not. First, we performed a dose-response curve, where adult wild-type flies were fed on diet-containing different concentrations of KMP throughout their lifespan. Afterward, flies were fed on a diet containing MPTP (500 μM) and KMP (20 and 40 μM) for 7 days. The MPTP- fed flies presented a higher mortality rate, lower emergence rate, locomotor deficits, and disruption in circadian rhythm when compared to the control. MPTP exposure induced severe oxidative stress, which was marked by reduction in thiol content, overproduction of reactive species, lipid and protein oxidation, and disruption of enzymes of antioxidant and neurotransmission pathways. MPTP also compromised the mitochondrial dynamics and respiration of flies, affecting the electron transport chain, oxidative phosphorylation, and fusion/fission processes. Besides extending per se the lifespan of flies, KMP counteracted the toxic effects of MPTP on the circadian cycle, survival, climbing, and hatching rates. KMP was also effective in restoring the activities of acetylcholinesterase (AChE) and monoamine oxidase (MAO) enzymes, as well as in normalizing the levels of all oxidant/antioxidant markers disrupted in MPTP-fed flies. Indeed, KMP reestablished the mitochondrial functionality in MPTP- fed flies, restoring the electron transport system linked to mitochondrial complex I and II, and rescuing the mRNA transcription of genes associated with mitochondrial fusion and fission, namely OPA-1 (Optic atrophy 1) and DRP-1 (Dynamin related protein 1). Our results showed the efficacy of KMP in hindering the toxicity induced by MPTP in D. melanogaster and suggest that the mitoprotective action of flavonoid may be boosting its anti-parkinsonism activity in the model. Besides, the study showed that wild-type strains of D. melanogaster proved to be reproducible in vivo model to mimic parkinsonian phenotypes through exposure to the neurotoxin MPTP.
Collapse
Affiliation(s)
- Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil; Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Guilherme Wildner
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Matheus Mulling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Rasheed MZ, Khatoon R, Talat F, Alam MM, Tabassum H, Parvez S. Melatonin Mitigates Rotenone-Induced Oxidative Stress and Mitochondrial Dysfunction in the Drosophila melanogaster Model of Parkinson's Disease-like Symptoms. ACS OMEGA 2023; 8:7279-7288. [PMID: 36872990 PMCID: PMC9979363 DOI: 10.1021/acsomega.2c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder; however, its etiology remains elusive. Antioxidants are considered to be a promising approach for decelerating neurodegenerative disease progression owing to extensive examination of the relationship between oxidative stress and neurodegenerative diseases. In this study, we investigated the therapeutic effect of melatonin against rotenone-induced toxicity in the Drosophila model of PD. The 3-5 day old flies were divided into four groups: control, melatonin alone, melatonin and rotenone, and rotenone alone groups. According to their respective groups, flies were exposed to a diet containing rotenone and melatonin for 7 days. We found that melatonin significantly reduced the mortality and climbing ability of Drosophila because of its antioxidative potency. It alleviated the expression of Bcl 2, tyrosine hydroxylase (TH), NADH dehydrogenase, mitochondrial membrane potential, and mitochondrial bioenergetics and decreased caspase 3 expression in the Drosophila model of rotenone-induced PD-like symptoms. These results indicate the neuromodulatory effect of melatonin, and that it is likely modulated against rotenone-induced neurotoxicity by suppressing oxidative stress and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Md. Zeeshan Rasheed
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehana Khatoon
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Faizia Talat
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug
Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry,
School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division
of Basic Medical Sciences, Indian Council
of Medical Research, Ministry of Health and Family Welfare, Govt.
of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
15
|
Li P, Tian Y, Du M, Xie Q, Chen Y, Ma L, Huang Y, Yin Z, Xu H, Wu X. Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:211-222. [PMID: 36538414 DOI: 10.1021/acs.jafc.2c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Mingyi Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Lianlian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yudi Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Tibashailwa N, Stephano F, Shadrack DM, Munissi JJE, Nyandoro SS. Neuroprotective potential of cinnamoyl derivatives against Parkinson's disease indicators in Drosophila melanogaster and in silico models. Neurotoxicology 2023; 94:147-157. [PMID: 36410467 DOI: 10.1016/j.neuro.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/23/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a movement disorder resulting from the loss of dopaminergic neurons over time. While there is no cure for PD, available conventional therapies aid to manage the motor symptoms. Natural products (NPs) derived from plants are among the most potent alternative therapies for PD. This study explored the neuroprotective potential of selected cinnamoyl derivatives namely toussaintine A (1), E-toussaintine E (2), asperphenamate (3) and julocrotine (4) against PD indicators using rotenone-challenged Drosophila melanogaster and in silico models. The compounds were first assessed for their toxicity preceding treatment experiments. Adult flies (aged 1-4 days) were exposed to varying concentrations of the compounds for 7 days. During the experiment, the mortality of flies was observed, and the lethal concentration (LC50) of each tested compound was determined. The LC50 values were found to be 50.1, 55.6, 513.5, and 101.0 µM for compounds 1, 2, 3, and 4, respectively. For seven days, we exposed flies to 500 µM of rotenone and co-fed with a chosen dose of 40 µM of each test compound in the diet. Using a negative geotaxis test, rotenone-challenged flies exhibited compromised climbing ability in comparison to control flies, the condition that was reversed by the action of studied compounds. Rotenone exposure also elevated malondialdehyde levels in the brain tissues, as measured by lipid peroxidation, when compared to control flies. In flies exposed to rotenone and co-fed with the compounds, this effect was lessened. In flies exposed to rotenone, mRNA levels of antioxidant enzymes such as superoxide dismutase and catalase were raised but were normalized in flies treated with the investigated compounds. Moreover, in-silico studies examined the inhibitory ability of compounds 1-4 against selected PD molecular targets, revealing the strong power of toussaintine A (1) against Adenosine receptor 2 (A2AR) and monoamine oxidase B. Thus, our findings suggest that cinnamoyl derivatives have neuroprotective potential via reducing the oxidative burden and improving locomotor ability after toxin invectives. In particular, compound 1 at lower doses can simultaneously be a potential inhibitor of A2AR and an anti-oxidative mediator in the development of anti-PD agents.
Collapse
Affiliation(s)
- Nelson Tibashailwa
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania; Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35064, Dar es Salaam, Tanzania
| | - Flora Stephano
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35064, Dar es Salaam, Tanzania.
