1
|
Tadas M, Wankhede N, Chandurkar P, Kotagale N, Umekar M, Katariya R, Waghade A, Kokare D, Taksande B. Postnatal propionic acid exposure disrupts hippocampal agmatine homeostasis leading to social deficits and cognitive impairment in autism spectrum disorder-like phenotype in rats. Pharmacol Biochem Behav 2025; 252:174030. [PMID: 40318701 DOI: 10.1016/j.pbb.2025.174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a range of symptoms including impaired social interaction and cognitive deficits. Although the exact pathogenesis of ASD is not well established, recent clinical findings suggest a decline in levels of biogenic amine agmatine in autistic patients. The present study was designed to investigate the impact of postnatal propionic acid (PPA) exposure on hippocampal agmatine homeostasis in male rat pups and to explore a new therapeutic intervention for ASD using agmatine as a biological target. PPA is commonly used in experimental models of ASD due to its ability to induce social deficits, cognitive impairments, and stereotyped behaviors, which closely resemble key characteristics of ASD. Male rat pups were administered with PPA via the intrahippocampal route bilaterally (25 μg/0.25 μl per side) on PND-21 to simulate the ASD phenotype, and its subsequent effect on the endogenous agmatinergic system. The influence of agmatine treatment and its endogenous modulation on ASD-like phenotypes was also investigated. Behavioral assessments revealed that PPA exposure reduced sociability and social preference, caused learning and memory impairment in the Morris water maze, increased anxiety-like behavior in the elevated plus maze, and reduced exploratory behavior in the hole board test. Neurochemical analyses showed a decrease in agmatine concentration and an increase in its degrading enzyme agmatinase in the hippocampus. PPA treatment altered the content of GABA, glutamate, TNF-α, IL-6, BDNF, and also resulted in increased astrogliosis and neurotoxicity within the hippocampus. Chronic agmatine treatment and its endogenous modulation ameliorated the behavioral and biochemical disruptions induced by PPA exposure. This study highlights the critical role of hippocampal agmatinergic pathway in the etiopathogenesis of ASD, positioning agmatine as a promising therapeutic target for its treatment.
Collapse
Affiliation(s)
- Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Pranali Chandurkar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Akash Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, M.S. 440 033, India
| | - Dadasaheb Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, M.S. 440 033, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
2
|
Cai H, Hou F, Wang Y, Wu L, Wang Z, Wu M, Wang X, Hölscher C. Mitochondrial Calcium Uniporter knockdown improves the viability of HT22 hippocampal neurons in Alzheimer's disease. Eur J Pharmacol 2025; 991:177347. [PMID: 39914782 DOI: 10.1016/j.ejphar.2025.177347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Alzheimer's disease (AD) is a degenerative disorder that poses a serious threat because it has no cure. Recently, mitochondrial dysfunction has been shown to directly promote the development of AD. An imbalance in mitochondrial calcium (mCa2+) homeostasis is an important cause of mitochondrial dysfunction. Abnormal expression of mitochondrial calcium uniporter (MCU), a key channel responsible for mCa2+ uptake, can induce an imbalance in mCa2+ homeostasis, ultimately leading to mitochondrial dysfunction. Importantly, we observed a much higher expression level of MCU in the hippocampus of amyloid precursor protein (APP)/presenilin 1 (PS1)/tau transgenic mice than that in the hippocampus of control mice (C57), suggesting that MCU may be a target for the development of treatments for AD. Our recent study revealed the neuroprotective effect of MCU knockdown on hippocampal neurons in APP/PS1/tau mice. In the present study, we used MCU knockdown to investigate the cellular mechanisms involved in amyloid-β (Aβ)1-42 and okadaic acid (OA) cell models of AD. We found that MCU knockdown could increase the survival and decrease the apoptosis of these two cell models by lowering mCa2+ overload, further increasing the mitochondrial membrane potential (MMP) and ultimately reducing the overproduction of reactive oxygen species (ROS). This study showed that MCU knockdown could increase the proliferation and viability of HT22 hippocampal neurons, which might explain the neuroprotective effect of MCU knockdown on AD, potentially leading to the development of novel and effective therapies for AD.
Collapse
Affiliation(s)
- Hongyan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Taiyuan, China.
| | - Fei Hou
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.
| | - Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.
| | - Linhong Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.
| | - Zhaojun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Meina Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Xiao Wang
- Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
| | - Christian Hölscher
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
3
|
Rahmatkar SN, Singh D. Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04776-x. [PMID: 40014269 DOI: 10.1007/s12035-025-04776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.
