1
|
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J Pers Med 2023; 13:1487. [PMID: 37888098 PMCID: PMC10607965 DOI: 10.3390/jpm13101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer chemotherapy has allowed many patients to survive, but not without risks derived from its adverse effects. Drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, methotrexate, and others, as well as different drug combinations trigger intestinal mucositis that may cause or contribute to anorexia, pain, diarrhea, weight loss, systemic infections, and even death. Dysbiosis is a hallmark of chemotherapy-induced intestinal mucositis and diarrhea, and, therefore, strategies aimed at modulating intestinal microbiota may be useful to counteract and prevent those dreadful effects. This narrative review offers an overview of the studies performed to test the efficacy of probiotics and probiotic-like agents against chemotherapy-induced intestinal mucositis and its consequences. Microbiota modulation through the oral administration of different probiotics (mainly strains of Lactobacillus and Bifidobacterium), probiotic mixtures, synbiotics, postbiotics, and paraprobiotics has been tested in different animal models and in some clinical trials. Regulation of dysbiosis, modulation of epithelial barrier permeability, anti-inflammatory effects, modulation of host immune response, reduction of oxidative stress, or prevention of apoptosis are the main mechanisms involved in their beneficial effects. However, the findings are limited by the great heterogeneity of the preclinical studies and the relative lack of studies in immunocompromised animals, as well as the scarce availability of results from clinical trials. Despite this, the results accumulated so far are promising. Hopefully, with the aid of these agents, intestinal mucositis will be less impactful to the cancer patient in the near future.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Alexandra Alcorta
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
2
|
Wang L, Li W, Xin S, Wu S, Peng C, Ding H, Feng S, Zhao C, Wu J, Wang X. Soybean glycinin and β-conglycinin damage the intestinal barrier by triggering oxidative stress and inflammatory response in weaned piglets. Eur J Nutr 2023; 62:2841-2854. [PMID: 37358571 DOI: 10.1007/s00394-023-03188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Soybean glycinin (11S) and β-conglycinin (7S) are major antigenic proteins in soybean and can induce a variety of allergic reactions in the young animals. This study aimed to investigate the effect of 7S and 11S allergens on the intestine of piglets. METHODS Thirty healthy 21-day-old weaned "Duroc × Long White × Yorkshire" piglets were randomly divided into three groups fed with the basic diet, the 7S supplemented basic diet, or the 11S supplemented basic diet for 1 week. Allergy markers, intestinal permeability, oxidative stress, and inflammatory reactions were detected, and we observed different sections of intestinal tissue. The expressions of genes and proteins related to NOD-like receptor thermal protein domain associated protein 3 (NLRP-3) signaling pathway were detected by IHC, RT-qPCR, and WB. RESULTS Severe diarrhea and decreased growth rate were observed in the 7S and 11S groups. Typical allergy markers include IgE production and significant elevations of histamine and 5-hydroxytryptamine (5-HT). More aggressive intestinal inflammation and barrier dysfunction were observed in the experimental weaned piglets. In addition, 7S and 11S supplementation increased the levels of 8-hydroxy-2 deoxyguanosine (8-OHdG) and nitrotyrosine, triggering oxidative stress. Furthermore, higher expression levels of NLRP-3 inflammasome ASC, caspase-1, IL-1β, and IL-18 were observed in the duodenum, jejunum, and ileum. CONCLUSION We confirmed that 7S and 11S damaged the intestinal barrier of weaned piglets and may be associated with the onset of oxidative stress and inflammatory response. However, the molecular mechanism underlying these reactions deserves further study.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Wen Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Shuzhen Xin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Shuang Wu
- Wolong District Animal Health Supervision Institute, Nanyang, 473000, China
| | - Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Shibing Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230061, China.