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, Dodoma, P.O Box 47, Dodoma, Tanzania
| | - Joan J E Munissi
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania
| | - Stephen S Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Moura MAF, Alves VS, Takahashi JA. Nutritional Quality, Techno-Functional Characteristics, and Safety of Biomass Powder and Protein Isolate Produced from Penicillium maximae. Foods 2022; 11:foods11223621. [PMID: 36429213 PMCID: PMC9689384 DOI: 10.3390/foods11223621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the suitability of Penicillium maximae biomass powder and protein isolate as a food product or food ingredient. The biomass powder is rich in proteins (34.8%) and insoluble fiber (36.2%) but poor in lipids (3.1%). Strong water hydration (8.3 g/g, 8.5 g/g) and oil holding (6.9 g/g, 16.3 g/g) capacity were observed in the biomass powder and protein isolate, respectively, besides 100% emulsion stability, indicating multiple applications in the food industry. No locomotor impairment was induced in Drosophila melanogaster flies after consuming extracts of P. maximae biomass powder. Furthermore, decreased production of reactive oxygen species and preservation of survival, viability, and fertility parameters were observed in the nematode Caenorhabditis elegans, which reinforces the potential of P. maximae biomass for human and animal consumption. Together, the results show the vast food applicability of P. maximae biomass and protein isolate as protein substitutes with several health and environmental benefits.
Collapse
Affiliation(s)
- Marília A. F. Moura
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
| | - Viviane S. Alves
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
| | - Jacqueline A. Takahashi
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
- Correspondence:
| |
Collapse
|
18
|
Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN, Khatun Kali MS, Jahan FI, Singla RK, Shen B, Rauf A, Sharma R. Multifunctional role of natural products for the treatment of Parkinson's disease: At a glance. Front Pharmacol 2022; 13:976385. [PMID: 36299886 PMCID: PMC9590378 DOI: 10.3389/fphar.2022.976385] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohona Islam Mitu
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
19
|
Li J, Li X, Wang C, Zhang M, Ye M, Wang Q. The potential of Valeriana as a traditional Chinese medicine: traditional clinical applications, bioactivities, and phytochemistry. Front Pharmacol 2022; 13:973138. [PMID: 36210806 PMCID: PMC9534556 DOI: 10.3389/fphar.2022.973138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/26/2022] [Indexed: 01/30/2023] Open
Abstract
Valeriana plants are members of the Caprifoliaceae family, which include more than 200 species worldwide. We summarized previous reports on traditional clinical applications, bioactivities, and phytochemistry of Valeriana by searching electronic databases of Science Direct, Web of Science, PubMed, and some books. Some Valeriana species have been used as traditional medicines, demonstrating calming fright and tranquilizing mind, promoting Qi and blood, activating blood circulation and regulating menstruation, dispelling wind and eliminating dampness, regulating Qi-flowing to relieve pain, and promoting digestion and checking diarrhea, and treating diseases of the nervous, cardiovascular, and digestive systems, inflammation, gynecology, and others. Pharmacology studies revealed the effects of Valeriana, including sedative, hypnotic, antispasmodic, analgesic, antidepressant, anxiolytic, anticonvulsant, antiepileptic, neuroprotective, antibacterial, antiviral, cytotoxic, and antitumor effects as well as cardiovascular and cerebrovascular system improvements. More than 800 compounds have been isolated or identified from Valeriana, including iridoids, lignans, flavonoids, sesquiterpenoids, alkaloids, and essential oils. Constituents with neuroprotective, anti-inflammatory, cytotoxic, and sedative activities were also identified. However, at present, the developed drugs from Valeriana are far from sufficient. We further discussed the pharmacological effects, effective constituents, and mechanisms directly related to the traditional clinical applications of Valeriana, revealing that only several species and their essential oils were well developed to treat insomnia. To effectively promote the utilization of resources, more Valeriana species as well as their different medicinal parts should be the focus of future related studies. Clinical studies should be performed based on the traditional efficacies of Valeriana to facilitate their use in treating diseases of nervous, cardiovascular, and digestive systems, inflammation, and gynecology. Future studies should also focus on developing effective fractions or active compounds of Valeriana into new drugs to treat diseases associated with neurodegeneration, cardiovascular, and cerebrovascular, inflammation and tumors. Our review will promote the development and utilization of potential drugs in Valeriana and avoid wasting their medicinal resources.
Collapse
Affiliation(s)
- Jianchun Li
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Changfu Wang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Manli Zhang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minhui Ye
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuhong Wang
- Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, College of TCM, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Couto SDF, Araujo SM, Bortolotto VC, Dahleh MMM, Musachio EAS, Pinheiro FC, Romio LC, do Sacramento M, Alves D, Prigol M. Effectiveness of 7-chloro-4-(phenylselanyl) quinoline in improving learning, short-term memory, and anxiety-like behaviors in a mimetic model of Parkinson's disease in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj04011e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of 4-PSQ on psychomotor and non-motor behaviors of PD, such as spontaneous locomotor activity, learning, memory, and anxiety.
Collapse
Affiliation(s)
- Shanda de Freitas Couto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Leugim Corteze Romio
- Departamento de Matemática – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| |
Collapse
|
21
|
Kara M, Öztaş E, Boran T, Sevim Ç, Keskin SE, Veskoukis AS, Kuzmin SV, Tsatsakis AM. The sesquiterpenoid valerenic acid protects neuronal cells from the detrimental effects of the fungicide benomyl on apoptosis and DNA oxidation. Hum Exp Toxicol 2022; 41:9603271221101038. [PMID: 35764419 DOI: 10.1177/09603271221101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Valerenic acid (VA), a sesquiterpenoid of the plant Valeriana officinalis, has attracted attention of the research community due to its potential positive role against neurodegenerative diseases induced by chemicals. However, the relevant evidence in the literature is scarce. Therefore, this study aimed to examine the putative protective role of VA on the toxic effects of the fungicide benomyl on SH-SY5Y neural cells. METHODS Cell viability was determined via the MTT and NRU assays, DNA damage was assessed via comet assay and apoptosis was evaluated through the expression of relevant genes. RESULTS According to the results, exposure of the cells to benomyl enhanced viability inhibition and promoted DNA damage and apoptosis since the expression levels of the genes coding for MAPK8, NF-kB, Bax, Caspase-9 and Caspase-3 were increased. Treatment of the cells with VA ameliorated these effects in a concentration dependent manner. CONCLUSION It is concluded that the molecular mechanism through which benomyl exerts its toxic action appears to depend on DNA oxidation and apoptosis induction. Furthermore, VA, a plant-derived compound is a protective antioxidant against pesticide-induced toxicity. Therefore, herbs, extracts and compounds of plant origin could be used as nutritional supplements that back up the beneficial role of medicine in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 369917Istanbul University, Istanbul, Turkey
| | - Çiğdem Sevim
- Deparment of Medical Pharmacology, Faculty of Medicine, 485657University of Kastamonu, Kastamonu, Turkey
| | - Seda Eren Keskin
- Department of Medical Genetics, Faculty of Medicine, 52980Kocaeli University, Kocaeli, Turkey
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Sergei V Kuzmin
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia
| | - Aristides M Tsatsakis
- FBES "F.F. Erisman Federal Scientific Center of Hygiene" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, Russia.,Center of Toxicology Science and Research, Medical School, 37778University of Crete, Heraklion, Greece
| |
Collapse
|
22
|
Fidelis KR, Dos Santos Nunes RG, da Silva CS, Oliveira CVB, Costa AR, de Lima Silva JR, Dos Santos LB, de Oliveira EES, Pereira PS, de Menezes IRA, Kamdem JP, Duarte AE, Pinho AI, Barros LM. Evaluation of the neuroprotective effect of rutin on Drosophila melanogaster about behavioral and biochemical aspects induced by mercury chloride (HgCl 2). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109119. [PMID: 34182094 DOI: 10.1016/j.cbpc.2021.109119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 μL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.
