1
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
SOCS3 Ablation in Leptin Receptor-Expressing Cells Causes Autonomic and Cardiac Dysfunctions in Middle-Aged Mice despite Improving Energy and Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23126484. [PMID: 35742928 PMCID: PMC9223472 DOI: 10.3390/ijms23126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leptin resistance is a hallmark of obesity. Treatments aiming to improve leptin sensitivity are considered a promising therapeutical approach against obesity. However, leptin receptor (LepR) signaling also modulates several neurovegetative aspects, such as the cardiovascular system and hepatic gluconeogenesis. Thus, we investigated the long-term consequences of increased leptin sensitivity, considering the potential beneficial and deleterious effects. To generate a mouse model with increased leptin sensitivity, the suppressor of cytokine signaling 3 (SOCS3) was ablated in LepR-expressing cells (LepR∆SOCS3 mice). LepR∆SOCS3 mice displayed reduced food intake, body adiposity and weight gain, as well as improved glucose tolerance and insulin sensitivity, and were protected against aging-induced leptin resistance. Surprisingly, a very high mortality rate was observed in aging LepR∆SOCS3 mice. LepR∆SOCS3 mice showed cardiomyocyte hypertrophy, increased myocardial fibrosis and reduced cardiovascular capacity. LepR∆SOCS3 mice exhibited impaired post-ischemic cardiac functional recovery and middle-aged LepR∆SOCS3 mice showed substantial arhythmic events during the post-ischemic reperfusion period. Finally, LepR∆SOCS3 mice exhibited fasting-induced hypoglycemia and impaired counterregulatory response to glucopenia associated with reduced gluconeogenesis. In conclusion, although increased sensitivity to leptin improved the energy and glucose homeostasis of aging LepR∆SOCS3 mice, major autonomic/neurovegetative dysfunctions compromised the health and longevity of these animals. Consequently, these potentially negative aspects need to be considered in the therapies that increase leptin sensitivity chronically.
Collapse
|
3
|
Huffman DM, Farias Quipildor G, Mao K, Zhang X, Wan J, Apontes P, Cohen P, Barzilai N. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 2016; 15:181-6. [PMID: 26534869 PMCID: PMC4717281 DOI: 10.1111/acel.12415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Derek M. Huffman
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Gabriela Farias Quipildor
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Kai Mao
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Xueying Zhang
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang Beijing 100101 China
| | - Junxiang Wan
- Davis School of Gerontology University of Southern California Los Angeles CA 90089 USA
| | - Pasha Apontes
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Pinchas Cohen
- Davis School of Gerontology University of Southern California Los Angeles CA 90089 USA
| | - Nir Barzilai
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY 10461 USA
| |
Collapse
|
4
|
Gong Z, Su K, Cui L, Tas E, Zhang T, Dong HH, Yakar S, Muzumdar RH. Central effects of humanin on hepatic triglyceride secretion. Am J Physiol Endocrinol Metab 2015; 309:E283-92. [PMID: 26058861 PMCID: PMC4525112 DOI: 10.1152/ajpendo.00043.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kai Su
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lingguang Cui
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York; and
| | - Emir Tas
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ting Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Radhika H Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| |
Collapse
|
5
|
Zamboni M, Rossi AP, Fantin F, Zamboni G, Chirumbolo S, Zoico E, Mazzali G. Adipose tissue, diet and aging. Mech Ageing Dev 2013; 136-137:129-37. [PMID: 24321378 DOI: 10.1016/j.mad.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/25/2022]
Abstract
Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.
Collapse
Affiliation(s)
- Mauro Zamboni
- Department of Medicine, Geriatric Medicine, University of Verona, Italy.