| |
Collapse
|
3
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 534] [Impact Index Per Article: 267.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
4
|
Canet-Jourdan C, Pagès DL, Nguyen-Vigouroux C, Cartry J, Zajac O, Desterke C, Lopez JB, Gutierrez-Mateyron E, Signolle N, Adam J, Raingeaud J, Polrot M, Gonin P, Mathieu JRR, Souquere S, Pierron G, Gelli M, Dartigues P, Ducreux M, Barresi V, Jaulin F. Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer. J Cell Sci 2022; 135:276070. [PMID: 35703098 DOI: 10.1242/jcs.259256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
The metastatic progression of cancer remains a major issue in patient treatment. Yet, the molecular and cellular mechanisms underlying this process remains unclear. Here, we use primary explants and organoids from patients harboring mucinous colorectal carcinoma (MUC CRC), a poor prognosis histological form of digestive cancers, to study the architecture, invasive behavior and chemoresistance of tumor cell intermediates. We report that these tumors maintain a robust apico-basolateral polarity as they spread in the peritumoral stroma or organotypic collagen-I gels. We identified two distinct topologies: MUC CRCs either display a conventional "apical-in" polarity or, more frequently, harbor an inverted "apical-out" topology. Transcriptomic analyses combined with interference experiments on organoids showed that TGFb and focal adhesion signaling pathways are the main drivers of polarity orientation. Finally, this apical-out topology is associated with increased resistance to chemotherapeutic treatments in organoids and decreased patient survival in the clinic. Thus, patient-derived organoids have the potential to bridge histological, cellular and molecular analyses to decrypt onco-morphogenic programs and stratify cancer patients.
Collapse
Affiliation(s)
| | | | | | - Jérôme Cartry
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Olivier Zajac
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | | | | | | | - Nicolas Signolle
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Julien Adam
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Joel Raingeaud
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Mélanie Polrot
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | - Patrick Gonin
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | | | | | | | - Maximiliano Gelli
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France
| | - Peggy Dartigues
- Pathology Department, Gustave Roussy, Villejuif, F-94805, France
| | - Michel Ducreux
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France.,Paris-Saclay University, Saint-Aubin, F-91190, France
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona 37129, Italia
| | - Fanny Jaulin
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
5
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
6
|
Stavely R, Abalo R, Nurgali K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr Drug Targets 2021; 21:1428-1439. [PMID: 32416686 DOI: 10.2174/1389450121666200516173242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are pathological conditions with an unknown aetiology that are characterised by severe inflammation of the intestinal tract and collectively referred to as inflammatory bowel disease (IBD). Current treatments are mostly ineffective due to their limited efficacy or toxicity, necessitating surgical resection of the affected bowel. The management of IBD is hindered by a lack of prognostic markers for clinical inflammatory relapse. Intestinal inflammation associates with the infiltration of immune cells (leukocytes) into, or surrounding the neuronal ganglia of the enteric nervous system (ENS) termed plexitis or ganglionitis. Histological observation of plexitis in unaffected intestinal regions is emerging as a vital predictive marker for IBD relapses. Plexitis associates with alterations to the structure, cellular composition, molecular expression and electrophysiological function of enteric neurons. Moreover, plexitis often occurs before the onset of gross clinical inflammation, which may indicate that plexitis can contribute to the progression of intestinal inflammation. In this review, the bilateral relationships between the ENS and inflammation are discussed. These include the effects and mechanisms of inflammation-induced enteric neuronal loss and plasticity. Additionally, the role of enteric neurons in preventing antigenic/pathogenic insult and immunomodulation is explored. While all current treatments target the inflammatory pathology of IBD, interventions that protect the ENS may offer an alternative avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas
(CSIC), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne, Melbourne, Victoria, Australia,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr Opin Support Palliat Care 2021; 14:293-300. [PMID: 32769620 DOI: 10.1097/spc.0000000000000515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Chemotherapy is a first-line treatment for many cancers; however, its use is hampered by a long list of side-effects. Gastrointestinal mucositis is a common and debilitating side-effect of anticancer therapy contributing to dose reductions, delays and cessation of treatment, greatly impacting clinical outcomes. The underlying pathophysiology of gastrointestinal mucositis is complex and likely involves several overlapping inflammatory, secretory and neural mechanisms, yet research investigating the role of innervation in gastrointestinal mucositis is scarce. This review provides an overview of the current literature surrounding chemotherapy-induced enteric neurotoxicity and discusses its implications on gastrointestinal mucositis. RECENT FINDINGS Damage to the intrinsic nervous system of the gastrointestinal tract, the enteric nervous system (ENS), occurs following chemotherapeutic administration, leading to altered gastrointestinal functions. Chemotherapeutic drugs have various mechanisms of actions on the ENS. Oxidative stress, direct toxicity and inflammation have been identified as mechanisms involved in chemotherapy-induced ENS damage. Enteric neuroprotection has proven to be beneficial to reduce gastrointestinal dysfunction in animal models of oxaliplatin-induced enteric neuropathy. SUMMARY Understanding of the ENS role in chemotherapy-induced mucositis requires further investigation and might lead to the development of more effective therapeutic interventions for prevention and treatment of chemotherapy-induced gastrointestinal side-effects.