Collapse
Affiliation(s)
- Kleber Ribeiro Fidelis
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ricardo Gomes Dos Santos Nunes
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Postgraduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Adrielle Rodrigues Costa
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | | | | - Pedro Silvino Pereira
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | - Jean Paul Kamdem
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Antônia Eliene Duarte
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil
| | | | - Luiz Marivando Barros
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil.
| |
Collapse
|
23
|
Kara M, Alparslan ED, Öztaş E, Erdoğan ÖN. In Vitro Cytotoxicity and Oxidative Stress Evaluation of Valerian (Valeriana officinalis) Methanolic Extract in Hepg2 and Caco2 Cells. Turk J Pharm Sci 2021; 18:604-608. [PMID: 34719188 DOI: 10.4274/tjps.galenos.2021.04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Traditional treatment methods are becoming popular and commonly used in many societies and have become the first treatment option for most people. While some of these methods are helpful, they can interact with medications the patient is taking for another disease and cause a variety of life-threatening risks. Valerian (catweed) plant is used in traditional medicine as a sleep aid due to its sedative effects. Valerian may also exert anticancer effect in vitro. Materials and Methods In this study, the cytotoxicty and oxidative stress effects of valerian root extract were evaluated in human liver hepatocellular carcinoma (Hepg2) and human colorectal adenocarcinoma (Caco2) cell lines. The cytotoxicity was evaluated via the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. Total reactive oxygen species analysis was performed via a 2',7'-dichlorodihydrofluorescein diacetate assay in flow cytometry. Results Inhibition concentration 50 values were calculated as 936.6 and 1097.5 µg/mL in the Hepg2 and Caco2 cell lines, respectively. It was observed that valerian root extract did not induce oxidative stress in HepG2 and Caco2 cell lines. Conclusion These results indicate that the use of valerian root extract as an alternative method in cancer treatment may not be effective and may cause a risk for public health. On the other hand, it may be safe at recommended tolerated concentrations since it does not cause oxidative stress.
Collapse
Affiliation(s)
- Mehtap Kara
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul, Turkey
| | - Ecem Dilara Alparslan
- İstanbul Physical Therapy Rehabilitation Training and Research Hospital, Department of Pharmacy, İstanbul, Turkey
| | - Ezgi Öztaş
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul, Turkey
| | - Özlem Nazan Erdoğan
- İstanbul University Faculty of Pharmacy, Department of Pharmacy Management, İstanbul, Turkey
| |
Collapse
|
24
|
Gonçalves S, Gaivão I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021; 26:5255. [PMID: 34500687 PMCID: PMC8433906 DOI: 10.3390/molecules26175255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.
Collapse
Affiliation(s)
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
25
|
Kara M, Öztaş E, Boran T, Karaman EF, Veskoukis AS, Tsatsakis AM. Ameliorative Effects of the Sesquiterpenoid Valerenic Acid on Oxidative Stress Induced in HepG2 Cells after Exposure to the Fungicide Benomyl. Antioxidants (Basel) 2021; 10:antiox10050746. [PMID: 34066673 PMCID: PMC8151918 DOI: 10.3390/antiox10050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 04/13/2023] Open
Abstract
Valerenic acid (VA) is a sesquiterpenoid and a phytoconstituent of the plant valerian used for sleeping disorders and anxiety. The frequency of using herbal components as therapeutic nutritional agents has increased lately. Their ability to improve redox homeostasis makes them a valuable approach against harmful xenobiotics. The purpose of this study was to evaluate the putative beneficial role of VA against the redox-perturbating role of the fungicide benomyl in HepG2 human liver cells in terms of oxidative stress in the cellular environment and in endoplasmic reticulum (ER). Benomyl increased cell total oxidant status and reactive oxygen species production and decreased total antioxidant status. The expression of genes coding for antioxidant molecules, namely, heme oxygenase-1, alpha glutathione s-transferase, NF-ĸB, and liver fatty acid binding protein, were decreased due to benomyl. VA ameliorated these effects. Benomyl also increased ER-stress-related molecules such as endoplasmic reticulum to nucleus signaling 1 protein, glucose-regulated protein 78, and caspase-12 levels, and VA acted also as a preventive agent. These results indicate that VA exerts ameliorative effects after benomyl-induced oxidative stress. VA, a widely used nutritional supplement, is a compound with potent antioxidant properties, which are valuable for the protection of cells against xenobiotic-induced oxidative damage.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Correspondence:
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; (E.Ö.); (T.B.); (E.F.K.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Aristidis S. Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Argonafton 1, 42132 Trikala, Greece;
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
26
|
Plant Species of Sub-Family Valerianaceae-A Review on Its Effect on the Central Nervous System. PLANTS 2021; 10:plants10050846. [PMID: 33922184 PMCID: PMC8144999 DOI: 10.3390/plants10050846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.
Collapse
|
27
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
28
|
Fernandes EJ, Poetini MR, Barrientos MS, Bortolotto VC, Araujo SM, Santos Musachio EA, De Carvalho AS, Leimann FV, Gonçalves OH, Ramborger BP, Roehrs R, Prigol M, Guerra GP. Exposure to lutein-loaded nanoparticles attenuates Parkinson's model-induced damage in Drosophila melanogaster: Restoration of dopaminergic and cholinergic system and oxidative stress indicators. Chem Biol Interact 2021; 340:109431. [PMID: 33716020 DOI: 10.1016/j.cbi.2021.109431] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's is a neurodegenerative disease, characterized by the loss of dopaminergic neurons, cholinergic alterations and oxidative damages. Lutein is widely known by its antioxidants properties. In the present study, we investigated whether lutein-loaded nanoparticles protects against locomotor damage and neurotoxicity induced by Parkinson's disease model in Drosophila melanogaster, as well as possible mechanisms of action. First, the nanoparticles were characterized by physicochemical methods, demonstrating that water affinity was improved by the encapsulation of lutein into the polymeric encapsulant matrix. The fruit flies of 1-4 days old were divided into four groups and exposed to a standard diet (control), a diet containing either rotenone (500 μM), lutein-loaded nanoparticles (6 μM) or rotenone (500 μM) and lutein-loaded nanoparticles (6 μM) for 7 days. The survival percentage was assessed, the flies were submitted to negative geotaxis, open field tasks and the determination of dopamine levels, tyrosine hydroxylase (TH) and acetylcholinesterase activities and oxidative stress indicators (superoxide dismutase, catalase, thiobarbituric acid reactive substances and glutathione S-transferase) were carried out. The exposure to lutein-loaded nanoparticles protected against locomotor damage and the decrease survival rate induced by rotenone, besides, it restored the dopamine levels, TH and acetylcholinesterase activities and oxidative stress indicators. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for rotenone-induced damage, and suggest the involvement of dopaminergic and cholinergic system and oxidative stress.