Collapse
Affiliation(s)
- Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR)), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
5
|
Katariya RA, Sammeta SS, Kale MB, Kotagale NR, Umekar MJ, Taksande BG. Agmatine as a novel intervention for Alzheimer's disease: Pathological insights and cognitive benefits. Ageing Res Rev 2024; 96:102269. [PMID: 38479477 DOI: 10.1016/j.arr.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and a significant societal burden. Despite extensive research and efforts of the multidisciplinary scientific community, to date, there is no cure for this debilitating disease. Moreover, the existing pharmacotherapy for AD only provides symptomatic support and does not modify the course of the illness or halt the disease progression. This is a significant limitation as the underlying pathology of the disease continues to progress leading to the deterioration of cognitive functions over time. In this milieu, there is a growing need for the development of new and more efficacious treatments for AD. Agmatine, a naturally occurring molecule derived from L-arginine, has emerged as a potential therapeutic agent for AD. Besides this, agmatine has been shown to modulate amyloid beta (Aβ) production, aggregation, and clearance, key processes implicated in AD pathogenesis. It also exerts neuroprotective effects, modulates neurotransmitter systems, enhances synaptic plasticity, and stimulates neurogenesis. Furthermore, preclinical and clinical studies have provided evidence supporting the cognition-enhancing effects of agmatine in AD. Therefore, this review article explores the promising role of agmatine in AD pathology and cognitive function. However, several limitations and challenges exist, including the need for large-scale clinical trials, optimal dosing, and treatment duration. Future research should focus on mechanistic investigations, biomarker studies, and personalized medicine approaches to fully understand and optimize the therapeutic potential of agmatine. Augmenting the use of agmatine may offer a novel approach to address the unmet medical need in AD and provide cognitive enhancement and disease modification for individuals affected by this disease.
Collapse
Affiliation(s)
- Raj A Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nandkishor R Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, Maharashtra 444604, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
6
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
7
|
Vinchurney MD, Dhokne MD, Kotagale N, Umekar MJ, Taksande B. Agmatine prevents the manifestation of impulsive burying and depression-like behaviour in progesterone withdrawn female rats. Horm Behav 2023; 152:105361. [PMID: 37163843 DOI: 10.1016/j.yhbeh.2023.105361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by various physical and affective symptoms, including anxiety, irritability, anhedonia, social withdrawal, and depression. The present study investigated the role of the agmatinergic system in animal model of progesterone withdrawal in female rats. Chronic progesterone exposure of female rats for 21 days and its abrupt withdrawal showed enhanced marble burying, increased immobility time, and reduced no. of entries in open arm as compared to control animals. The progesterone withdrawal-induced enhanced marble burying anxiety and immobility time was significantly attenuated by agmatine (5-20 mg/kg, i.p.), and its endogenous modulators like L-arginine (100 mg/kg, i.p.), amino-guanidine (25 mg/kg, i.p.) and arcaine (50 mg/kg, i.p.) by their once-daily administration from day 14-day 21 of the protocol. We have also analysed the levels of agmatine, progesterone, and inflammatory cytokines in the hippocampal region of progesterone withdrawn rats. There was a significant decline in agmatine and progesterone levels and an elevation in cytokine levels in the hippocampal region of progesterone withdrawn rats compared to the control animals. In conclusion, the present studies suggest the importance of the endogenous agmatinergic system in progesterone withdrawal-induced anxiety-like and depression-like behaviour. The data also projects agmatine as a potential therapeutic target for the premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- Madhura Dixit Vinchurney
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Mrunali D Dhokne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
8
|
Wang S, Ma Y, Huang Y, Hu Y, Huang Y, Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer's disease analyzed by network pharmacology and molecular docking prediction. Front Aging Neurosci 2022; 14:1052249. [PMID: 36570530 PMCID: PMC9772884 DOI: 10.3389/fnagi.2022.1052249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aβ) and Tau. Results and discussion In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Shishuai Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji’an, China,*Correspondence: Yuhui Hu,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Yushan Huang,
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China,Yi Wu,
| |
Collapse
|
9
|