Collapse
|
8
|
Cotoraci CA, Sasu A, Onel AFM, Iovănescu D, Miuţescu E, Gharbia S, Ciceu AL, Herman H, Hermenean AO. The morphological changes of the colonic goblet cells and mucin profile in oncohematological patients under Epirubicin-based chemotherapy. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1121-1128. [PMID: 34171061 PMCID: PMC8343623 DOI: 10.47162/rjme.61.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Changes in the lining of the small intestine following chemotherapy have been extensively studied, although also occurs in the large intestine. The aim of this study was to assess the consequences of Epirubicin-based therapy on goblet cells (GCs) and mucus production on colonic mucosa, immediately and after short-time of chemotherapy administration to oncohematological patients, by clinical and histopathological analysis. We assessed the mucus production, composition, and distribution by Alcian Blue (pH 2.5)–Periodic Acid–Schiff (PAS) staining, alongside with the immunoexpression of mucin (MUC)2, MUC4 and inflammatory markers in a series of oncohematological patients, immediately and after short-time of Epirubicin-based chemotherapy cumulative therapy cessation. We showed that GCs number decrease slightly at 48 hours, while mucous secretion became mixed (with a few neutral) after three weeks. Overall, the secretion was increased immediately after the Epirubicin administration, due to the activation of inflammatory pathways, assessed by increased immunostaining of tumor necrosis factor-alpha (TNF-α) at 48 hours. The MUC2 and MUC4 showed a decreased immunoexpression at 48 hours after the Epirubicin administration compared to controls and partially restored three weeks after the cessation. Overall, it is highly plausible that all these key players revolve around the chemotherapy-induced mucositis in oncohematological patients and highlights the morphofunctional particularities of the GCs, which further modulates the clinical outcome of the patient.
Collapse
Affiliation(s)
- Coralia Adina Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldiş Western University of Arad, Romania;
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Investigation of Changes in Saliva in Radiotherapy-Induced Head Neck Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041629. [PMID: 33572065 PMCID: PMC7914760 DOI: 10.3390/ijerph18041629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.
Collapse
|
10
|
Fournier Q, Serra JC, Williams C, Bavcar S. Chemotherapy-induced diarrhoea in dogs and its management with smectite: Results of a monocentric open-label randomized clinical trial. Vet Comp Oncol 2020; 19:25-33. [PMID: 32562450 DOI: 10.1111/vco.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced diarrhoea (CID) is a frequent chemotherapy adverse event in dogs. Yet, there is currently no consensus regarding its management. Smectite is a natural medical clay, widely used in the treatment of acute diarrhoea in humans. The objectives of this study were to assess the efficacy of smectite in the management of CID in dogs, and to collect epidemiological data on CID. For each episode of diarrhoea, dogs were randomized into two management groups: Smectite group, receiving smectite at 0.5 g/kg PO per day divided in two to three doses initiated at the start of CID; control group, without initial medication. In both groups, rescue metronidazole was prescribed if CID progressed or was not improved within 48 hours. Sixty dogs were recruited and received 426 chemotherapy administrations between June 2017 and March 2019. The incidence rate of CID was 110/426 (25.8%, 95% CI: 21.7%-30.2%), and significantly differed between the chemotherapeutic drugs administered (P < .001). Metronidazole was administered in 5/54 events (9.3%, 95% CI: 3.1%-20.3%) in the smectite group and in 40/56 events (71.4%, 95% CI: 57.5%-82.3%) in the control group (P < .001). The time to resolution of diarrhoea was shorter (P < .001) in the smectite group (median: 19.5 hours, interquartile range [IQR]: 13.5-32 hours) compared with the control group (median: 53 hours, IQR: 31.5-113.5 hours). The results of this study support the administration of smectite in the first-line management of CID in dogs.