Collapse
Affiliation(s)
- Eliana Jardim Fernandes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Magna Sotelo Barrientos
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006, Campo Mourão, PR, Brazil
| | - Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal Do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000, Uruguaiana, RS, Brazil.
| |
Collapse
|
29
|
Shameema K, Anand PP, Vardhanan YS. Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108916. [PMID: 33141080 DOI: 10.1016/j.cbpc.2020.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Endosulfan has been recognized as a highly controversial pesticide due to its acute toxicity, potential bioaccumulation, persistency, and long-range atmospheric transport. Several plant extracts act as antioxidant agents against wide-range of pesticide toxicity hazards through the free radicals scavenging properties. Plants' secondary metabolites are considered as efficient protective agents against various cellular toxic injuries. Understanding these properties of botanicals, several researchers currently focused on the detoxification and ameliorative potency of plant extracts against highly toxic chemicals. In our studies, we focused on the endosulfan total and its isomers (alpha and beta) induced changes on Drosophila melanogaster and their ameliorative effects by co-administrated with methanolic and aqueous extracts of Catharanthus roseus whole plant. We selected the 1/5th EC50 concentration of alpha-endosulfan, beta-endosulfan, and endosulfan (total) and co-administrated with 1/50th EC50 concentration of aqueous and methanolic extracts and evaluated their ameliorative effects, in terms of verifying the life stage activities, protein profiling and also by using live brain cells imaging. We finally concluded that, the methanolic and aqueous extracts inhibit the toxic impacts caused by endosulfan and its isomers and also increasing the survival rate of the test organism.
Collapse
Affiliation(s)
- K Shameema
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India.
| |
Collapse
|
30
|
Reversal effect of Solanum dasyphyllum against rotenone-induced neurotoxicity. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2020-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We earlier reported the protective effect of Solanum dasyphyllum against cyanide neurotoxicity. In furtherance to this, we investigated the protective effect of S. dasyphyllum against rotenone, a chemical toxin that causes brain-related diseases. Mitochondria fraction obtained from the brain of male Wistar rats was incubated with various solvents (hexane, dichloromethane, ethylacetate, and methanol) extracts of S. dasyphyllum before rotenone exposure. Mitochondria respiratory enzymes (MRE) were evaluated along with markers of oxidative stress. The inhibition of MRE by rotenone was reversed by treatment with various fractions of S. dasyphyllum. The oxidative stress induced by rotenone was also reversed by fractions of S. dasyphyllum. In addition, the ethylacetate fraction of S. dasyphyllum was most potent against rotenone-induced neurotoxicity. In conclusion, S. dasyphyllum is rich in active phytochemicals that can prevent some neurotoxic effects of rotenone exposure. Further study can be done in an in vivo model to substantiate our results.
Collapse
|
31
|
Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol 2020; 148:111935. [PMID: 33348050 DOI: 10.1016/j.fct.2020.111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022]
Abstract
This research evaluated Ankaferd Blood Stopper (ABS)-doped Polyvinylpyrrolidone (PVP) nanofiber layers which were produced with the electrospinning method for their potential for co-use in response to oxidative stress. As a result of the use of such a preparation (ABS doped PVP) in long-term treatments, the response to oxidative stress was compared to biochemical parameters, and its effect on sex was also aimed to be determined. For this purpose, Drosophila melanogaster foods were coated with 10% PVP, ABS (2 ml) and PVP-ABS. In total, 300 flies were randomized into 6 groups, each consisting of 25 female and 25 male insects, and the insects were fed with the determined coated mediums. The effects of foods on adult flies were tested for biochemical changes (Malondialdehyde-MDA and Total oxidation status-TOS, Glutathione-S-Transferase-GST, Catalase-CAT and Superoxide dismutase-SOD activities, Total antioxidant capacity-TAS) at the end of ten days. It was determined that the separate use of the two substances increased the amount of MDA in both sexes. It was found that the combined use of PVP-ABS had a positive effect similar to the control by increasing the antioxidant enzymes (SOD, CAT, GST). Feeding with ABS-doped PVP in the male insects reduced TOS (2.00 ± 0.01 μmol H2O2Eq/L), but the female insects were found to have higher OSI (40.00 ± 0.01 μmol H2O2Eq/L). As a result, PVP-ABS may be used together as an antioxidant, but more detailed studies are needed for their safe use on both sexes.
Collapse
|
32
|
Jayapalan JJ, Subramanian P, Kani A, Hiji J, Najjar SG, Abdul-Rahman PS, Hashim OH. Hesperidin modulates the rhythmic proteomic profiling in Drosophila melanogaster under oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21738. [PMID: 32924199 DOI: 10.1002/arch.21738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock regulates vital aspects of physiology including protein synthesis and oxidative stress response. In this investigation, we performed a proteome-wide scrutiny of rhythmic protein accrual in Drosophila melanogaster on exposure to rotenone, rotenone + hesperidin and hesperidin in D. melanogaster. Total protein from fly samples collected at 6 h intervals over the 24 h period was subjected to two-dimensional gel electrophoresis and mass spectrometry. Bioinformatics tool, Protein ANalysis THrough Evolutionary Relationships classification system was used to the determine the biological processes of the proteins of altered abundance. Conspicuous variations in the proteome (151 proteins) of the flies exposed to oxidative stress (by rotenone treatment) and after alleviating oxidative stress (by hesperidin treatment) were observed during the 24 h cycle. Significantly altered levels of abundance of a wide variety of proteins under oxidative stress (rotenone treatment) and under alleviation of oxidative stress (rotenone + hesperidin treatment) and hesperidin (alone) treatment were observed. These proteins are involved in metabolism, muscle activity, heat shock response, redox homeostasis, protein synthesis/folding/degradation, development, ion-channel/cellular transport, and gustatory and olfactory function of the flies. Our data indicates that numerous cellular processes are involved in the temporal regulation of proteins and widespread modulations happen under rotenone treatment and, action of hesperidin could also be seen on these categories of proteins.
