1
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
2
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
3
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
4
|
Go V, Sarikaya D, Zhou Y, Bowley BGE, Pessina MA, Rosene DL, Zhang ZG, Chopp M, Finklestein SP, Medalla M, Buller B, Moore TL. Extracellular vesicles derived from bone marrow mesenchymal stem cells enhance myelin maintenance after cortical injury in aged rhesus monkeys. Exp Neurol 2021; 337:113540. [PMID: 33264634 PMCID: PMC7946396 DOI: 10.1016/j.expneurol.2020.113540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Cortical injury, such as stroke, causes neurotoxic cascades that lead to rapid death and/or damage to neurons and glia. Axonal and myelin damage in particular, are critical factors that lead to neuronal dysfunction and impair recovery of function after injury. These factors can be exacerbated in the aged brain where white matter damage is prevalent. Therapies that can ameliorate myelin damage and promote repair by targeting oligodendroglia, the cells that produce and maintain myelin, may facilitate recovery after injury, especially in the aged brain where these processes are already compromised. We previously reported that a novel therapeutic, Mesenchymal Stem Cell derived extracellular vesicles (MSC-EVs), administered intravenously at both 24 h and 14 days after cortical injury, reduced microgliosis (Go et al. 2019), reduced neuronal pathology (Medalla et al. 2020), and improved motor recovery (Moore et al. 2019) in aged female rhesus monkeys. Here, we evaluated the effect of MSC-EV treatment on changes in oligodendrocyte maturation and associated myelin markers in the sublesional white matter using immunohistochemistry, confocal microscopy, stereology, qRT-PCR, and ELISA. Compared to vehicle control monkeys, EV-treated monkeys showed a reduction in the density of damaged oligodendrocytes. Further, EV-treatment was associated with enhanced myelin maintenance, evidenced by upregulation of myelin-related genes and increases in actively myelinating oligodendrocytes in sublesional white matter. These changes in myelination correlate with the rate of motor recovery, suggesting that improved myelin maintenance facilitates this recovery. Overall, our results suggest that EVs act on oligodendrocytes to support myelination and improves functional recovery after injury in the aged brain. SIGNIFICANCE: We previously reported that EVs facilitate recovery of function after cortical injury in the aged monkey brain, while also reducing neuronal pathology (Medalla et al. 2020) and microgliosis (Go et al. 2019). However, the effect of injury and EVs on oligodendrocytes and myelination has not been characterized in the primate brain (Dewar et al. 1999; Sozmen et al. 2012; Zhang et al. 2013). In the present study, we assessed changes in myelination after cortical injury in aged monkeys. Our results show, for the first time, that MSC-EVs support recovery of function after cortical injury by enhancing myelin maintenance in the aged primate brain.
Collapse
Affiliation(s)
- Veronica Go
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, United States.
| | - Deniz Sarikaya
- Research Center for Translational Medicine, Koç University School of Medicine, Turkey
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Bethany G E Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States; Center for Systems Neuroscience, Boston University, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health Systems, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Systems, United States; Department of Physics, Oakland University, United States
| | - Seth P Finklestein
- Department of Neurology, Massachusetts General Hospital, United States; Stemetix, Inc., United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Center for Systems Neuroscience, Boston University, United States
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health Systems, United States
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Center for Systems Neuroscience, Boston University, United States
| |
Collapse
|
5
|
Propson NE, Gedam M, Zheng H. Complement in Neurologic Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:277-298. [PMID: 33234021 DOI: 10.1146/annurev-pathol-031620-113409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.