| | - Andrea P Rossi
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Francesco Fantin
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | | | | | - Elena Zoico
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatric Medicine, University of Verona, Italy
| |
Collapse
|
6
|
Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clin Interv Aging 2013; 8:829-44. [PMID: 23869170 PMCID: PMC3706252 DOI: 10.2147/cia.s36367] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global epidemic associated with aging-like cellular processes; in both aging and obesity, resistance to hormones such as insulin and leptin can be observed. Leptin is a circulating hormone/cytokine with central and peripheral effects that is released mainly by subcutaneous white adipose tissue. Centrally, leptin controls food intake, energy expenditure, and fat distribution, whereas it controls (among several others) insulin sensitivity, free fatty acids (FFAs) oxidation, and lipolysis in the periphery. Aging is associated with important changes in both the distribution and the composition of adipose tissue. Fat is redistributed from the subcutaneous to the visceral depot and increased inflammation participates in adipocyte dysfunction. This redistribution of adipose tissue in favor of visceral fat influences negatively both longevity and healthy aging as shown in numerous animal models. These modifications observed during aging are also associated with leptin resistance. This resistance blunts normal central and peripheral functions of leptin, which leads to a decrease in neuroendocrine function and insulin sensitivity, an imbalance in energy regulation, and disturbances in lipid metabolism. Here, we review how age-related leptin resistance triggers metabolic disturbances and affects the longevity of obese patients. Furthermore, we discuss the potential impacts of leptin resistance on the decline of brown adipose tissue thermogenesis observed in elderly individuals.
Collapse
Affiliation(s)
- Sophie Carter
- Faculty of Pharmacy, Department of Anatomy and Physiology, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
7
|
Ionov ID, Pushinskaya II. Somatostatin antagonist induces catalepsy in the aged rat. Psychopharmacology (Berl) 2013; 227:273-6. [PMID: 23274508 DOI: 10.1007/s00213-012-2961-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
RATIONALE Extrapyramidal motor signs are the major features of Parkinson's disease (PD). It is unclear whether there is a link between these signs and such PD-associated factors as brain somatostatin deficiency and aging. OBJECTIVES This study aimed to examine whether an inhibition of the brain somatostatin system can initiate catalepsy, a model of extrapyramidal disorders, in young and aged rats. METHODS The animals of 100-110 and 540-560 days of age were used. Catalepsy was measured using the bar test. The inhibition of the brain somatostatin activity was simulated by intracerebroventricular administration of a somatostatin antagonist, cyclosomatostatin. RESULTS Cyclosomatostatin dose-dependently induced catalepsy in aged, but not in young rats. The cataleptic response was reversed by a somatostatin analog, octreotide. CONCLUSIONS The combination of aging and brain somatostatin deficiency can lead to catalepsy in rats. Since both factors are frequently observed in PD patients, the present results might be of relevance for pathogenesis of extrapyramidal signs in this disease.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Leninsky Prospect 123-4-63, Moscow, 117513, Russia.
| | | |
Collapse
|
8
|
Somatostatin antagonist potentiates haloperidol-induced catalepsy in the aged rat. Pharmacol Biochem Behav 2012; 103:295-8. [DOI: 10.1016/j.pbb.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/02/2012] [Accepted: 08/11/2012] [Indexed: 11/18/2022]
|
9
|
Abstract
Insulin-like growth factor 1 (IGF-1) is a pleiotropic polypeptide. Its expression is tightly regulated and it plays significant roles during early development, maturation, and adulthood. This article discusses the roles of IGF-1 in determination of body size, skeletal acquisition, muscle growth, carbohydrate metabolism, and longevity, as learned from mouse models.
Collapse
Affiliation(s)
- Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, David B. Kriser Dental Center, New York University College of Dentistry, New York, NY 10010-4086, USA.
| | | |
Collapse
|
10
|
Abstract
Obesity has various deleterious effects on health largely associated with metabolic abnormalities including abnormal glucose and lipid homeostasis that are associated with vascular injury and known cardiac, renal, and cerebrovascular complications. Advanced age is also associated with increased adiposity, decreased lean mass, and increased risk for obesity-related diseases. Although many of these obesity- and age-related disease processes have long been subsumed to be secondary to metabolic or vascular dysfunction, increasing evidence indicates that obesity also modulates nonvascular diseases such as Alzheimer's disease (AD) dementia. The link between peripheral obesity and neurodegeneration will be explored, using adipokines and AD as a template. After an introduction to the neuropathology of AD, the relationship between body weight, obesity, and dementia will be reviewed. Then, population-based and experimental studies that address whether leptin modulates brain health and mitigates AD pathways will be explored. These studies will serve as a framework for understanding the role of adipokines in brain health.