Collapse
Affiliation(s)
- Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Akshaya Kani
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Jumriah Hiji
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara G Najjar
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn H Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Siima AA, Stephano F, Munissi JJE, Nyandoro SS. Ameliorative effects of flavonoids and polyketides on the rotenone induced Drosophila model of Parkinson's disease. Neurotoxicology 2020; 81:209-215. [PMID: 32937168 DOI: 10.1016/j.neuro.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a movement disorder associated with the progressive loss of dopaminergic neurons (DA). PD treatment remains unsatisfactory as the current synthetic drugs in clinical use relies on managing only motor symptoms. This study investigated antioxidant potentials of selected compounds namely, 5,6,7,4'-tetramethoxyflavone (1), 6-hydroxy-2,3,4,4'-tetramethoxychalcone (2), 6-methoxyhamiltone A (3), diosquinone (4) and toussantine D (5) against rotenone (6) induced PD in Drosophila melanogaster. Toxicity of these compounds was conducted by monitoring flies' survival for seven days and determining the lethal concentrations (LC50). Whereas compound 1 had LC50 value of 91.3 μM within three days, compounds 2, 3, 4, and 5 had LC50 values of 87.2, 58.0, 64.0 and > 1000 μM, respectively on the seventh day of the experiment. We exposed flies (1-4 days old) to 500 μM rotenone and co-treated with different doses of the test compounds in the diet for seven days at final concentrations of 11.0, 43.6 and 87.2 μM for compounds 2 and 3. The concentrations used for compound 4 were 8.0, 32.0 and 64.0 μM, while 250, 500 and 1000 μM were used for compound 5. Rotenone fed flies showed impaired climbing ability compared to control flies, the phenotype that was rescued by the treatment of tested phytochemicals. Rotenone toxicity also increased malondialdehyde levels assayed by lipid peroxidation in the brain tissues relative to control flies. This effect was reduced in flies exposed to rotenone and co-treated with the phytochemicals. Moreover, expression levels of mRNA of antioxidant enzymes; superoxide dismutase and catalase were elevated in flies exposed to rotenone and normalized in flies that were co-treated with tested compounds. Besides compound 1, this study provides overall evidence that the tested flavonoids and polyketides ameliorated the rotenone provoked neurotoxicity in D. melanogaster by battling the induced oxidative stress in brain cells including DA neurons and hence rescue the locomotor behaviour deficits.
Collapse
Affiliation(s)
- Angela A Siima
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania; Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35064, Dar es Salaam, Tanzania
| | - Flora Stephano
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35064, Dar es Salaam, Tanzania.
| | - Joan J E Munissi
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania
| | - Stephen S Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O Box 35061, Dar es Salaam, Tanzania
| |
Collapse
|
34
|
Amaral de Brito AP, Galvão de Melo IMDS, El-Bachá RS, Guedes RCA. Valeriana officinalis Counteracts Rotenone Effects on Spreading Depression in the Rat Brain in vivo and Protects Against Rotenone Cytotoxicity Toward Rat Glioma C6 Cells in vitro. Front Neurosci 2020; 14:759. [PMID: 32792901 PMCID: PMC7390944 DOI: 10.3389/fnins.2020.00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes can protect neurons against oxidative stress and excitability-dependent disorders, such as epilepsy. Valeriana officinalis has been used as anticonvulsant and can exert an antioxidant effect, which may underlie its opposing action against the toxic effects of the pesticide rotenone. We investigated the V. officinalis/rotenone interaction in the cortical spreading depression (CSD), a phenomenon that depends upon brain excitability (in vivo model). In addition, we analyzed the protective action of V. officinalis against the cytotoxic effects of rotenone in cultures of rat C6 glioma cells (in vitro model). For the CSD study, Wistar rats received either V. officinalis (250 mg/kg/day via gavage for 15 days; n = 8) or 10 mg/kg/day rotenone via subcutaneous injections for 7 days (n = 7), or they received both substances (n = 5). Two control groups received either saline (vehicle for V. officinalis; n = 8) or 1% Tween-80 aqueous solution (vehicle for rotenone; n = 9). After treatment, CSD was recorded for 4 h. The rotenone- and V. officinalis-treated groups presented, respectively, with lower (2.96 ± 0.14 mm/min), and higher CSD propagation velocity (3.81 ± 0.10 mm/min) when compared with the controls (Tween-80, 3.37 ± 0.06 mm/min and saline, 3.35 ± 0.08 mm/min; p < 0.05). The rotenone plus V. officinalis-treated group displayed a CSD velocity (3.38 ± 0.07 mm/min) that was similar to controls. In line with these results, in vitro experiments on rat glioma C6 cells revealed a protective effect (MTT assay) of V. officinalis against rotenone-induced cytotoxicity. These results suggest the therapeutic potential of V. officinalis for treating neurological diseases involving redox imbalance and astrocyte dysfunction.
Collapse
Affiliation(s)
| | | | - Ramon Santos El-Bachá
- Department of Biochemistry and Biophysics, Universidade Federal da Bahia, Salvador, Brazil
| | | |
Collapse
|
35
|
Souza LBD, Gindri AL, Fortes TDA, Enderle J, Roehrs R, Manfredini V, Denardin ELG. Chaptalia nutans Polak: Root Extract Has High In Vitro Antioxidant Activity and Low Cytotoxicity In Vivo. J Med Food 2020; 24:161-171. [PMID: 32543960 DOI: 10.1089/jmf.2019.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Asteraceae family is widely known for its therapeutic, aromatic, and nutritional properties. Chaptalia nutans (C. nutans), a member of the family, is widely used in folk medicine in southern Brazil. In this study, we aim to assess compounds present in root extracts of C. nutans, and evaluate their antioxidant capacity and toxicity. To determine the chemical composition of the extract, was performed through Liquid Chromatography coupled with Mass Spectroscopy. Antioxidant capacity, toxicity (Artemia salina biosassay), cytotoxicity, genotoxicity (Allium cepa test), and neurotoxicity (Drosophila melanogaster model) were evaluated. A large number of bioactive phytoconstituents were determined to be present, such as alkaloids, coumarins, flavonoids, terpenes, and especially phenolic compounds, which may explain the antioxidant capacity of the extract. Extracts had the capacity to protect cells from protein and lipid damage, and inhibit the formation of oxygen radicals. The A. salina bioassay revealed that extracts were only slightly toxic. In A. cepa, cells exposed to 1.5 mg/mL extract were protected against chromosomal damage caused by glyphosate, and had mitotic index values that were reduced by 49%. A concentration of 10 mg/mL extract did not kill flies, and when coadministered with paraquat (PQ) (52.5%) produced a mortality rate of only 18.75%. These findings indicated that the extract had the potential to protect against PQ-induced neurotoxicity. Taken together, these data reveal for the first time that the root extract of C. nutans is a rich source of natural antioxidants. The extract may be useful in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Letiele Bruck de Souza
- Physico-Chemical Studies and Natural Products Laboratory (LEFQPN), Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Amanda Leitão Gindri
- Medicinal Plants Laboratory, Universidade Regional Integrada do Alto Uruguai e das Missões, Santiago, Brazil
| | - Thainara de Andrade Fortes
- Medicinal Plants Laboratory, Universidade Regional Integrada do Alto Uruguai e das Missões, Santiago, Brazil
| | - Jefferson Enderle
- Physico-Chemical Studies and Natural Products Laboratory (LEFQPN), Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Rafael Roehrs
- Physico-Chemical Studies and Natural Products Laboratory (LEFQPN), Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Vanusa Manfredini
- Oxidative Stress Studies Group (GESTOX), Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Elton Luís Gasparotto Denardin
- Physico-Chemical Studies and Natural Products Laboratory (LEFQPN), Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| |
Collapse
|
36
|
Rodríguez-Cruz A, Romo-Mancillas A, Mendiola-Precoma J, Escobar-Cabrera JE, García-Alcocer G, Berumen LC. "Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson's disease". IBRO Rep 2020; 8:28-35. [PMID: 31909290 PMCID: PMC6938966 DOI: 10.1016/j.ibror.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT5A receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability.