Collapse
Affiliation(s)
- Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
6
|
Lai WF, Wong WT. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 2020; 58:101021. [PMID: 31968269 DOI: 10.1016/j.arr.2020.101021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the cytoskeleton is essential to diverse cellular processes such as phagocytosis and intracellular trafficking. Disruption of the organization and dynamics of the actin cytoskeleton leads to age-associated symptoms and diseases, ranging from cancer to neurodegeneration. In addition, changes in the integrity of the actin cytoskeleton disrupt the functioning of not only somatic and stem cells but also gametes, resulting in aberrant embryonic development. Strategies to preserve the integrity and dynamics of the cytoskeleton are, therefore, potentially therapeutic to age-related disorders. The objective of this article is to revisit the current understanding of the roles played by the actin cytoskeleton in aging, and to review the opportunities and challenges for the transition of basic research into intervention development. It is hoped that, with the snapshot of evidence regarding changes in actin dynamics with advanced age, insights into future research directions can be attained.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Shenzhen University, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
7
|
Frost GR, Jonas LA, Li YM. Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Front Aging Neurosci 2019; 11:337. [PMID: 31920620 PMCID: PMC6916654 DOI: 10.3389/fnagi.2019.00337] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFT), neuronal death and synaptic loss, and inflammation in the brain. AD research has, in large part, been dedicated to the understanding of Aβ and NFT deposition as well as to the pharmacological reduction of these hallmarks. However, recent GWAS data indicates neuroinflammation plays a critical role in AD development, thereby redirecting research efforts toward unveiling the complexities of AD-associated neuroinflammation. It is clear that the innate immune system is intimately associated with AD progression, however, the specific roles of glia and neuroinflammation in AD pathology remain to be described. Moreover, inflammatory processes have largely been painted as detrimental to AD pathology, when in fact, many immune mechanisms such as phagocytosis aid in the reduction of AD pathologies. In this review, we aim to outline the delicate balance between the beneficial and detrimental aspects of immune activation in AD as a more thorough understanding of these processes is critical to development of effective therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R. Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
| | - Lauren A. Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, Manhattan, NY, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Klotho Is Neuroprotective in the Superoxide Dismutase (SOD1 G93A) Mouse Model of ALS. J Mol Neurosci 2019; 69:264-285. [PMID: 31250273 DOI: 10.1007/s12031-019-01356-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.
Collapse
|
9
|
Yang Q, Zhou J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 2018; 67:1017-1035. [DOI: 10.1002/glia.23571] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Qiao‐qiao Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Jia‐wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
10
|
Peterson SL, Nguyen HX, Mendez OA, Anderson AJ. Complement Protein C3 Suppresses Axon Growth and Promotes Neuron Loss. Sci Rep 2017; 7:12904. [PMID: 29018286 PMCID: PMC5635131 DOI: 10.1038/s41598-017-11410-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The inflammatory response to spinal cord injury (SCI) involves localization and activation of innate and adaptive immune cells and proteins, including the complement cascade. Complement C3 is important for the classical, alternative, and lectin pathways of complement activation, and its cleavage products C3a and C3b mediate several functions in the context of inflammation, but little is known about the potential functions of C3 on regeneration and survival of injured neurons after SCI. We report that 6 weeks after dorsal hemisection with peripheral conditioning lesion, C3-/- mice demonstrated a 2-fold increase in sensory axon regeneration in the spinal cord in comparison to wildtype C3+/+ mice. In vitro, addition of C3 tripled both myelin-mediated neurite outgrowth inhibition and neuron loss versus myelin alone, and ELISA experiments revealed that myelin serine proteases cleave C3 to generate active fragments. Addition of purified C3 cleavage products to cultured neurons suggested that C3b is responsible for the growth inhibitory and neurotoxic or anti-adhesion activities of C3. These data indicate that C3 reduces neurite outgrowth and neuronal viability in vitro and restricts axon regeneration in vivo, and demonstrate a novel, non-traditional role for this inflammatory protein in the central nervous system.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Oscar A Mendez