Collapse
Affiliation(s)
- Quentin Fournier
- Hospital for Small Animals, The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Roslin, UK
| | - Juan-Carlos Serra
- Hospital for Small Animals, The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Roslin, UK
| | - Claire Williams
- Hospital for Small Animals, The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Roslin, UK
| | - Spela Bavcar
- Hospital for Small Animals, The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Roslin, UK
| |
Collapse
|
11
|
da Silva Ferreira AR, Wardill HR, Tissing WJ, Harmsen HJ. Pitfalls and novel experimental approaches to optimize microbial interventions for chemotherapy-induced gastrointestinal mucositis. Curr Opin Support Palliat Care 2020; 14:127-134. [PMID: 32324645 PMCID: PMC7259380 DOI: 10.1097/spc.0000000000000497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW There is a growing number of studies implicating gut dysbiosis in mucositis development. However, few studies have shed light on the causal relationship limiting translational potential. Here, we detail the key supportive evidence for microbial involvement, candidate mechanisms by which the microbiome may contribute to mucositis and emerging approaches to model host-microbe interactions with clinical relevance and translational potential. RECENT FINDINGS Synthesis of existing clinical data demonstrate that modulating the microbiome drastically alters the development and severity of mucositis, providing a strong rationale for its involvement. Review of the literature revealed potential microbiome-dependent mechanisms of mucosal injury including altered drug metabolism, bile acid synthesis and regulation of the intestinal barrier. Current studies are limited in their mechanistic insight due to cross-sectional and would benefit from longitudinal analyses and baseline phenotyping. SUMMARY The causative role of the microbiome in mucositis development remains unclear. Future studies must adopt comprehensive microbial analyses with functional assessment, and utilize emerging ex-vivo models to interrogate host-microbe interactions in mucositis.
Collapse
Affiliation(s)
| | - Hannah R. Wardill
- Department of Pediatrics Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Wim J.E. Tissing
- Department of Pediatrics Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
12
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
13
|
Farhood B, Hassanzadeh G, Amini P, Shabeeb D, Musa AE, Khodamoradi E, Mohseni M, Aliasgharzadeh A, Moradi H, Najafi M. Mitigation of Radiation-induced Gastrointestinal System Injury using Resveratrol or Alpha-lipoic Acid: A Pilot Histopathological Study. Antiinflamm Antiallergy Agents Med Chem 2020; 19:413-424. [PMID: 31713500 DOI: 10.2174/1871523018666191111124028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
AIM In this study, we aimed to determine possible mitigation of radiationinduced toxicities in the duodenum, jejunum and colon using post-exposure treatment with resveratrol and alpha-lipoic acid. BACKGROUND After the bone marrow, gastrointestinal system toxicity is the second critical cause of death following whole-body exposure to radiation. Its side effects reduce the quality of life of patients who have undergone radiotherapy. Resveratrol has an antioxidant effect and stimulates DNA damage responses (DDRs). Alpha-lipoic acid neutralizes free radicals via the recycling of ascorbic acid and alpha-tocopherol. OBJECTIVE This study is a pilot investigation of the mitigation of enteritis using resveratrol and alpha-lipoic acid following histopathological study. METHODS 60 male mice were randomly assigned to six groups; control, resveratrol treatment, alpha-lipoic acid treatment, whole-body irradiation, irradiation plus resveratrol, and irradiation plus alpha-lipoic acid. The mice were irradiated with a single dose of 7 Gy from a cobalt-60 gamma-ray source. Treatment with resveratrol or alpha-lipoic acid started 24 h after irradiation and continued for 4 weeks. All mice were sacrificed after 30 days for histopathological evaluation of radiation-induced toxicities in the duodenum, jejunum and colon. RESULTS AND DISCUSSION Exposure to radiation caused mild to severe damages to vessels, goblet cells and villous. It also led to significant infiltration of macrophages and leukocytes, especially in the colon. Both resveratrol and alpha-lipoic acid were able to mitigate morphological changes. However, they could not mitigate vascular injury. CONCLUSION Resveratrol and alpha-lipoic acid could mitigate radiation-induced injuries in the small and large intestine. A comparison between these agents showed that resveratrol may be a more effective mitigator compared to alpha-lipoic acid.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Mohseni