Collapse
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
11
|
Sanchez-Alavez M, Osborn O, Tabarean IV, Holmberg KH, Eberwine J, Kahn CR, Bartfai T. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J Biol Chem 2011; 286:14983-90. [PMID: 21330367 DOI: 10.1074/jbc.m110.188540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective is to investigate the role of insulin-like growth factor 1 (IGF-1) in the regulation of core body temperature. Sequencing cDNA libraries from individual warm-sensitive neurons from the preoptic area (POA) of the hypothalamus, a region involved in the central control of thermoregulation, identified neurons that express both IGF-1 receptor (IGF-1R) and insulin receptor transcripts. The effects of administration of IGF-1 into the POA was measured by radiotelemetry monitoring of core temperature, brown adipose tissue (BAT) temperature, metabolic assessment, and imaging of BAT by positron emission tomography of 2-[(18)F]fluoro-2-deoxyglucose uptake combined with computed tomography. IGF-1 injection into the POA caused dose-dependent hyperthermia that could be blocked by pretreatment with the IGF-1R tyrosine kinase inhibitor, PQ401. The IGF-1-evoked hyperthermia involved activation of brown adipose tissue and was accompanied by a switch from glycolysis to fatty acid oxidation as a source of energy as shown by lowered respiratory exchange ratio. Transgenic mice that lack neuronal insulin receptor expression in the brain (NIRKO mice) were unable to mount the full hyperthermic response to IGF-1, suggesting that the IGF-1 mediated hyperthermia is partly dependent on expression of functional neuronal insulin receptors. These data indicate a novel thermoregulatory role for both IGF-1R and neuronal insulin receptors in IGF-1 activation of BAT and hyperthermia. These central effects of IGF-1 signaling may play a role in regulation of metabolic rate, aging, and the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Synthesized and released by the adipose tissue, leptin is the widely studied 167-amino acid hormonal protein product of the obesity gene. Originally leptin was defined in association with satiety and energy balance and claimed to be an anti-obesity factor that functioned via a feedback effect from adipocytes to hypothalamus. There is a growing body of evidence that emphasizes the importance of leptin in the regulation of food intake and body weight in animals and humans, alike. Other research findings point out that it plays a role in the regulation of the metabolism, sexual development, reproduction, hematopoiesis, immunity, gastrointestinal functions, sympathetic activation, and angiogenesis. The aim of this review is to evaluate the relation between leptin and the central nervous system (CNS).
Collapse
Affiliation(s)
- Yusuf Ziya Ziylan
- Department of Physiology, Istanbul Medical School, Istanbul University, Capa, Istanbul, Turkey
| | | | | |
Collapse
|
14
|
Effect of aging on 24-hour pattern of stress hormones and leptin in rats. Life Sci 2008; 83:142-8. [PMID: 18593590 DOI: 10.1016/j.lfs.2008.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 05/22/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
This work analyzes the 24-hour changes of hypothalamic-pituitary-adrenal (HPA) axis activity and leptin release in aged rats. Three- and 22-month-old male Wistar rats were killed at 6 time intervals during a 24-hour cycle (n=8-10 rats/group). Aging augmented plasma ACTH while it decreased plasma and adrenal gland corticosterone levels. Plasma and adrenal corticosterone levels attained high levels during all the scotophase, concomitantly with the maxima in ACTH levels, whereas in aged rats only a brief plasma corticosterone peak at the early scotophase and no time of day variations of adrenal corticosterone were observed. Aging augmented circulating leptin, with a significant interaction "agextime" in the factorial ANOVA, i.e. only in young rats time of day changes were significant, with the lowest values of leptin at the middle of the light period and higher values at night. When plasma leptin was expressed on body weight basis, the age-related differences became not significant but the daily pattern of plasma leptin found in young rats persisted. Plasma and adrenal corticosterone levels correlated significantly with plasma ACTH only in young rats. Likewise, plasma leptin correlated with plasma corticosterone only in young rats. These changes can be attributed to a disrupting effect of aging on the homeostatic mechanisms modulating HPA activity and leptin release.
Collapse
|