Ma Y, Ji Y, Xu L, Li Z, Ge S. Obesity aggravated hippocampal-dependent cognitive impairment after sleeve gastrectomy in C57/BL6J mice via SIRT1/CREB/BDNF pathway. Exp Brain Res 2022; 240:2897-2906. [PMID: 36114835 DOI: 10.1007/s00221-022-06465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by cognitive impairments following anesthesia/surgery, but the role of obesity and the underlying mechanisms are not known. We investigated the impact of obesity on POCD. Eighty male C57BL/6 J mice were assigned randomly to two groups fed a normal chow diet (ND, n = 40) or a high-fat diet (HD, n = 40) for 20 weeks. Then, they were divided randomly into eight subgroups of 10: ND control (NDC), ND with surgery (NDS), HD control (HDC), HD with surgery (HDS); NDS + DMSO (NDS + DS), NDS + SRT1720 (NDS + SRT), HDS + DMSO (HDS + DS), and HDS + SRT1720 (HDS + SRT). Body weight, blood glucose level, and serum lipid levels were measured. Staining methods on liver tissues were used to determine hepatic steatosis. A POCD model was established by sleeve gastrectomy (SG) under isoflurane anesthesia. Cognitive function was assessed using the Morris water maze test (MWMT). Expression of sirtuin1 (SIRT1), phosphorylated cAMP-responsive element binding protein (p-CREB), CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus were measured. High-fat diet-fed mice for 20 weeks could establish an obesity model with hyperlipidemia and hepatic steatosis. Cognitive impairment was significantly worse in the HDC and HDS groups than that in the NDC and NDS groups, respectively. Hippocampal expression of SIRT1, p-CREB, and BDNF in the HDS group was significantly lower than that of the HDC group. SRT1720 (SIRT1 activator) pretreatment could attenuate cognitive impairment by upregulating SIRT1 expression. These data suggest that obesity exacerbated postoperative hippocampal-dependent cognitive impairment via a SIRT1 pathway, and SRT1720 pretreatment could alleviate it.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zheng Li
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Ortí-Casañ N, Zuhorn IS, Naudé PJW, De Deyn PP, van Schaik PEM, Wajant H, Eisel ULM. A TNF receptor 2 agonist ameliorates neuropathology and improves cognition in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2022; 119:e2201137119. [PMID: 36037389 PMCID: PMC9482428 DOI: 10.1073/pnas.2201137119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic, proinflammatory cytokine related to different neurodegenerative diseases, including Alzheimer's disease (AD). Although the linkage between increased TNF-α levels and AD is widely recognized, TNF-α-neutralizing therapies have failed to treat AD. Previous research has associated this with the antithetic functions of the two TNF receptors, TNF receptor 1, associated with inflammation and apoptosis, and TNF receptor 2 (TNFR2), associated with neuroprotection. In our study, we investigated the effects of specifically stimulating TNFR2 with a TNFR2 agonist (NewStar2) in a transgenic Aβ-overexpressing mouse model of AD by administering NewStar2 in two different ways: centrally, via implantation of osmotic pumps, or systemically by intraperitoneal injections. We found that both centrally and systemically administered NewStar2 resulted in a drastic reduction in amyloid β deposition and β-secretase 1 expression levels. Moreover, activation of TNFR2 increased microglial and astrocytic activation and promoted the uptake and degradation of Aβ. Finally, cognitive functions were also improved after NewStar2 treatment. Our results demonstrate that activation of TNFR2 mitigates Aβ-induced cognitive deficits and neuropathology in an AD mouse model and indicates that TNFR2 stimulation might be a potential treatment for AD.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Petrus J. W. Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Peter P. De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Pauline E. M. van Schaik
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
| | - Harald Wajant
- Department of Internal Medicine II, University of Würzburg, Würzburg 97070, Germany
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| |
Collapse
|
11
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
12
|
Kotagale N, Rahangdale S, Borkar A, Singh K, Ikhar A, Takale N, Umekar M, Taksande B. Possible involvement of agmatine in neuropharmacological actions of metformin in diabetic mice. Eur J Pharmacol 2021; 907:174255. [PMID: 34129880 DOI: 10.1016/j.ejphar.2021.174255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
The risk of psychiatric and neurological disorders is significantly higher in patients with diabetes mellitus. Diabetic patients are more susceptible to depression, anxiety and memory impairment as compared with non-diabetic individuals. Metformin, a biguanide used for the management of type 2 diabetes mellitus (T2DM), promotes neurogenesis, enhances spatial memory function and protects the brain against oxidative imbalance beyond its effect on glucose metabolism. However, the exact mechanism of its neuropharmacological actions in T2DM is not known. We investigated the role of the agmatinergic system in neuropharmacological actions of metformin in diabetic mice. Diabetes was induced by the streptozotocin (STZ) injection and confirmed by high blood glucose levels. After 28 days, STZ treated mice exhibited memory impairment in radial arm maze, depression-like behavior in forced swim test and anxiety-like behavior in elevated plus maze along with increased expression of pro-inflammatory cytokines like TNF-α, IL-1β, IL-6, IL-10 also, reduced agmatine and BDNF levels in the hippocampus and prefrontal cortex compared to the control animals. Metformin and agmatine alone or in combination, by once-daily administration during 14-27 day of the protocol significantly reversed the STZ induced high blood glucose levels, memory impairment, depression and anxiety-like behaviors. It also reduced neuro-inflammatory markers and increased agmatine and BDNF levels in the hippocampus and prefrontal cortex. The present study suggests the importance of endogenous agmatine in the neuropharmacological action of metformin in diabetic mice. The data projects agmatine and metformin combination as a potential therapeutic strategy for diabetes associated memory impairment, depression, anxiety, and other comorbidities.