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA, 92697, USA. .,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA. .,Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Raj D, Yin Z, Breur M, Doorduin J, Holtman IR, Olah M, Mantingh-Otter IJ, Van Dam D, De Deyn PP, den Dunnen W, Eggen BJL, Amor S, Boddeke E. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. Front Mol Neurosci 2017; 10:206. [PMID: 28713239 PMCID: PMC5492660 DOI: 10.3389/fnmol.2017.00206] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Collapse
Affiliation(s)
- Divya Raj
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Zhuoran Yin
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Marjolein Breur
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Ietje J Mantingh-Otter
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Biobank, Institute Born-BungeWilrijk, Belgium
| | - Wilfred den Dunnen
- Department of Pathology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sandra Amor
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands.,Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and DentistryLondon, United Kingdom
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
12
|
Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. VITAMINS AND HORMONES 2016; 101:215-38. [PMID: 27125744 DOI: 10.1016/bs.vh.2016.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe what has been learned about Klotho and its potential functions in the brain. Klotho is localized in the choroid plexus and, to a lesser extent, in hippocampal neurons. Cognitive decline is a common issue in human aging affecting over 50% of the population. This cognitive decline can also be seen in animal models such as the Rhesus monkey. A long-term study undertaken by our lab demonstrated that normal brain aging in rhesus monkeys and other animal models is associated with a significant downregulation of Klotho expression. This observation substantiates data from other laboratories that have reported that loss of Klotho accelerates the development of aging-like phenotypes, including cognitive deficits, whereas Klotho overexpression extends life span and enhances cognition in mice and humans. Klotho is a type 1 transmembrane pleiotropic protein predominantly expressed in kidney and brain and shed by ADAM 10 and 17 into the blood and cerebral spinal fluid, respectively. While the renal functions of Klotho are well known, its roles in the brain remain to be fully elucidated. We recently demonstrated that Klotho protects hippocampal neurons from amyloid and glutamate toxicity via the activation of an antioxidant enzymatic system suggesting Klotho is a neuroprotective protein. Furthermore, Klotho is necessary for oligodendrocyte maturation and myelin integrity. Through its diverse roles in the brain, Klotho has become a new therapeutic target for neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases like multiple sclerosis. Discovery of small molecule Klotho enhancers may lead to novel treatments for these incurable disorders.
Collapse
Affiliation(s)
- C R Abraham
- Boston University School of Medicine, Boston, MA, United States.
| | - P C Mullen
- Boston University School of Medicine, Boston, MA, United States
| | - T Tucker-Zhou
- Boston University School of Medicine, Boston, MA, United States
| | - C D Chen
- Boston University School of Medicine, Boston, MA, United States
| | - E Zeldich
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
The Anti-Aging Protein Klotho Enhances Remyelination Following Cuprizone-Induced Demyelination. J Mol Neurosci 2015; 57:185-96. [DOI: 10.1007/s12031-015-0598-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 01/23/2023]
|
14
|
Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. J Neurosci 2015; 35:4332-49. [PMID: 25762679 DOI: 10.1523/jneurosci.4473-12.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI.