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Akbar Aliasgharzadeh
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Habiballah Moradi
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Thorpe D, Butler R, Sultani M, Vanhoecke B, Stringer A. Irinotecan-Induced Mucositis Is Associated with Goblet Cell Dysregulation and Neural Cell Damage in a Tumour Bearing DA Rat Model. Pathol Oncol Res 2019; 26:955-965. [PMID: 30919275 DOI: 10.1007/s12253-019-00644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023]
Abstract
Irinotecan-induced mucositis is a major oncological problem. Goblet cells secrete mucus, protecting the intestinal mucosa, with secretion altered during mucositis. The enteric nervous system is involved in regulating gut motility and secretion. The aim of this study was to determine whether enteric neural cells and goblet cells are altered following irinotecan treatment. Tumour-bearing Dark Agouti rats were administered a single dose of 175 mg/kg of irinotecan intraperitoneally and 0.01 mg/kg atropine subcutaneously. Experimental and untreated control rats were killed at times 6, 24, 48, 72, 96 and 120 h after treatment. Jejunum and colon samples were formalin fixed. Haematoxylin and eosin staining, Alcian Blue-PAS staining, and immunohistochemistry with S-100 antibody (neural cell marker) were carried out. Statistical analyses were carried out using Kruskal-Wallis test with Dunns post test, Mann Whitney U test and nonlinear regression. Total goblet cells decreased at 72 h compared with controls in the colon (p < 0.05). The percentage of cavitated goblet cells decreased compared to all other time points at 120 h in the colon. The number of S-100 positive cells in the submucosal plexus decreased in the colon (p = 0.0046) and in the myenteric plexus of the jejunum and colon (p = 0.0058 and p = 0.0022, respectively), when comparing treated with control. Enteric ganglia in the myenteric plexus of the jejunum decreased at 24 h and 96 h. Irinotecan-induced mucositis is associated with increases in mucus secretion, and enteric neural cell change. These changes may contribute to the pathophysiology of mucositis through the dysregulation of neural signalling.
Collapse
Affiliation(s)
- Daniel Thorpe
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia.
| | - Ross Butler
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia
| | - Masooma Sultani
- School of Medical Sciences, Adelaide University, South Australia, Adelaide, 5001, Australia
| | - Barbara Vanhoecke
- Center for Microbiology Ecology and Technology, University of Ghent, Ghent, Belgium
| | - Andrea Stringer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia
| |
Collapse
|
15
|
Willershausen I, Schmidtmann I, Azaripour A, Kledtke J, Willershausen B, Hasenburg A. Association between breast cancer chemotherapy, oral health and chronic dental infections: a pilot study. Odontology 2019; 107:401-408. [PMID: 30666484 DOI: 10.1007/s10266-019-00411-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/06/2019] [Indexed: 11/25/2022]
Abstract
Breast cancer has developed to become the leading type of cancer in females. For this study, 80 women were examined after chemotherapy for breast cancer and compared to 80 healthy age-matched women. This cross-sectional study comprised a dental examination with number of teeth, caries frequency (DMFT) and the presence of periodontal diseases (PSI). With the help of X-rays (OPG), the number of root canal fillings and apical lesions (LEO/LPO) were recorded. Furthermore, the education level, body mass index (BMI), smoking habits and general health conditions were recorded. All women completed questionnaires on oral health-related quality of life (OHIP-G14) and general well-being (HADS-D). To assess the influence of cancer therapy on oral health parameters, appropriate generalized linear models were fitted with disease status as main explanatory variable, adjusting for age and education. For OHIP and HADS, we additionally adjusted for number of missing teeth. The examined 160 women showed a comparable mean age (60.4 years) and an average BMI of 24.6. Cancer patients showed a higher risk for missing teeth (p < 0.001) and more apical lesions (p < 0.0041), particularly those of endodontic origin without root canal fillings (p = 0.0046), than the control women. The general well-being of cancer patients was significantly reduced with a HADS score of 9.4 for women with breast cancer compared to 5.3 for the healthy control. This study suggests that women after breast cancer chemotherapy are inclined to have a poorer oral health status with more missing teeth and apical lesions. Therefore, tightly scheduled dental recall visits should be recommended.