Collapse
Affiliation(s)
- Alfredo Rodríguez-Cruz
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesus Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesica Esther Escobar-Cabrera
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Laura Cristina Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
37
|
Phytochemical Analysis, Antioxidant Activity, Antimicrobial Activity, and Cytotoxicity of Chaptalia nutans Leaves. Adv Pharmacol Pharm Sci 2020; 2020:3260745. [PMID: 32420545 PMCID: PMC7211239 DOI: 10.1155/2020/3260745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Objective This work was to evaluate the chemical constitution of the hydromethanolic (30/70 methanol-water) macerating extract obtained from the leaves of C. nutans, as well as to study the antioxidant, antimicrobial, cytotoxic, and genotoxic activity of the species. Materials and methods. Phytochemical screening, antioxidant activity (total phenolic, total flavonoid, condensed tannins content, DPPH radical, and FRAP), antibacterial activity (P. aeruginosa, B. cereus, E. epidermidis, E. coli, S. aureus, E. faecalis, P. mirabilis, Candida glabrata (clinical isolate), Candida tropicalis (clinical isolate), C. krusei (clinical isolate), and C. albicans (clinical isolate)), and oxidative stress parameters (TBARS, carbonyl protein, and DCFH) were analyzed according to the literature. Toxicity of C. nutans was evaluated using an alternative method, D. melanogaster, as well as a locomotor assay. Results The phytochemical screening test of methanolic leaves extract revealed the presence of alkaloids, coumarins, quaternary bases, phenolics, flavonoids, tannins, and free steroids. A quantitative phytochemical study indicated the total phenol (30.17 ± 1.44 mg/g), flavonoid (21.64 ± 0.66 mg/g), and condensed tannins (9.58 ± 0.99 mg/g). DPPH (345.41 ± 5.35 μg/mL) and FRAP (379.98 ± 39.25 μM FeSO4/mg sample) show to extract of C. nutans leaves an intermediate value, indicating moderate antioxidant activity of the extract. Antibacterial results revealed only a positive result (antimicrobial activity) for the hexane fraction which significantly inhibited the microorganisms E. epidermidis, C. tropicalis, C. glabrata, and C. krusei at a concentration of 1000 μg/mL. TBARS, carbonyl protein, and DCFH demonstrate that the extract has the ability to protect the cell from protein and lipid damage, as well as the inhibition of oxygen-derived radicals at the three concentrations tested: 0.1, 1, and 10 mg/mL. Regarding the toxicity of C. nutans extract against D. melanogaster, it was found that until the concentration of 15 mg/mL, the extract showed no toxicity and that the LC50 obtained was 24 mg/mL. Results show that the C. nutans extract leaves used to prevent PQ damage were effective in reducing flies' mortality and improving locomotor capacity. Conclusion Our studies demonstrated for the first time that C. nutans crude leaf extract has high antioxidant capacity both in vitro and in vivo through different analysis techniques. These results make it possible to infer future applications in the pharmacological area, evidenced by the low toxicity observed in D. melanogatser, as well as the ability to neutralize different sources of RONS.
Collapse
|
38
|
Lopes Neto JJ, de Almeida TS, Gonçalves de Lima RDC, Dos Santos Nunes RG, de Lima Silva JR, de Almeida LL, Kamdem JP, Carvalho AFU. Metabolic aspects of phenolic compounds from Triplaris gardneriana seeds in the management of oxidative stress. Drug Dev Ind Pharm 2020; 46:1026-1033. [PMID: 32393135 DOI: 10.1080/03639045.2020.1767126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Considering the limited number of studies that analyze the behavior of plant preparations in human body, this study aimed to characterize the phenolic compounds from Triplaris gardneriana extract (EETg) in terms of antioxidant and metabolic aspects, integrating in vitro, in silico and in vivo strategies.Methods: EETg was analyzed in relation to polyphenols release from the plant matrix under in vitro digestion, as well as the pharmacokinetic prediction of their major compounds by in silico simulation and understanding of its in vivo antioxidant effect in an alternative animal model.Results: About 35.22% of polyphenols from EETg proved to be accessible after enzymatic hydrolysis. A kinetics study showed that 40% of the total content of these phytochemicals was released from the extract accompanied by increased antioxidant capacity after 180 min of gastrointestinal simulation. A computational approach revealed that 7 out of 9 major phenolic compounds of EETg showed good pharmacokinetic parameters such as intestinal absorption and bioavailability score. In addition, the extract showed a protective effect on copper-induced oxidative stress in Drosophila melanogaster, evidenced by the restoration of basal levels of thiol and malondialdehyde contents. These biochemical observations were supported by the examination of histological features of D. melanogaster brain.Conclusion: It was demonstrated that the oral administration of EETg would provide phenolic compounds partially absorbable by the human gut and capable of providing health benefits associated with the inhibition of oxidative stress. Additionally, the results highlight the need to implement new approaches for the rational development of plant-based medicines.
Collapse
Affiliation(s)
- José Joaquim Lopes Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Thiago Silva de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Crato, Brazil
| | - Ana Fontenele Urano Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.,Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
39
|
Waczuk EP, Wagner R, Klein B, da Rocha JBT, Ardisson-Araújo DMP, Barbosa NV. Assessing the toxicant effect of spontaneously volatilized 4-vinylcyclohexane exposure in nymphs of the lobster cockroach nauphoeta cinerea. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103264. [PMID: 31550595 DOI: 10.1016/j.etap.2019.103264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 05/27/2023]
Abstract
Vinylcyclohexene (VCH) is an environmental contaminant well known for its ovotoxicant effects in several organisms. However, the mechanisms underlying the toxicity of VCH as well as its harmful effects toward other organs are until unclear. In this work, we assess some endpoint signals of toxicity induced by volatilized VCH exposure using nymphs of the lobster cockroach Nauphoeta cinerea. Nymphs were exposed to VCH via inhalation for 70 days. The levels of volatilized VCH were quantified by headspace gas chromatography and the concentration varied between 3.41 and 7.03 nmol/μl. VCH inhalation caused a reduction of 35% in the survival rate of the exposed animals. Nymphs exposed to volatilized VCH for 35 and 70 days had a reduction in the body weight gain of 1.8- and 2.6-fold, respectively with a reduction in dissected head, fat body, and maturing reproductive organs. The exposure did not change water consumption, excepting on the 20th day (with a 3-fold change) and decreased the food intake significantly. Regarding biochemical markers, we found that the activity of GST from the dissected organs was increased by volatilized VCH after both 35 and 70 days of exposure. The fat body presented the most prominent GST activity especially after 35 days of exposure with 1.6-fold higher than the control group. Exposure also caused an increase in RS levels in the fat body of 1.35-fold and 1.47-fold after 35 and 70 days, respectively and did not affect the activity of the AChE from the head. Our findings support the harmful impact of volatilized VCH inhalation, highlighting the cockroach N.cinerea as a valuable insect model to investigate environmental toxicants.