Collapse
|
15
|
Hooshmand MJ, Galvan MD, Partida E, Anderson AJ. Characterization of recovery, repair, and inflammatory processes following contusion spinal cord injury in old female rats: is age a limitation? IMMUNITY & AGEING 2014; 11:15. [PMID: 25512759 PMCID: PMC4265993 DOI: 10.1186/1742-4933-11-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/12/2014] [Indexed: 01/14/2023]
Abstract
Background Although the incidence of spinal cord injury (SCI) is steadily rising in the elderly human population, few studies have investigated the effect of age in rodent models. Here, we investigated the effect of age in female rats on spontaneous recovery and repair after SCI. Young (3 months) and aged (18 months) female rats received a moderate contusion SCI at T9. Behavioral recovery was assessed, and immunohistocemical and stereological analyses performed. Results Aged rats demonstrated greater locomotor deficits compared to young, beginning at 7 days post-injury (dpi) and lasting through at least 28 dpi. Unbiased stereological analyses revealed a selective increase in percent lesion area and early (2 dpi) apoptotic cell death caudal to the injury epicenter in aged versus young rats. One potential mechanism for these differences in lesion pathogenesis is the inflammatory response; we therefore assessed humoral and cellular innate immune responses. No differences in either acute or chronic serum complement activity, or acute neutrophil infiltration, were observed between age groups. However, the number of microglia/macrophages present at the injury epicenter was increased by 50% in aged animals versus young. Conclusions These data suggest that age affects recovery of locomotor function, lesion pathology, and microglia/macrophage response following SCI.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel D Galvan
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA.,Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth Partida
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Xie F, Zhang JC, Fu H, Chen J. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 2013; 32:1021-8. [PMID: 24026164 DOI: 10.3892/ijmm.2013.1486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/19/2013] [Indexed: 11/06/2022] Open
Abstract
It has been shown that aging can greatly influence the integrity and ultrastructure of white matter and the myelin sheath; however, studies regarding the effects of aging on the expression of myelin proteins are still limited. In the present study, immunohistochemical mapping was used to investigate the overall expression of myelin basic protein (Mbp) and myelin oligodendrocyte glycoprotein (Mog) in the central nervous system (CNS) of rats in postnatal months 2, 5, 18 and 26. Astrocyte and microglia activation was also detected by glial fibrillary acidic protein (GFAP) or ionized calcium-binding adaptor molecule 1 (Iba1) staining and western blotting. A significant decline of Mbp and Mog was identified as a universal alteration in the CNS of aged rats. Aging also induced significant astrocyte and microglial activation. Correlation analysis indicated a negative correlation between the reduction of age‑related myelin proteins and glial activation in aging. This correlation of myelin breakdown and glial activation in aging may reveal new evidence in connecting the inflammation and myelin breakdown mechanism of age‑related neurodegenerative diseases.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | | | | | | |
Collapse
|
18
|
Yang S, Li C, Qiu X, Zhang L, Lu W, Chen L, Zhao Y, Shi X, Huang C, Cheng G, Tang Y. Effects of an enriched environment on myelin sheaths in the white matter of rats during normal aging: A stereological study. Neuroscience 2013; 234:13-21. [DOI: 10.1016/j.neuroscience.2013.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/25/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
|
19
|
Abstract
The majority of neurodegenerative diseases have an important age component, and thus, understanding the molecular changes that occur during normal aging of the brain is of utmost relevance. In search for the basis of the age-related cognitive decline found in humans, monkeys and rodents, we study the rhesus monkey. Surprisingly, there is no loss of neurons in aged monkey brains. However, we reported white matter and myelin abnormalities in aged monkeys, similar to those observed in Alzheimer's disease and multiple sclerosis patients. In a microarray analysis comparing young and old monkey white matter, we discovered that Klotho is downregulated in the aged brain. We then asked whether there is a connection between the age-related cognitive decline, myelin abnormalities and Klotho downregulation. If such a connection is found, compounds that upregulate Klotho expression could become of therapeutic interest for the treatment of multiple sclerosis, and perhaps even Alzheimer's disease.
Collapse
|
20
|
Yang S, Lu W, Zhou DS, Tang Y. Enriched environment and white matter in aging brain. Anat Rec (Hoboken) 2012; 295:1406-14. [PMID: 22777883 DOI: 10.1002/ar.22526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Normal aging is commonly associated with decreased cognitive functions, which could be conspicuously alleviated by enriched environment (EE) with physical, social, and sensory stimuli, suggesting that aging brain still has intriguing plasticity. Multiple researches have been carried out to explore the structural and the molecular changes in aging brain, which would be considered for evidences that EE regulated brain plasticity. Because there is no significant neuron loss in aging cerebral cortex and the white matter is crucial for cognitive functions, this review focused on the age-related white matter changes and the effects of EE on aged white matter. Data from our stereology laboratory revealed that age-related spatial memory declines had more to do with white matter alterations, which were due to marked demyelination and loss of oligodendrocytes in the white matter. We also demonstrated that EE recovered spatial memory impairment and increased white matter volume by promoting marked remyelination in aged brain. This review approached the issue that EE might contribute to normal aging and be beneficial for those suffering from demyelinated diseases.