Collapse
Affiliation(s)
- Ines Willershausen
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University, Mainz, Germany
| | - Adriano Azaripour
- Department of Operative Dentistry, Johannes Gutenberg University, Mainz, Germany
| | - Jane Kledtke
- Private Dental Practice, Haifa-Allee 20, 55128, Mainz, Germany
| | | | - Annette Hasenburg
- Department of Gynecology and Obstetrics, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Gobbo M, Verzegnassi F, Ronfani L, Zanon D, Melchionda F, Bagattoni S, Majorana A, Bardellini E, Mura R, Piras A, Petris MG, Mariuzzi ML, Barone A, Merigo E, Decembrino N, Vitale MC, Berger M, Defabianis P, Biasotto M, Ottaviani G, Zanazzo GA. Multicenter randomized, double-blind controlled trial to evaluate the efficacy of laser therapy for the treatment of severe oral mucositis induced by chemotherapy in children: laMPO RCT. Pediatr Blood Cancer 2018; 65:e27098. [PMID: 29727048 DOI: 10.1002/pbc.27098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To demonstrate the efficacy of laser photobiomodulation (PBM) compared to that of placebo on severe oral mucositis (OM) in pediatric oncology patients. The primary objective was the reduction of OM grade (World Health Organization [WHO] scale) 7 days after starting PBM. Secondary objectives were reduction of pain, analgesic consumption, and incidence of side effects. METHODS One hundred and one children with WHO grade > 2 chemotherapy-induced OM were enrolled in eight Italian hospitals. Patients were randomized to either PBM or sham treatment for four consecutive days (days +1 to +4). On days +4, +7, and +11, OM grade, pain (following a 0-10 numeric pain rating scale, NRS) and need for analgesics were evaluated by an operator blinded to treatment. RESULTS Fifty-one patients were allocated to the PBM group, and 50 were allocated to the sham group. In total, 93.7% of PBM patients and 72% of sham patients had OM grade < 3 WHO on day +7 (P = 0.01). A significant reduction of pain was registered on day +7 in the PBM versus sham group (NRS 1 [0-3] vs. 2.5 [1-5], P < 0.006). Reduced use of analgesics was reported in the PBM group, although it was not statistically significant. No significant adverse events attributable to treatment were recorded. CONCLUSIONS PBM is a safe, feasible, and effective treatment for children affected by chemotherapy-induced OM, as it accelerates mucosal recovery and reduces pain.
Collapse
Affiliation(s)
- Margherita Gobbo
- Division of Oral Medicine and Pathology, Department of Dental Science, University of Trieste, Trieste, Italy
| | - Federico Verzegnassi
- Pediatric Hemato-Oncology Unit, IRCCS materno infantile Burlo Garofolo, Trieste, Italy
| | - Luca Ronfani
- Epidemiology and Biostatistics Unit, IRCCS materno infantile Burlo Garofolo, Trieste, Italy
| | - Davide Zanon
- Pharmacy and Clinical Pharmacology, IRCCS materno infantile Burlo Garofolo, Trieste, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Haematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Simone Bagattoni
- Unit of Dental Care for Special Needs Patients and Paediatric Dentistry, Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Specialities, Radiological Science and Public Health, Dental School University of Brescia, Brescia, Italy
| | - Elena Bardellini
- Department of Biomedical, Biotechnological, and Translational Sciences, Dental School, University of Brescia, Brescia, Italy
| | - Rosamaria Mura
- Paediatric Haematology and Oncology Unit, Ospedale Pediatrico Microcitemico, Cagliari, Italy
| | - Alessandra Piras
- Division of Dental Medicine, Department of Medical Science, LUdeS HEI Foundation Malta
| | | | | | - Angelica Barone
- Pediatric and Onco-Hematology Unit, University of Parma, Parma, Italy
| | - Elisabetta Merigo
- Dental School, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Nunzia Decembrino
- Pediatric Hematology Oncology Unit, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marina Consuelo Vitale
- Sezione di Ortognatodonzia e Odontoiatria Pediatrica, Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Massimo Berger
- Oncoematologia Pediatrica, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Patrizia Defabianis
- Section of Pediatric Dentistry, Dental School, University of Torino, Torino, Italy
| | - Matteo Biasotto
- Division of Oral Medicine and Pathology, Department of Dental Science, University of Trieste, Trieste, Italy
| | - Giulia Ottaviani
- Division of Oral Medicine and Pathology, Department of Dental Science, University of Trieste, Trieste, Italy
| | - Giulio Andrea Zanazzo
- Pediatric Hemato-Oncology Unit, IRCCS materno infantile Burlo Garofolo, Trieste, Italy
| |
Collapse
|
17
|