Collapse
Affiliation(s)
- Emily Pansera Waczuk
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roger Wagner
- Departamento: Tecnologia e Ciência dos Alimentos, Centro de Ciência Rurais, Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, RS, Brazil
| | - Bruna Klein
- Departamento: Tecnologia e Ciência dos Alimentos, Centro de Ciência Rurais, Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Daniel M P Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
40
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
41
|
Duavy SM, Ecker A, Salazar GT, Loreto J, Costa JGMD, Vargas Barbosa N. Pequi enriched diets protect Drosophila melanogaster against paraquat-induced locomotor deficits and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:664-677. [PMID: 31317820 DOI: 10.1080/15287394.2019.1642277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The species Caryocar coriaceum Wittm (C. coriaceum), is popularly employed in northeast of Brazil for culinary purposes and in folk medicine. The oil from its fruit, deignated Pequi, is commonly used to treat inflammatory problems, and its leaves to treat viral infections. However, comprehensive knowledge regarding the pharmacological properties attributed to these plant parts is still scarce. Thus, this study aimed to explore the in vivo antioxidant potential of aqueous extract of the leaves (AEL) and Pequi pulp oil (PPO) on the pro-oxidative effects induced by paraquat (PQ) using Drosophila melanogaster (D. melanogaster) as a model. These flies were fed with either standard or AEL and PPO supplemented diets prior to (pre-treatment for 7 days) or concomitantly (co-treatment for 5 days) with PQ. D. melanogaster administered PQ exhibited locomotor deficits and a higher rate of mortality. PQ induced significant changes in the antioxidant/oxidant status of D. melanogaster, including significant (1) increase in levels of reactive oxygen species (ROS) and lipid peroxidation; (2) elevation in the activity of antioxidant enzymes catalase (CAT) and glutathione-S-transferase (GST) and marked up-regulation in mRNA expression of stress-related genes for CAT, superoxide dismutase (SOD), thioredoxin reductase and Keap-1. Aside for mortality rates, AEL and PPO treatments reduced PQ-induced oxidative stress and motor impairments. No apparent evidence of toxicity was observed in D. melanogaster fed with AEL and PPO alone. Our findings provide evidence that AEL and PPO may confer protection against oxidant conditions by stimulating antioxidant responses.
Collapse
Affiliation(s)
- Sandra Mara Duavy
- a Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi , Santa Maria , Brazil
| | - Assis Ecker
- a Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi , Santa Maria , Brazil
| | - Gerson Torres Salazar
- a Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi , Santa Maria , Brazil
| | - Julia Loreto
- a Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi , Santa Maria , Brazil
| | | | - Nilda Vargas Barbosa
- a Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi , Santa Maria , Brazil
| |
Collapse
|
42
|
Bianchini MC, Gularte COA, Nogara PA, Krum BN, Gayer MC, Bridi JC, Roos DH, Roehrs R, Fachinetto R, Pinton S, Ávila DS, Hirth F, Rocha JBT, Puntel RL. Thimerosal inhibits Drosophila melanogaster tyrosine hydroxylase (DmTyrH) leading to changes in dopamine levels and impaired motor behavior: implications for neurotoxicity. Metallomics 2019; 11:362-374. [DOI: 10.1039/c8mt00268a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thimerosal (THIM) is a well-established antifungal and antiseptic agent widely used as a preservative in vaccines.
Collapse
Affiliation(s)
- Matheus C. Bianchini
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Claudia Ortiz Alves Gularte
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Pablo A. Nogara
- Universidade Federal de Santa Maria – Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE)
- Santa Maria
- Brazil
| | - Bárbara N. Krum
- Universidade Federal de Santa Maria – Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS)
- Santa Maria
- Brazil
| | - Mateus C. Gayer
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Jessika C. Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience
- London
- UK
| | - Daniel H. Roos
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Roselei Fachinetto
- Universidade Federal de Santa Maria – Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (CCS)
- Santa Maria
- Brazil
| | - Simone Pinton
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Daiana S. Ávila
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience
- London
- UK
| | - João B. T. Rocha
- Universidade Federal de Santa Maria – Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE)
- Santa Maria
- Brazil
| | - Robson L. Puntel
- Universidade Federal do Pampa – Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq)
- Uruguaiana
- Brazil
| |
Collapse
|
43
|
Natural Compounds for the Management of Parkinson's Disease and Attention-Deficit/Hyperactivity Disorder. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4067597. [PMID: 30596091 PMCID: PMC6282143 DOI: 10.1155/2018/4067597] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder with an unknown aetiology. The pathogenic mechanisms include oxidative stress, mitochondrial dysfunction, protein dysfunction, inflammation, autophagy, apoptosis, and abnormal deposition of α-synuclein. Currently, the existing pharmacological treatments for PD cannot improve fundamentally the degenerative process of dopaminergic neurons and have numerous side effects. On the other hand, attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood and is characterised by hyperactivity, impulsivity, and inattention. The aetiology of ADHD remains unknown, although it has been suggested that its pathophysiology involves abnormalities in several brain regions, disturbances of the catecholaminergic pathway, and oxidative stress. Psychostimulants and nonpsychostimulants are the drugs prescribed for the treatment of ADHD; however, they have been associated with increased risk of substance use and have several side effects. Today, there are very few tools available to prevent or to counteract the progression of such neurological disorders. Thus, therapeutic approaches with high efficiency and fewer side effects are needed. This review presents a brief overview of the two neurological disorders and their current treatments, followed by a discussion of the natural compounds which have been studied as therapeutic agents and the mechanisms underlying the beneficial effects, in particular, the decrease in oxidative stress.
Collapse
|
44
|
Prasad V, Wasser Y, Hans F, Goswami A, Katona I, Outeiro TF, Kahle PJ, Schulz JB, Voigt A. Monitoring α-synuclein multimerization in vivo. FASEB J 2018; 33:2116-2131. [PMID: 30252534 DOI: 10.1096/fj.201800148rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease is characterized by the abnormal accumulation of α-synuclein (α-Syn), eventually resulting in the formation of Lewy bodies and neurites in surviving neurons in the brain. Although α-Syn aggregation has been extensively studied in vitro, there is limited in vivo knowledge on α-Syn aggregation. Here, we used the powerful genetics of Drosophila melanogaster and developed an in vivo assay to monitor α-Syn accumulation by using a bimolecular fluorescence complementation assay. We found that both genetic and pharmacologic manipulations affected α-Syn accumulation. Interestingly, we also found that alterations in the cellular protein degradation mechanisms strongly influenced α-Syn accumulation. Administration of compounds identified as risk factors for Parkinson's disease, such as rotenone or heavy metal ions, had only mild or even no impact on α-Syn accumulation in vivo. Finally, we show that increasing phosphorylation of α-Syn at serine 129 enhances the accumulation and toxicity of α-Syn. Altogether, our study establishes a novel model to study α-Syn accumulation and illustrates the complexity of manipulating proteostasis in vivo.-Prasad, V., Wasser, Y., Hans, F., Goswami, A., Katona, I., Outeiro, T. F., Kahle, P. J., Schulz, J. B., Voigt, A. Monitoring α-synuclein multimerization in vivo.