Collapse
Affiliation(s)
- Shu Yang
- Department of Histology and Embryology, Capital Medical University, Beijing 100069, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN. Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies. Acta Neuropathol 2010; 119:579-89. [PMID: 20091409 PMCID: PMC2849937 DOI: 10.1007/s00401-009-0635-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 12/13/2022]
Abstract
The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer’s disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic–ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD.
Collapse
|
22
|
Nguyen HX, Galvan MD, Anderson AJ. Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J Neuroinflammation 2008; 5:26. [PMID: 18578885 PMCID: PMC2443364 DOI: 10.1186/1742-2094-5-26] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/25/2008] [Indexed: 02/01/2023] Open
Abstract
Background The complement system has been suggested to affect injury or disease of the central nervous system (CNS) by regulating numerous physiological events and pathways. The activation of complement following traumatic CNS injury can also result in the formation and deposition of C5b-9 membrane attack complex (C5b-9/MAC), causing cell lysis or sublytic effects on vital CNS cells. Although complement proteins derived from serum/blood-brain barrier breakdown can contribute to injury or disease, infiltrating immune cells may represent an important local source of complement after injury. As the first immune cells to infiltrate the CNS within hours post-injury, polymorphonuclear leukocytes (PMNs) may affect injury through mechanisms associated with complement-mediated events. However, the expression/association of both early and terminal complement proteins by PMNs has not been fully characterized in vitro, and has not observed previously in vivo after traumatic spinal cord injury (SCI). Method We investigated the expression of complement mRNAs using rt-PCR and the presence of complement proteins associated with PMNs using immunofluroescence and quantitative flow cytometry. Results Stimulated or unstimulated PMNs expressed mRNAs encoding for C1q, C3, and C4, but not C5, C6, C7 or C9 in culture. Complement protein C1q or C3 was also detected in less than 30% of cultured PMNs. In contrast, over 70% of PMNs that infiltrated the injured spinal cord were associated with C1q, C3, C7 and C5b-9/MAC 3 days post-SCI. The localization/association of C7 or C5b-9/MAC with infiltrating PMNs in the injured spinal cord suggests the incorporation or internalization of C7 or C5b-9/MAC bound cellular debris by infiltrating PMNs because C7 and C5b-9/MAC were mostly localized to granular vesicles within PMNs at the spinal cord epicenter region. Furthermore, PMN presence in the injured spinal cord was observed for many weeks post-SCI, suggesting that this infiltrating cell population could chronically affect complement-mediated events and SCI pathogenesis after trauma. Conclusion Data presented here provide the first characterization of early and terminal complement proteins associated with PMNs in vitro and in vivo after SCI. Data also suggest a role for PMNs in the local internalization or deliverance of complement and complement activation in the post-SCI environment.