Al-Asmari AK, Khan AQ, Al-Asmari SA, Al-Rawi A, Al-Omani S. Alleviation of 5-fluorouracil-induced intestinal mucositis in rats by vitamin E via targeting oxidative stress and inflammatory markers. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 13:377-385. [PMID: 27682716 DOI: 10.1515/jcim-2016-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
Abstract
BackgroundIntestinal mucositis is a major concern related with cancer therapy. It is well established that overproduction of reactive oxygen species and inflammatory mediators plays vital role in the pathogenesis of mucositis. The aim of the study was to investigate the modulatory effect of vitamin E (vit. E) on 5-fluorouracil (5-FU)-induced intestinal mucositis by targeting oxidative stress and inflammatory markers in rats. MethodsRats were randomly divided into four groups of six animals each. All four-group animals received normal standard diet and water throughout the experimental period which last up to 10 days. Rats were gavaged with vit. E (300 mg/kg b. wt.) daily for 10 days (day 1-10) and were given intraperitoneal injection of 5-FU (150 mg/kg b. wt.) or saline (control) on day 8 to induce mucositis. Results We found that vit. E supplementation ameliorated 5-FU-induced lipid peroxidation, myeloperoxidase activity, activation of nuclear factor κB, expression of cyclooxygenase-2, inducible nitric oxide synthase and mucin depletion. Vit. E administration also attenuated 5-FU-induced histological anomalies such as neutrophil infiltration, loss of cellular integrity, villus and crypt deformities. ConclusionsFindings of the study suggest that vit. E inhibits 5-FU-induced mucositis via modulation of oxidative stress, activation of redox sensitive transcription factor and its downstream targets.
Collapse
|
18
|
Uranga JA, García-Martínez JM, García-Jiménez C, Vera G, Martín-Fontelles MI, Abalo R. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat. Neurogastroenterol Motil 2017; 29. [PMID: 28261911 DOI: 10.1111/nmo.13047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. METHODS Male Wistar rats received saline or cisplatin (2 mg kg-1 week-1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. KEY RESULTS Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). CONCLUSIONS & INFERENCES Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated.
Collapse
Affiliation(s)
- J A Uranga
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - J M García-Martínez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - C García-Jiménez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - G Vera
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - M I Martín-Fontelles
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - R Abalo
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
19
|
Karbelkar SA, Majumdar AS. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats. Indian J Pharmacol 2016; 48:241-7. [PMID: 27298491 PMCID: PMC4899994 DOI: 10.4103/0253-7613.182895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/22/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). MATERIALS AND METHODS Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. RESULTS Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. CONCLUSION Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.
Collapse
Affiliation(s)
- Sadaf A. Karbelkar
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| | - Anuradha S. Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Microbiota secrete a multitude of factors that either confer virulence or promote colonization because they are continuously challenged by host immune responses. The dynamic interplay between the host's immune response and microbiota eventually determines the outcome for the host: health or disease. Toll-like receptors (TLRs) play a key role in this interplay as they can recognize both microbial and host-derived ligands on the basis of the context in which recognition occurs. RECENT FINDINGS Evidence is accumulating that conventional cancer therapies alter interactions and cross talks between the host and microbiota. This has been shown for intestinal mucositis, a common side-effect of various cancer therapies. Advances have been made in the development of new and less toxic cancer strategies. One promising field is immunotherapy on the basis of TLR activation through recognition of microbial-associated molecular patterns. SUMMARY Evidence is emerging, indicating that existing cancer therapies have implications on the composition and functionality of the host-microbiota environment. This may favor the colonization of pathogens and build up the overall toxicity of the drug. Exploitation of the host-microbiota cross talks mediated by TLRs is an emerging and promising field in the search for new, less toxic anticancer strategies.