Collapse
Affiliation(s)
- Nandkishor Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India; Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Anjali Borkar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Kundan Singh
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Abhilasha Ikhar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Nikita Takale
- Government College of Pharmacy, Kathora Naka, Amravati, 444604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S, 441 002, India.
| |
Collapse
|
13
|
Li X, Lin J, Hua Y, Gong J, Ding S, Du Y, Wang X, Zheng R, Xu H. Agmatine Alleviates Epileptic Seizures and Hippocampal Neuronal Damage by Inhibiting Gasdermin D-Mediated Pyroptosis. Front Pharmacol 2021; 12:627557. [PMID: 34421582 PMCID: PMC8378273 DOI: 10.3389/fphar.2021.627557] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Epilepsy is a common neurological disease, and neuroinflammation is one of the main contributors to epileptogenesis. Pyroptosis is a type of pro-inflammatory cell death that is related to epilepsy. Agmatine, has anti-inflammatory properties and exerts neuroprotective effects against seizures. Our study investigated the effect of agmatine on the core pyroptosis protein GSDMD in the context of epilepsy. Methods: A chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ)-induced kindling or lipopolysaccharide (LPS) stimulation. H&E and Nissl staining were used to evaluate hippocampal neuronal damage. The expression of pyroptosis and inflammasome factors was examined by western blotting, quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Results: Agmatine disrupted the kindling acquisition process, which decreased seizure scores and the incidence of full kindling and blocked hippocampal neuronal damage. In addition, agmatine increased BV2 microglial cell survival in vitro and alleviated seizures in vivo by suppressing the levels of PTZ-induced pyroptosis. Finally, the expression of TLR4, MYD88, phospho-IκBα, phospho-NF-κB and the NLRP3 inflammasome was significantly upregulated in LPS-induced BV2 microglial cells, while agmatine suppressed the expression of these proteins. Conclusions: Our results indicate that agmatine affects epileptogenesis and exerts neuroprotective effects by inhibiting neuroinflammation, GSDMD activation, and pyroptosis. The inhibitory effect of agmatine on pyroptosis was mediated by the suppression of the TLR4/MYD88/NF-κB/NLRP3 inflammasome pathway. Therefore, agmatine may be a potential treatment option for epilepsy.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Lin
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingjie Hua
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaoni Gong
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Ding
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanru Du
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinshi Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyuan Zheng
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer's disease: Potential participation of STIMs. Neurotoxicology 2021; 85:145-159. [PMID: 34058247 DOI: 10.1016/j.neuro.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The amyloid-beta (Aβ) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aβ oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aβ fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aβ fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aβ aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aβ fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, 47263, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, OH, USA
| | - Marzieh Noruzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Aynaz Moshtagh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.
| |
Collapse
|
15
|
Cleal M, Fontana BD, Ranson DC, McBride SD, Swinny JD, Redhead ES, Parker MO. The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav Res Methods 2021; 53:536-557. [PMID: 32748238 PMCID: PMC8062322 DOI: 10.3758/s13428-020-01452-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous neurodegenerative and psychiatric disorders are associated with deficits in executive functions such as working memory and cognitive flexibility. Progress in developing effective treatments for disorders may benefit from targeting these cognitive impairments, the success of which is predicated on the development of animal models with validated behavioural assays. Zebrafish offer a promising model for studying complex brain disorders, but tasks assessing executive function are lacking. The Free-movement pattern (FMP) Y-maze combines aspects of the common Y-maze assay, which exploits the inherent motivation of an organism to explore an unknown environment, with analysis based on a series of sequential two-choice discriminations. We validate the task as a measure of working memory and executive function by comparing task performance parameters in adult zebrafish treated with a range of glutamatergic, cholinergic and dopaminergic drugs known to impair working memory and cognitive flexibility. We demonstrate the cross-species validity of the task by assessing performance parameters in adapted versions of the task for mice and Drosophila, and finally a virtual version in humans, and identify remarkable commonalities between vertebrate species' navigation of the maze. Together, our results demonstrate that the FMP Y-maze is a sensitive assay for assessing working memory and cognitive flexibility across species from invertebrates to humans, providing a simple and widely applicable behavioural assay with exceptional translational relevance.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Daniel C Ranson
- Medicines Research Group, University of East London, London, UK
| | | | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Edward S Redhead
- School of Psychology, University of Southampton, Southampton, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
16
|
Kotagale N, Dixit M, Garmelwar H, Bhondekar S, Umekar M, Taksande B. Agmatine reverses memory deficits induced by Aβ1–42 peptide in mice: A key role of imidazoline receptors. Pharmacol Biochem Behav 2020; 196:172976. [DOI: 10.1016/j.pbb.2020.172976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
|