Collapse
Affiliation(s)
- Vibha Prasad
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Yasmine Wasser
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Friederike Hans
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Anand Goswami
- Institute of Neuropathology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center of Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom; and
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
45
|
Leite GDO, Ecker A, Seeger RL, Krum BN, Lugokenski TH, Fachinetto R, Sudati JH, Barbosa NV, Wagner C. Protective effect of (−)-α-bisabolol on rotenone-induced toxicity in Drosophila melanogaster. Can J Physiol Pharmacol 2018; 96:359-365. [DOI: 10.1139/cjpp-2017-0207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
(−)-α-Bisabolol (BISA) is a sesquiterpene alcohol, which has several recognized biological activities, including anti-inflammatory, anti-irritant, and antibacterial properties. In the present study, we investigated the influence of BISA (5, 25, and 250 μmol/L) on rotenone (500 μmol/L)-induced toxicity in Drosophila melanogaster for 7 days. BISA supplementation significantly decreased rotenone-induced mortality and locomotor deficits. The loss of motor function induced by rotenone correlated with a significant change in stress response factors; it decreased thiol levels, inhibited mitochondria complex I, and increased the mRNA expression of antioxidant marker proteins such as superoxide dismutase (SOD), catalase (CAT), and the keap1 gene product. Taken together, our findings indicate that the toxicity of rotenone is likely due to the direct inhibition of complex I activity, resulting in a high level of oxidative stress. Dietary supplementation with BISA affected the expression of SOD mRNA only at a concentration of 250 μmol/L, and did not affect any other parameter measured. Our results showed a protective effect of BISA on rotenone-induced mortality and locomotor deficits in Drosophila; this effect did not correlate with mitochondrial complex I activity, but may be related to the antioxidant protection afforded by eliminating superoxide generated as a result of rotenone-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gerlânia de Oliveira Leite
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Assis Ecker
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Rodrigo Lopes Seeger
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | | | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | | | - Nilda Vargas Barbosa
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
| | - Caroline Wagner
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria – RS, Brazil
- Universidade Federal do Pampa, Campus Caçapava do Sul, Caçapava do Sul – RS, Brazil
| |
Collapse
|
46
|
Farombi EO, Abolaji AO, Farombi TH, Oropo AS, Owoje OA, Awunah MT. Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:39-45. [PMID: 29482730 DOI: 10.1016/j.pestbp.2018.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Rotenone, a naturally occurring and commonly used pesticide, has been established as a model for inducing Parkinson's Disease (PD) in rodents. Kolaviron is a biflavonoid complex from Garcinia kola seeds with anti-oxidative and anti-inflammatory properties. Here, we evaluated the ameliorative role of Kolaviron on rotenone-induced toxicity in Drosophila melanogaster. Flies for longevity study were exposed to Kolaviron (100-500mg/kg diet) throughout the lifespan. For biochemical study, Groups A, B and C flies were treated with ethanol (2.0%, control, vehicle), Kolaviron (200mg/kg diet) and rotenone (250μM) respectively. Flies in Group D were co-treated with both rotenone (250μM) and Kolaviron (200mg/kg diet) for 7days. Subsequently, selected markers of antioxidant status, inflammatory and neurotoxicity were evaluated in the flies. The results from longevity experiment showed that Kolaviron (200, 100, 300 and 400mg/kg) extended lifespan of flies by 38.2%, 20.6%, 11.8% and 2.9% respectively. Also, Kolaviron attenuated rotenone-induced inhibition of catalase, glutathione-S-transferase and acetylcholinesterase activities and depletion of total thiols content in flies. Moreover, Kolaviron prevented rotenone-induced increases in hydrogen peroxide and nitric oxide (nitrite and nitrate) levels and improved rotenone-induced decrease in locomotor performance of flies (p<0.05). Overall, this study evidenced for the first time, the lifespan extension property of Kolaviron and its chemoprotective role on rotenone-induced toxicity in D. melanogaster via anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Amos Olalekan Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitope Hannah Farombi
- Deparment of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Abiola Surajudeen Oropo
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Omowunmi Abigail Owoje
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mathew Terwase Awunah
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
47
|
Peumus boldus attenuates copper-induced toxicity in Drosophila melanogaster. Biomed Pharmacother 2018; 97:1-8. [DOI: 10.1016/j.biopha.2017.09.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
|
48
|
Soares JJ, Gonçalves MB, Gayer MC, Bianchini MC, Caurio AC, Soares SJ, Puntel RL, Roehrs R, Denardin ELG. Continuous liquid feeding: New method to study pesticides toxicity in Drosophila melanogaster. Anal Biochem 2017; 537:60-62. [PMID: 28867502 DOI: 10.1016/j.ab.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 08/23/2017] [Indexed: 01/14/2023]
Abstract
Fly fruit Drosophila melanogaster (DM) has been extensively employed as an in vivo model system to study pesticides toxicity. Pesticide administration to the fly traditionally involves feeding in an agar-gelled feed fly's medium (AM). However, AM method has several limitations such as uncertainty regarding the bioavailability and amount of pesticides ingested. And also high manipulation of the treated flies. We developed a new method of exposure the flies to pesticides, called Continuous Liquid Feeding (CLF). This method successfully delivers food to the flies at much higher concentrations than the AM method, and requires little manipulation of flies under treatment.
Collapse
Affiliation(s)
- Jefferson J Soares
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Mayara B Gonçalves
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Mateus C Gayer
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Matheus C Bianchini
- Grupo de Estudos em Nutrição, Saúde e Qualidade de Vida (GENSQ), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Aline C Caurio
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Susana J Soares
- Laboratório de Design e Seleção de Materiais (LdSM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robson L Puntel
- Grupo de Estudos em Nutrição, Saúde e Qualidade de Vida (GENSQ), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Elton L G Denardin
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
49
|
Figueira FH, de Quadros Oliveira N, de Aguiar LM, Escarrone AL, Primel EG, Barros DM, da Rosa CE. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:94-102. [PMID: 28847529 DOI: 10.1016/j.cbpc.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10μM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100μM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Natália de Quadros Oliveira
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Ana Laura Escarrone
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
50
|
Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomed Pharmacother 2017; 95:245-251. [DOI: 10.1016/j.biopha.2017.08.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
|