Collapse
|
21
|
The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin Nutr 2015; 34:1080-7. [DOI: 10.1016/j.clnu.2015.01.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/05/2015] [Accepted: 01/11/2015] [Indexed: 02/06/2023]
|
22
|
Polysaccharides from Medicinal Mushrooms and Their Antitumor Activities. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Allison RR, Ambrad AA, Arshoun Y, Carmel RJ, Ciuba DF, Feldman E, Finkelstein SE, Gandhavadi R, Heron DE, Lane SC, Longo JM, Meakin C, Papadopoulos D, Pruitt DE, Steinbrenner LM, Taylor MA, Wisbeck WM, Yuh GE, Nowotnik DP, Sonis ST. Multi-institutional, randomized, double-blind, placebo-controlled trial to assess the efficacy of a mucoadhesive hydrogel (MuGard) in mitigating oral mucositis symptoms in patients being treated with chemoradiation therapy for cancers of the head and neck. Cancer 2014; 120:1433-40. [PMID: 24877167 PMCID: PMC4164024 DOI: 10.1002/cncr.28553] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The objective of this trial was to determine how a mucoadhesive hydrogel (MuGard), a marketed medical device, would fare when tested with the strictness of a conventional multi‐institutional, double‐blind, randomized, placebo‐controlled study format. METHODS A total of 120 subjects planned to receive chemoradiation therapy (CRT) for treatment of head and neck cancers were randomized to receive either MuGard or sham control rinse (SC) during CRT. Subjects completed the validated Oral Mucositis Daily Questionnaire. Weight, opiate use, and World Health Organization (WHO) oral mucositis (OM) scores were recorded. Subjects who dosed at least once daily during the first 2.5 weeks of CRT were included in the efficacy analysis. RESULTS Of 120 subjects enrolled, 78 (SC, N = 41; MuGard, N = 37) were eligible for efficacy analysis. Both cohorts were similar in demographics, baseline characteristics, primary tumor type, and planned CRT regimen. MuGard effectively mitigated OM symptoms as reflected by area under the curve of daily patient‐reported oral soreness (P = .034) and WHO scores on the last day of radiation therapy (P = .038). MuGard was also associated with nonsignificant trends related to therapeutic benefit including opioid use duration, and OM scores (WHO criteria) at CRT week 4. Rinse compliance was identical between cohorts. No significant adverse events were reported, and the adverse event incidence was similar between cohorts. CONCLUSIONS Testing MuGard, a rinse marketed as a device, in a standard clinical trial format demonstrated its superiority to SC in mitigating OM symptoms, delaying OM progression, and its safety and tolerability. Cancer 2014;120:1433–1440. © 2014 Access Pharmaceuticals, Inc. Cancer published by Wiley Periodicals. Inc. on behalf of American Cancer Society. In a randomized, double‐blind, placebo‐controlled trial, the mucoadhesive hydrogel MuGard proved to be superior to saline‐bicarbonate rinse in mitigating oral mucositis (OM) symptoms and delaying OM progression. MuGard was safe and well‐tolerated, and favorably affected the rate and incidence of ulcerative lesions, consistent with the patient‐reported outcomes.
Collapse
Affiliation(s)
- Ron R. Allison
- 21st Century Oncology Carolina Radiation MedicineGreenvilleNorth Carolina
| | | | | | | | | | | | | | | | - Dwight E. Heron
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Steven C. Lane
- Signature Healthcare Brockton HospitalBrocktonMassachusetts
| | | | - Charles Meakin
- CaroMont Health Comprehensive Cancer CenterGastoniaNorth Carolina
| | | | | | | | | | | | | | - David P. Nowotnik
- Access PharmaceuticalsDallasTexas
- Corresponding author: David Nowotnik, PhD, Access Pharmaceuticals, Inc., 4848 Lemmon Avenue, Suite 517, Dallas, TX 75219; Fax: (214) 905‐5101;
| | | |
Collapse
|
24
|
Polysaccharides from Medicinal Mushrooms and Their Antitumor Activities. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Callaghan B, Furness JB. New roles of serotonin and tachykinins in intestinal mucositis? Dig Dis Sci 2013; 58:3384-5. [PMID: 24162273 DOI: 10.1007/s10620-013-2912-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia,
| | | |
Collapse
|