Collapse
Affiliation(s)
- Hal X Nguyen
- Physical Medicine & Rehabilitation, 1105 Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
23
|
Seth A, Cui J, To E, Kwee M, Matsubara J. Complement-associated deposits in the human retina. Invest Ophthalmol Vis Sci 2008; 49:743-50. [PMID: 18235023 DOI: 10.1167/iovs.07-1072] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate complement activation and associated inflammatory mechanisms in normal, aged human retina. METHODS Evidence of complement activation and associated mechanisms was assessed in normal human retina (n = 52) using a panel of antibodies directed against membrane attack complex (C5b-9), microglia (CD11b), amyloid precursor protein (APP), scavenger receptor (CD36), and a phytolectin (RCA-I). Fifty-two eyes, categorized into two age groups, were used. Nineteen "younger" eyes (<56 years) and 33 "older" eyes (>69 years) with no history of ocular disease were processed between 4 and 22 hours, with a median delay of 14 hours postmortem. RESULTS Age-dependent expression was evident in C5b-9, APP, CD11b, and RCA-I, but not CD36, immunoreactivity. Immunoreactivity for C5b-9 was robust in Bruch membrane (BM) and the intercapillary pillars of Bruch. Immunoreactivity for APP was robust in the basal cytoplasm of the retinal pigment epithelium. Immunoreactivity for CD11b was robust on the surface of the retinal pigment epithelial cell, in the choriocapillaris, and in BM. Lectin binding of RCA-I was strong throughout the neuroretina. CONCLUSIONS Robust immunostaining for APP in older donor eyes suggested that amyloid beta peptides may be one of the triggers of complement activation during the normal aging process. Microglial markers CD11b and RCA-I also increase with age, suggesting a concomitant inflammatory response to C5b-9 deposits in the retinal pigment epithelium, BM, and CC. Immunoreactivity for CD36 was strong in both age groups; the lack of age dependence in this candidate receptor for amyloid beta suggested that complement activation may arise from interactions of amyloid beta with other candidate receptors in normal human retina.
Collapse
Affiliation(s)
- Aditya Seth
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
24
|
Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56:106-17. [PMID: 17963266 DOI: 10.1002/glia.20593] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional studies of brain changes in normal aging have concentrated on gray matter as the locus for cognitive dysfunction. However, there is accumulating evidence from studies of normal aging in the rhesus monkey that changes in white matter may be a more critical factor in cognitive decline. Such changes include ultrastructural and biochemical evidence of myelin breakdown with age, as well as more recent magnetic resonance imaging of global loss of forebrain white matter volume and magnetic resonance diffusion tension imaging evidence of increased diffusivity in white matter. Moreover, many of these white matter changes correlate with age-related cognitive dysfunction. Based on these diverse white matter findings, the present work utilized high-density oligonucleotide microarrays to assess gene profile changes associated with age in the white matter of the corpus callosum. This approach identified several classes of genes that were differentially expressed in aging. Broadly characterized, these genes were predominantly related to an increase in stress factors and a decrease in cell function. The cell function changes included increased cell cycle inhibition and proteolysis, as well as decreased mitochondrial function, signal transduction, and protein translation. While most of these categories have previously been reported in functional brain aging, this is the first time they have been associated directly with white matter. Microarray analysis has also enabled the identification of neuroprotective response pathways activated by age in white matter, as well as several genes implicated in lifespan. Of particular interest was the identification of Klotho, a multifunctional protein that regulates phosphate and calcium metabolism, as well as insulin resistance, and is known to defend against oxidative stress and apoptosis. Combining the findings from the microarray study enabled us to formulate a model of white matter aging where specific genes are suggested as primary factors in disrupting white matter function. In conclusion, the overall changes described in this study could provide an explanation for aging changes in white matter that might be initiated or enhanced by an altered expression of life span associated genes such as Klotho.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
25
|
Datta PK, Rappaport J. HIV and complement: hijacking an immune defense. Biomed Pharmacother 2006; 60:561-8. [PMID: 16978830 DOI: 10.1016/j.biopha.2006.07.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/28/2006] [Indexed: 01/22/2023] Open
Abstract
The complement system is a central player of the innate immune system. Activation of the complement system protects the host against pathogens. However, uncontrolled synthesis can be detrimental to host. This concise review summarizes the current understanding of the mechanism(s) of complement activation, the mechanism of C3 regulation, and the role of complement in human immunodeficiency virus (HIV) pathogenesis with emphasis on the cross-talk between HIV and complement system in NeuroAIDS and HIV-associated nephropathy (HIVAN).
Collapse
Affiliation(s)
- P K Datta
- Department of Neuroscience, Temple University School of Medicine, 1900 N. 12th street, Philadelphia, PA 19122, USA.
| | | |
Collapse
|